Physicochemical Properties and Antioxidant Activity of CRISPR/Cas9-Edited Tomato SGR1 Knockout (KO) Line
Abstract
:1. Introduction
2. Results
2.1. Expression Pattern of the SGR1 Gene
2.2. Molecular Characteristics of sgr1 Null Lines
2.3. Physiochemical Properties of sgr1 Null Lines
2.4. Colorimetric Evaluation
2.5. Antioxidant Constituents
2.6. Antioxidant Activity of Lipophilic and Hydrophilic Extracts
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Expression Analysis of SISGR1 Gene
4.3. Analysis of SGR1 Protein in sgr1 Null Lines
4.4. Total Soluble Solids, Total Acids of Pulp, and Brix Acid Ratio
4.5. Analysis of Carotenoids and Tocopherols
4.6. Analysis of GABA and Free Amino Acids
4.7. Vitamin C Content
4.8. Total Phenolic and Total Flavonoid Contents
4.9. Antioxidant Activity Test
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT Food & Agriculture Organization of the United Nations Statistics Division. Available online: http://faostat3.fao.org/home/index.html (accessed on 21 March 2024).
- Toor, R.K.; Savage, G.P. Antioxidant activity in different fractions of tomatoes. Food Res. Int. 2005, 38, 487–494. [Google Scholar] [CrossRef]
- Hamid, A.A.; Aiyelaagbe, O.O.; Usman, L.A.; Ameen, O.M.; Lawal, A. Antioxidants: Its medicinal and pharmacological applica-tions. Afr. J. Pure Appl. Chem. 2010, 4, 142–151. [Google Scholar] [CrossRef]
- Nasir, M.U.; Hussain, S.; Jabbar, S. Tomato processing, lycopene and health benefits: A review. Sci. Lett. 2015, 3, 1–5. [Google Scholar]
- Borguini, R.G.; Helena, D.; Bastos, M.; Moita-Neto, J.M.; Capasso, F.S.; Aparecida, E.; Da, F.; Torres, S. Antioxidant Potential of Tomatoes Cultivated in Organic and Conventional Systems. Braz. Arch. Biol. Technol. 2013, 56, 521–529. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Dao, L.; Flessa, S.; Gillespie, D.M.; Jewell, W.T.; Huebner, B.; Bertow, D.; Ebeler, S.E. Processing Effects on Lycopene Content and Antioxidant Activity of Tomatoes. J. Agric. Food Chem. 2001, 49, 3713–3717. [Google Scholar] [CrossRef] [PubMed]
- Brandt, S.; Pék, Z.; Barna, É.; Lugasi, A.; Helyes, L. Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J. Sci. Food Agric. 2005, 86, 568–572. [Google Scholar] [CrossRef]
- Shi, J.; Maguer, M.L. Lycopene in tomatoes: Chemical and Physical Properties Affected by Food Processing. Crit. Rev. Food Sci. Nutr. 2000, 40, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, J.H.; Jang, Y.H.; Yu, J.; Bae, S.; Kim, M.-S.; Cho, Y.-G.; Jung, Y.J.; Kang, K.K. Transcriptome and Metabolite Profiling of Tomato SGR-Knockout Null Lines Using the CRISPR/Cas9 System. Int. J. Mol. Sci. 2022, 24, 109. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.L.; Deng, L.; Yan, B.; Pan, Y.; Luo, M.; Chen, X.-Q.; Hu, T.-Z.; Chen, G.-P. Silencing of the LeSGR1 gene in tomato inhibits chlorophyll degradation and exhibits a stay-green phenotype. Biol. Plant. 2011, 55, 27–34. [Google Scholar] [CrossRef]
- Hörtensteiner, S. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci. 2009, 14, 155–162. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, J.; Li, J.; Yang, C.; Wang, T.; Ouyang, B.; Li, H.; Giovannoni, J.; Ye, Z. A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol. 2013, 198, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zeng, N.; Cheng, K.; Li, J.; Wang, K.; Zhang, C.; Zhu, H. Changes in fruit pigment accumulation, chloroplast development, and transcriptome analysis in the CRISPR/Cas9-mediated knockout of Stay-green 1 (slsgr1) mutant. Food Qual. Saf. 2021, 6. [Google Scholar] [CrossRef]
- Yin, L.; Liu, J.-X.; Tao, J.-P.; Xing, G.-M.; Tan, G.-F.; Li, S.; Duan, A.-Q.; Ding, X.; Xu, Z.-S.; Xiong, A.-S. The gene encoding lycopene epsilon cyclase of celery enhanced lutein and β-carotene contents and confers increased salt tolerance in Arabidopsis. Plant Physiol. Biochem. 2020, 157, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.R.; Song, M.-H.; Kim, J.K.; Baek, S.-A.; You, M.K.; Lim, S.-H.; Ha, S.-H. RNAi-mediated suppression of three carotenoid-cleavage dioxygenase genes, OsCCD1, 4a, and 4b, increases carotenoid content in rice. J. Exp. Bot. 2018, 69, 5105–5116. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cao, T.-J.; Zheng, H.; Zhou, C.-F.; Wang, Z.; Wang, R.; Lu, S. Manipulation of Carotenoid Metabolic Flux by Lycopene Cyclization in Ripening Red Pepper (Capsicum annuum var. conoides) Fruits. J. Agric. Food Chem. 2019, 67, 4300–4310. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.S.M.; Tian, L. An efficient and specific CRISPR-Cas9 genome editing system targeting soybean phytoene desaturase genes. BMC Biotechnol. 2022, 22, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, S.; Choi, H.-R.; Baek, M.-W.; Cheol, L.-H.; Kwak, K.-W.; Park, D.-S.; Solomon, T.; Jeong, C.-S. Antioxidant Properties, γ-Aminobutyric Acid (GABA) Content, and Physicochemical Characteristics of Tomato Cultivars. Agronomy 2021, 11, 1204. [Google Scholar] [CrossRef]
- Rivero, A.G.; Keutgen, A.J.; Pawelzik, E. Antioxidant Properties of Tomato Fruit (Lycopersicon esculentum Mill.) as Affected by Cultivar and Processing Method. Horticulturae 2022, 8, 547. [Google Scholar] [CrossRef]
- Silva-Beltrán, N.P.; Ruiz-Cruz, S.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Ornelas-Paz, J.d.J.; López-Mata, M.A.; Del-Toro-Sánchez, C.L.; Ayala-Zavala, J.F.; Márquez-Ríos, E. Total Phenolic, Flavonoid, Tomatine, and Tomatidine Contents and Antioxidant and Antimicrobial Activities of Extracts of Tomato Plant. Int. J. Anal. Chem. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Frusciante, L.; Carli, P.; Ercolano, M.R.; Pernice, R.; Di Matteo, A.; Fogliano, V.; Pellegrini, N. Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res. 2007, 51, 609–617. [Google Scholar] [CrossRef]
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef] [PubMed]
- Lenucci, M.S.; Cadinu, D.; Taurino, M.; Piro, G.; Dalessandro, G. Antioxidant Composition in Cherry and High-Pigment Tomato Cultivars. J. Agric. Food Chem. 2006, 54, 2606–2613. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, S.; Park, D.S.; Taye, A.M.; Jeong, C.S. Effect of ripening conditions on the physicochemical and antioxidant properties of tomato (Lycopersicon esculentum Mill.). Food Sci. Biotechnol. 2017, 26, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Rosati, C.; Aquilani, R.; Dharmapuri, S.; Pallara, P.; Marusic, C.; Tavazza, R.; Bouvier, F.; Camara, B.; Giuliano, G. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J. 2000, 24, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-López, A.; Yahia, E.M. Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI+-mass Spectrometry. J. Food Sci. Technol. 2012, 51, 2720–2726. [Google Scholar] [CrossRef] [PubMed]
- Chialva, M.; Zouari, I.; Salvioli, A.; Novero, M.; Vrebalov, J.; Giovannoni, J.J.; Bonfante, P. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening. Planta 2016, 244, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.A. Citrate and Malate Concentrations in Tomato Fruits: Genetic Control and Maturational Effects. J. Am. Soc. Hortic. Sci. 1972, 97, 655–658. [Google Scholar] [CrossRef]
- Cookson, P.J.; Kiano, J.W.; Shipton, C.A.; Fraser, P.D.; Romer, S.; Schuch, W.; Bramley, P.M.; Pyke, K.A. Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato. Planta 2003, 217, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Ayuso-Yuste, M.C.; González-Cebrino, F.; Lozano-Ruiz, M.; Fernández-León, A.M.; Bernalte-García, M.J. Influence of Ripening Stage on Quality Parameters of Five Traditional Tomato Varieties Grown under Organic Conditions. Horticulturae 2022, 8, 313. [Google Scholar] [CrossRef]
- Tadesse, T.N.; Ibrahim, A.M.; Gebreselas, W. Degradation and Formation of Fruit Color in Tomato (Solanum lycopersicum L.) in Response to Storage Temperature. Am. J. Food Technol. 2015, 10, 147–157. [Google Scholar] [CrossRef]
- Kang, D.-M.; Kwon, J.-M.; Jeong, W.-J.; Jung, Y.J.; Kang, K.K.; Ahn, M.-J. Antioxidant Constituents and Activities of the Pulp with Skin of Korean Tomato Cultivars. Molecules 2022, 27, 8741. [Google Scholar] [CrossRef]
- Akihiro, T.; Koike, S.; Tani, R.; Tominaga, T.; Watanabe, S.; Iijima, Y.; Aoki, K.; Shibata, D.; Ashihara, H.; Matsukura, C.; et al. Biochemical Mechanism on GABA Accumulation during Fruit Development in Tomato. Plant Cell Physiol. 2008, 49, 1378–1389. [Google Scholar] [CrossRef]
- Domínguez, R.; Gullón, P.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Lorenzo, J.M. Tomato as Potential Source of Natural Additives for Meat Industry. A Review. Antioxidants 2020, 9, 73. [Google Scholar] [CrossRef]
- Yahia, E.M.; Contreras-Padilla, M.; Gonzalez-Aguilar, G. Ascorbic Acid Content in Relation to Ascorbic Acid Oxidase Activity and Polyamine Content in Tomato and Bell Pepper Fruits during Development, Maturation and Senescence. Lwt Food Sci. Technol. 2001, 34, 452–457. [Google Scholar] [CrossRef]
- Di Matteo, A.; Ruggieri, V.; Sacco, A.; Rigano, M.M.; Carriero, F.; Bolger, A.; Fernie, A.R.; Frusciante, L.; Barone, A. Identification of candidate genes for phenolics accumulation in tomato fruit. Plant Sci. 2013, 205-206, 87–96. [Google Scholar] [CrossRef]
- Slimestad, R.; Verheul, M. Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J. Sci. Food Agric. 2009, 89, 1255–1270. [Google Scholar] [CrossRef]
- United States Standards for Grades of Fresh Tomatoes (USDA). 1997. Available online: https://hort.purdue.edu/prod_quality/quality/tomatfrh.pdf (accessed on 3 November 2023).
- Jiang, X.-L.; He, Z.-M.; Peng, Z.-Q.; Qi, Y.; Chen, Q.; Yu, S.-Y. Cholera toxin B protein in transgenic tomato fruit induces systemic immune response in mice. Transgenic Res. 2007, 16, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, S.; Park, D.S.; Taye, A.M.; Jeong, C.S. Effects of Storage Duration on Physicochemical and Antioxidant Properties of Tomato (Lycopersicon esculentum Mill.). Korean J. Hortic. Sci. Technol. 2017, 35, 89–97. [Google Scholar] [CrossRef]
- Alda, L.M.; Gogoa, I.; Bordean, D.; Gergen, I.; Alda, S.; Moldovan, C.; Ni, L. Lycopene content of tomatoes and tomato products. J. Agroaliment. Process Technol. 2009, 15, 540–542. [Google Scholar]
- Dobrin, A.; Nedelus, A.; Bujor, O.; Mot, A.; Zugravu, M.; Badulescu, L. Nutritional Quality Parameters of the Fresh Red Tomato Varieties Cultivated in Organic System. Sci. Papers Ser. B Hortic. 2019, LXIII, 439–443. [Google Scholar]
- Thompson, K.; Marshall, M.; Sims, C.; Wei, C.; Sargent, S.; Scott, J. Cultivar, Maturity, and Heat Treatment on Lycopene Content in Tomatoes. J. Food Sci. 2000, 65, 791–795. [Google Scholar] [CrossRef]
Lines | Firmness (N) | TSS (°Brix) | TA (mg CAE/10 g) | BAR |
---|---|---|---|---|
WT | 2.80 ± 0.21 | 4.70 ± 0.19 | 0.49 ± 0.03 | 9.47 ± 0.25 |
sgr1 #1-6 | 2.03 ± 0.24 * | 5.79 ± 0.14 *** | 0.41 ± 0.04 * | 14.10 ± 1.28 *** |
sgr1 #2-4 | 2.13 ± 0.22 | 5.71 ± 0.15 *** | 0.42 ± 0.01 | 13.60 ± 0.22 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.Y.; Kim, D.H.; Kim, M.-S.; Jung, Y.J.; Kang, K.K. Physicochemical Properties and Antioxidant Activity of CRISPR/Cas9-Edited Tomato SGR1 Knockout (KO) Line. Int. J. Mol. Sci. 2024, 25, 5111. https://doi.org/10.3390/ijms25105111
Kim JY, Kim DH, Kim M-S, Jung YJ, Kang KK. Physicochemical Properties and Antioxidant Activity of CRISPR/Cas9-Edited Tomato SGR1 Knockout (KO) Line. International Journal of Molecular Sciences. 2024; 25(10):5111. https://doi.org/10.3390/ijms25105111
Chicago/Turabian StyleKim, Jin Young, Dong Hyun Kim, Me-Sun Kim, Yu Jin Jung, and Kwon Kyoo Kang. 2024. "Physicochemical Properties and Antioxidant Activity of CRISPR/Cas9-Edited Tomato SGR1 Knockout (KO) Line" International Journal of Molecular Sciences 25, no. 10: 5111. https://doi.org/10.3390/ijms25105111
APA StyleKim, J. Y., Kim, D. H., Kim, M. -S., Jung, Y. J., & Kang, K. K. (2024). Physicochemical Properties and Antioxidant Activity of CRISPR/Cas9-Edited Tomato SGR1 Knockout (KO) Line. International Journal of Molecular Sciences, 25(10), 5111. https://doi.org/10.3390/ijms25105111