Therapeutic Potential of Bovine Milk-Derived Extracellular Vesicles
Abstract
:1. Introduction
2. Isolation and Enrichment of Bovine MEVs
3. Different Therapeutic Aspects of MEVs
3.1. The Role of MEVs in Gut and Intestine Health
3.2. Effects on Skin and Wound Healing
3.3. Antioxidant Properties
3.4. Anti-Inflammatory and Immunomodulatory Effects
3.5. Effects on Musculoskeletal Health
3.6. Antifibrotic Activity
3.7. Anticancer Properties
4. Challenges of Using MEVs as Therapeutic Agents
4.1. Lack of a Standardized Isolation Method
4.2. Scalability and Cost-Effectiveness
4.3. Storage and the Stability of MEVs in Different Storage Conditions
4.4. Potential Risks and Safety Considerations When Using MEVs as Therapeutic Agents
4.5. Ethical Considerations of Using MEVs as Therapeutic Agents
5. Future Directions of the MEV Research Field
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
- Sanwlani, R.; Fonseka, P.; Chitti, S.V.; Mathivanan, S. Milk-Derived Extracellular Vesicles in Inter-Organism, Cross-Species Communication and Drug Delivery. Proteomes 2020, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Metwaly, A.M.; Ghoneim, M.M.; Eissa, I.H.; Elsehemy, I.A.; Mostafa, A.E.; Hegazy, M.M.; Afifi, W.M.; Dou, D. Traditional Ancient Egyptian Medicine: A Review. Saudi J. Biol. Sci. 2021, 28, 5823–5832. [Google Scholar] [CrossRef] [PubMed]
- Wijenayake, S.; Eisha, S.; Tawhidi, Z.; Pitino, M.A.; Steele, M.A.; Fleming, A.S.; McGowan, P.O. Comparison of Methods for Pre-Processing, Exosome Isolation, and RNA Extraction in Unpasteurized Bovine and Human Milk. PLoS ONE 2021, 16, e0257633. [Google Scholar] [CrossRef]
- Yamauchi, M.; Shimizu, K.; Rahman, M.; Ishikawa, H.; Takase, H.; Ugawa, S.; Okada, A.; Inoshima, Y. Efficient Method for Isolation of Exosomes from Raw Bovine Milk. Drug Dev. Ind. Pharm. 2019, 45, 359–364. [Google Scholar] [CrossRef]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscol, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. J. Extracell. Vesicles 2023, 12, e12404. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shimizu, K.; Yamauchi, M.; Takase, H.; Ugawa, S.; Okada, A.; Inoshima, Y. Acidification Effects on Isolation of Extracellular Vesicles from Bovine Milk. PLoS ONE 2019, 14, e0222613. [Google Scholar] [CrossRef]
- Livshts, M.A.; Khomyakova, E.; Evtushenko, E.G.; Lazarev, V.N.; Kulemin, N.A.; Semina, S.E.; Generozov, E.V.; Govorun, V.M. Isolation of Exosomes by Differential Centrifugation: Theoretical Analysis of a Commonly Used Protocol. Sci. Rep. 2015, 5, 17319. [Google Scholar] [CrossRef]
- Chen, J.; Li, P.; Zhang, T.; Xu, Z.; Huang, X.; Wang, R.; Du, L. Review on Strategies and Technologies for Exosome Isolation and Purification. Front. Bioeng. Biotechnol. 2022, 9, 811971. [Google Scholar] [CrossRef]
- Scheler, M.; De Angelis, M.H.; Al-Hasani, H.; Häring, H.U.; Weigert, C.; Lehr, S. Methods for Proteomics-Based Analysis of the Human Muscle Secretome Using an in Vitro Exercise Model. Methods Mol. Biol. 2015, 1295, 55–64. [Google Scholar] [CrossRef]
- Monguió-Tortajada, M.; Gálvez-Montón, C.; Bayes-Genis, A.; Roura, S.; Borràs, F.E. Extracellular Vesicle Isolation Methods: Rising Impact of Size-Exclusion Chromatography. Cell. Mol. Life Sci. 2019, 76, 2369–2382. [Google Scholar] [CrossRef]
- Sódar, B.W.; Kittel, Á.; Pálóczi, K.; Vukman, K.V.; Osteikoetxea, X.; Szabó-Taylor, K.; Németh, A.; Sperlágh, B.; Baranyai, T.; Giricz, Z.; et al. Low-Density Lipoprotein Mimics Blood Plasma-Derived Exosomes and Microvesicles during Isolation and Detection. Sci. Rep. 2016, 6, 24316. [Google Scholar] [CrossRef]
- Blans, K.; Hansen, M.S.; Sørensen, L.V.; Hvam, M.L.; Howard, K.A.; Möller, A.; Wiking, L.; Larsen, L.B.; Rasmussen, J.T. Pellet-Free Isolation of Human and Bovine Milk Extracellular Vesicles by Size-Exclusion Chromatography. J. Extracell. Vesicles 2017, 6, 1294340. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, K.; Koh, Y.Q.; Almughlliq, F.B.; Peiris, H.N.; Mitchell, M.D. A Method for the Isolation and Enrichment of Purified Bovine Milk Exosomes. Reprod. Biol. 2017, 17, 341–348. [Google Scholar] [CrossRef]
- Hansen, M.S.; Gregersen, S.B.; Rasmussen, J.T. Bovine Milk Processing Impacts Characteristics of Extracellular Vesicle Isolates Obtained by Size-Exclusion Chromatography. Int. Dairy J. 2022, 127, 105212. [Google Scholar] [CrossRef]
- Ding, M.; Wang, C.; Lu, X.; Zhang, C.; Zhou, Z.; Chen, X.; Zhang, C.Y.; Zen, K.; Zhang, C. Comparison of Commercial Exosome Isolation Kits for Circulating Exosomal MicroRNA Profiling. Anal. Bioanal. Chem. 2018, 410, 3805–3814. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, D.K.; Hvam, M.L.; Primdahl-Bengtson, B.; Boysen, A.T.; Whitehead, B.; Dyrskjøt, L.; Ørntoft, T.F.; Howard, K.A.; Ostenfeld, M.S. Comparative Analysis of Discrete Exosome Fractions Obtained by Differential Centrifugation. J. Extracell. Vesicles 2014, 3, 25011. [Google Scholar] [CrossRef]
- Mukhopadhya, A.; Santoro, J.; O’Driscoll, L. Extracellular Vesicle Separation from Milk and Infant Milk Formula Using Acid Precipitation and Ultracentrifugation. STAR Protoc. 2021, 2, 100821. [Google Scholar] [CrossRef]
- Gupta, S.; Rawat, S.; Arora, V.; Kottarath, S.K.; Dinda, A.K.; Vaishnav, P.K. An Improvised One-Step Sucrose Cushion Ultracentrifugation Method for Exosome Isolation from Culture Supernatants of Mesenchymal Stem Cells. Stem Cell Res. Ther. 2018, 9, 180. [Google Scholar] [CrossRef]
- Zonneveld, M.I.; Brisson, A.R.; van Herwijnen, M.J.C.; Tan, S.; van de Lest, C.H.A.; Redegeld, F.A.; Garssen, J.; Wauben, M.H.M.; Nolte-’t Hoen, E.N.M. Recovery of Extracellular Vesicles from Human Breast Milk Is Influenced by Sample Collection and Vesicle Isolation Procedures. J. Extracell. Vesicles 2014, 3, 24215. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Li, T.; Liu, Z.; Li, L. Comparison of Ultracentrifugation and Density Gradient Separation Methods for Isolating Tca8113 Human Tongue Cancer Cell Line-Derived Exosomes. Oncol. Lett. 2014, 8, 1701–1706. [Google Scholar] [CrossRef] [PubMed]
- Clayton, A.; Court, J.; Navabi, H.; Adams, M.; Mason, M.D.; Hobot, J.A.; Newman, G.R.; Jasani, B. Analysis of Antigen Presenting Cell Derived Exosomes, Based on Immuno-Magnetic Isolation and Flow Cytometry. J. Immunol. Methods 2001, 247, 163–174. [Google Scholar] [CrossRef]
- Morozumi, M.; Izumi, H.; Shimizu, T.; Takeda, Y. Comparison of Isolation Methods Using Commercially Available Kits for Obtaining Extracellular Vesicles from Cow Milk. J. Dairy Sci. 2021, 104, 6463–6471. [Google Scholar] [CrossRef] [PubMed]
- Yousif, G.; Qadri, S.; Parray, A.; Akhthar, N.; Shuaib, A.; Haik, Y. Exosomes Derived Neuronal Markers: Immunoaffinity Isolation and Characterization. NeuroMolecular Med. 2021, 24, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Cheruvanky, A.; Zhou, H.; Pisitkun, T.; Kopp, J.B.; Knepper, M.A.; Yuen, P.; Star, R.A. Rapid isolation of urinary exosomal biomarkers using a nanomenbrane ultrafiltration concentrator. Am. J. Physiol. Renal Physiol. 2007, 292, F1657–F1661. [Google Scholar] [CrossRef]
- Shu, S.L.; Allen, C.L.; Benjamin-Davalos, S.; Koroleva, M.; MacFarland, D.; Minderman, H.; Ernstoff, M.S. A Rapid Exosome Isolation Using Ultrafiltration and Size Exclusion Chromatography (REIUS) Method for Exosome Isolation from Melanoma Cell Lines. Methods Mol. Biol. 2021, 2265, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Wiedmer, S.K.; Riekkola, M.L. Field-Flow Fractionation—An Excellent Tool for Fractionation, Isolation and/or Purification of Biomacromolecules. J. Chromatogr. A 2023, 1712, 464492. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.B.; Yang, J.S.; Lee, G.B.; Moon, M.H. Evaluation of Exosome Separation from Human Serum by Frit-Inlet Asymmetrical Flow Field-Flow Fractionation and Multiangle Light Scattering. Anal. Chim. Acta 2020, 1124, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Wang, Z.; Tang, E.; Fan, Z.; Mccauley, L.; Guan, K.; Krebsbach, P.H.; Wang, C. Identification of Distinct Nanoparticles and Subsets of Extracellular Vesicles by Asymmetric-Flow Field-Flow Fractionation. Nature 2009, 15, 682–689. [Google Scholar] [CrossRef]
- Xu, H.; Liao, C.; Zuo, P.; Liu, Z.; Ye, B.C. Magnetic-Based Microfluidic Device for On-Chip Isolation and Detection of Tumor-Derived Exosomes. Anal. Chem. 2018, 90, 13451–13458. [Google Scholar] [CrossRef]
- Sancho-Albero, M.; Sebastián, V.; Sesé, J.; Pazo-Cid, R.; Mendoza, G.; Arruebo, M.; Martín-Duque, P.; Santamaría, J. Isolation of Exosomes from Whole Blood by a New Microfluidic Device: Proof of Concept Application in the Diagnosis and Monitoring of Pancreatic Cancer. J. Nanobiotechnol. 2020, 18, 150. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Sharma, S.; Gimzewski, J. The Role of Isolation Methods on a Nanoscale Surface Structure and Its Effect on the Size of Exosomes. J. Circ. Biomark. 2016, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, C.; Boiy, R.; Guilbert, N.; Lippens, L.; Van Dorpe, S.; Roux, Q.; De Craene, B.; Fischer, S.; Berx, G.; Boterberg, T.; et al. Identification and Validation of Extracellular Vesicle Reference Genes for the Normalization of RT-QPCR Data. J. Extracell. Vesicles 2024, 13, e12421. [Google Scholar] [CrossRef]
- López de Las Hazas, M.C.; Del Pozo-Acebo, L.; Hansen, M.S.; Gil-Zamorano, J.; Mantilla-Escalante, D.C.; Gómez-Coronado, D.; Marín, F.; Garcia-Ruiz, A.; Rasmussen, J.T.; Dávalos, A. Dietary Bovine Milk MiRNAs Transported in Extracellular Vesicles Are Partially Stable during GI Digestion, Are Bioavailable and Reach Target Tissues but Need a Minimum Dose to Impact on Gene Expression. Eur. J. Nutr. 2022, 61, 1043–1056. [Google Scholar] [CrossRef] [PubMed]
- Wolf, T.; Baier, S.R.; Zempleni, J. The Intestinal Transport of Bovine Milk Exosomes Is Mediated by Endocytosis in Human Colon Carcinoma Caco-2 Cells and Rat Small Intestinal IEC-6 Cells1-3. J. Nutr. 2015, 145, 2201–2206. [Google Scholar] [CrossRef]
- Oliver, C.; Mishra, V.S.N.; Santoro, J.; Mukhopadhya, A.; Buckley, F.; Driscoll, L.O.; Giblin, L.; Brodkorb, A. Effect of In Vitro Enzyme Digestion and Bile Treatment on Milk Extracellular Vesicles Stability. Mol. Nutr. Food Res. 2024, 2300620, 1–11. [Google Scholar] [CrossRef]
- Sadri, M.; Shu, J.; Kachman, S.D.; Cui, J.; Zempleni, J. Milk Exosomes and MiRNA Cross the Placenta and Promote Embryo Survival in Mice. Reproduction 2020, 160, 501–509. [Google Scholar] [CrossRef]
- Baier, S.R.; Nguyen, C.; Xie, F.; Wood, J.R.; Zempleni, J. MicroRNAs Are Absorbed in Biologically Meaningful Amounts from Nutritionally Relevant Doses of Cow Milk and Affect Gene Expression in Peripheral Blood Mononuclear Cells, HEK-293 Kidney Cell Cultures, and Mouse Livers. J. Nutr. 2014, 144, 1495–1500. [Google Scholar] [CrossRef] [PubMed]
- Maghraby, M.K.; Li, B.; Chi, L.; Ling, C.; Benmoussa, A.; Provost, P.; Postmus, A.C.; Abdi, A.; Pierro, A.; Bourdon, C.; et al. Extracellular Vesicles Isolated from Milk Can Improve Gut Barrier Dysfunction Induced by Malnutrition. Sci. Rep. 2021, 11, 7635. [Google Scholar] [CrossRef]
- Tong, L.; Zhang, S.; Liu, Q.; Huang, C.; Hao, H.; Tan, M.S.; Yu, X.; Lou, C.K.L.; Huang, R.; Zhang, Z.; et al. Milk-Derived Extracellular Vesicles Protect Intestinal Barrier Integrity in the Gut-Liver Axis. Sci. Adv. 2023, 9, eade5041. [Google Scholar] [CrossRef]
- Gao, H.N.; Hu, H.; Wen, P.C.; Lian, S.; Xie, X.L.; Song, H.L.; Yang, Z.N.; Ren, F.Z. Yak Milk–Derived Exosomes Alleviate Lipopolysaccharide-Induced Intestinal Inflammation by Inhibiting PI3K/AKT/C3 Pathway Activation. J. Dairy Sci. 2021, 104, 8411–8424. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.N.; Ren, F.Z.; Wen, P.C.; Xie, L.X.; Wang, R.; Yang, Z.N.; Li, Y.X. Yak Milk–Derived Exosomal MicroRNAs Regulate Intestinal Epithelial Cells on Proliferation in Hypoxic Environment. J. Dairy Sci. 2021, 104, 1291–1303. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.N.; Guo, H.Y.; Zhang, H.; Xie, X.L.; Wen, P.C.; Ren, F.Z. Yak-Milk-Derived Exosomes Promote Proliferation of Intestinal Epithelial Cells in an Hypoxic Environment. J. Dairy Sci. 2019, 102, 985–996. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.; Atalla, H.; Karrow, N.; Mallard, B.A. The Bioactivity of Colostrum and Milk Exosomes of High, Average, and Low Immune Responder Cows on Human Intestinal Epithelial Cells. J. Dairy Sci. 2021, 104, 2499–2510. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Cho, H.; Kim, H.; Jang, Y.; Jang, H.; Kim, D.E.; Kim, E.S.; Kim, E.H.; Hwang, K.Y.; Kim, K.; et al. Bovine Colostrum Derived-Exosomes Prevent Dextran Sulfate Sodium-Induced Intestinal Colitis via Suppression of Inflammation and Oxidative Stress. Biomater. Sci. 2022, 10, 2076–2087. [Google Scholar] [CrossRef] [PubMed]
- Reif, S.; Elbaum-Shiff, Y.; Koroukhov, N.; Shilo, I.; Musseri, M.; Golan-Gerstl, R. Cow and Human Milk-Derived Exosomes Ameliorate Colitis in Dss Murine Model. Nutrients 2020, 12, 2589. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Zhao, Y.; Wang, K.; Nan, X.; Chen, R.; Xiong, B. Effects of Milk-Derived Extracellular Vesicles on the Colonic Transcriptome and Proteome in Murine Model. Nutrients 2022, 14, 3057. [Google Scholar] [CrossRef] [PubMed]
- Stremmel, W.; Weiskirchen, R.; Melnik, B.C. Milk Exosomes Prevent Intestinal Inflammation in a Genetic Mouse Model of Ulcerative Colitis: A Pilot Experiment. Inflamm. Intest. Dis. 2020, 5, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Hao, H.; Zhang, Z.; Lv, Y.; Liang, X.; Liu, Q.; Liu, T.; Gong, P.; Zhang, L.; Cao, F.; et al. Milk-Derived Extracellular Vesicles Alleviate Ulcerative Colitis by Regulating the Gut Immunity and Reshaping the Gut Microbiota. Theranostics 2021, 11, 8570–8586. [Google Scholar] [CrossRef]
- Li, T.; Chen, X.; Qi, Q.; Feng, X. Bovine Milk Derived Exosomes Affect Gut Microbiota of DSS-Induced Colitis Mice. Indian J. Microbiol. 2024, 64, 100–109. [Google Scholar] [CrossRef]
- Benmoussa, A.; Diallo, I.; Salem, M.; Michel, S.; Gilbert, C.; Sévigny, J.; Provost, P. Concentrates of Two Subsets of Extracellular Vesicles from Cow’s Milk Modulate Symptoms and Inflammation in Experimental Colitis. Sci. Rep. 2019, 9, 14661. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Paz, H.A.; Sadri, M.; Cui, J.; Kachman, S.D.; Fernando, S.C.; Zempleni, J. Dietary Bovine Milk Exosomes Elicit Changes in Bacterial Communities in C57BL/6 Mice. Am. J. Physiol.—Gastrointest. Liver Physiol. 2019, 317, G618. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Hao, H.; Zhang, X.; Zhang, Z.; Lv, Y.; Zhang, L.; Yi, H. Oral Administration of Bovine Milk-Derived Extracellular Vesicles Alters the Gut Microbiota and Enhances Intestinal Immunity in Mice. Mol. Nutr. Food Res. 2020, 64, 1901251. [Google Scholar] [CrossRef] [PubMed]
- Shome, S.; Jernigan, R.L.; Beitz, D.C.; Clark, S.; Testroet, E.D. Non-Coding RNA in Raw and Commercially Processed Milk and Putative Targets Related to Growth and Immune-Response. BMC Genomics 2021, 22, 749. [Google Scholar] [CrossRef] [PubMed]
- Mecocci, S.; De Paolis, L.; Zoccola, R.; Fruscione, F.; De Ciucis, C.G.; Chiaradia, E.; Moccia, V.; Tognoloni, A.; Pascucci, L.; Zoppi, S.; et al. Antimicrobial and Immunomodulatory Potential of Cow Colostrum Extracellular Vesicles (ColosEVs) in an Intestinal In Vitro Model. Biomedicines 2022, 10, 3264. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Hock, A.; Wu, R.Y.; Minich, A.; Botts, S.R.; Lee, C.; Antounians, L.; Miyake, H.; Koike, Y.; Chen, Y.; et al. Bovine Milk-Derived Exosomes Enhance Goblet Cell Activity and Prevent the Development of Experimental Necrotizing Enterocolitis. PLoS ONE 2019, 14, e0211431. [Google Scholar] [CrossRef] [PubMed]
- Filler, R.; Yeganeh, M.; Li, B.; Lee, C.; Alganabi, M.; Hock, A.; Biouss, G.; Balsamo, F.; Lee, D.; Miyake, H.; et al. Bovine Milk-Derived Exosomes Attenuate NLRP3 Inflammasome and NF-ΚB Signaling in the Lung during Neonatal Necrotizing Enterocolitis. Pediatr. Surg. Int. 2023, 39, 211. [Google Scholar] [CrossRef]
- Bae, I.S.; Kim, S.H. Milk Exosome-Derived Microrna-2478 Suppresses Melanogenesis through the Akt-Gsk3β Pathway. Cells 2021, 10, 2848. [Google Scholar] [CrossRef]
- Ahn, G.; Kim, Y.H.; Ahn, J.Y. Multifaceted Effects of Milk-Exosomes (Mi-Exo) as a Modulator of Scar-Free Wound Healing. Nanoscale Adv. 2021, 3, 528–537. [Google Scholar] [CrossRef]
- Lu, L.; Bai, W.; Wang, M.; Han, C.; Du, H.; Wang, N.; Gao, M.; Li, D.; Dong, F.; Ge, X. Novel Roles of Bovine Milk-Derived Exosomes in Skin Antiaging. J. Cosmet. Dermatol. 2023, 23, 1374–1385. [Google Scholar] [CrossRef]
- Fan, L.; Ma, X.; Liu, B.; Yang, Y.; Yang, Y.; Ren, T.; Li, Y. Antioxidant-Engineered Milk-Derived Extracellular Vesicles for Accelerating Wound Healing via Regulation of the PI3K-AKT Signaling Pathway. Adv. Healthc. Mater. 2023, 12, 2301865. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Chen, J.; Wang, C.; Yuan, M.; Kang, Y.; Wu, Z.; Li, W.; Zhang, G.; Machens, H.G.; Rinkevich, Y.; et al. Milk Exosomes-Mediated MiR-31-5p Delivery Accelerates Diabetic Wound Healing through Promoting Angiogenesis. Drug Deliv. 2022, 29, 214–228. [Google Scholar] [CrossRef]
- Xiang, X.; Chen, J.; Jiang, T.; Yan, C.; Kang, Y.; Zhang, M.; Xiang, K.; Guo, J.; Jiang, G.; Wang, C.; et al. Milk-Derived Exosomes Carrying SiRNA-KEAP1 Promote Diabetic Wound Healing by Improving Oxidative Stress. Drug Deliv. Transl. Res. 2023, 13, 2286–2296. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef]
- Aviello, G.; Knaus, U.G. ROS in Gastrointestinal Inflammation: Rescue Or Sabotage? Br. J. Pharmacol. 2017, 174, 1704–1718. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shi, Z.; Wang, X.; Mu, S.; Xu, X.; Shen, L.; Li, P. Protective Effects of Bovine Milk Exosomes against Oxidative Stress in IEC-6 Cells. Eur. J. Nutr. 2021, 60, 317–327. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Shi, Z.; Shen, L.; Zhang, J.; Zhang, J. Bovine Milk Exosomes Attenuate the Alteration of Purine Metabolism and Energy Status in IEC-6 Cells Induced by Hydrogen Peroxide. Food Chem. 2021, 350, 129142. [Google Scholar] [CrossRef] [PubMed]
- Carini, F.; Mazzola, M.; Rappa, F.; Jurjus, A.; Geagea, A.G.; Al Kattar, S.; Bou-Assi, T.; Jurjus, R.; Damiani, P.; Leone, A.; et al. Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants. Anticancer Res. 2017, 37, 4759–4766. [Google Scholar] [CrossRef]
- Torregrosa Paredes, P.; Gutzeit, C.; Johansson, S.; Admyre, C.; Stenius, F.; Alm, J.; Scheynius, A.; Gabrielsson, S. Differences in Exosome Populations in Human Breast Milk in Relation to Allergic Sensitization and Lifestyle. Allergy Eur. J. Allergy Clin. Immunol. 2014, 69, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Admyre, C.; Johansson, S.M.; Qazi, K.R.; Filén, J.-J.; Lahesmaa, R.; Norman, M.; Neve, E.P.A.; Scheynius, A.; Gabrielsson, S. Exosomes with Immune Modulatory Features Are Present in Human Breast Milk. J. Immunol. 2007, 179, 1969–1978. [Google Scholar] [CrossRef] [PubMed]
- Mecocci, S.; Gevi, F.; Pietrucci, D.; Cavinato, L.; Luly, F.R.; Pascucci, L.; Petrini, S.; Ascenzioni, F.; Zolla, L.; Chillemi, G.; et al. Anti-Inflammatory Potential of Cow, Donkey and Goat Milk Extracellular Vesicles as Revealed by Metabolomic Profile. Nutrients 2020, 12, 2908. [Google Scholar] [CrossRef] [PubMed]
- Mecocci, S.; Pietrucci, D.; Milanesi, M.; Pascucci, L.; Filippi, S.; Rosato, V.; Chillemi, G.; Capomaccio, S.; Cappelli, K. Transcriptomic Characterization of Cow, Donkey and Goat Milk Extracellular Vesicles Reveals Their Anti-inflammatory and Immunomodulatory Potential. Int. J. Mol. Sci. 2021, 22, 12759. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.; Chisanga, D.; Liem, M.; Keerthikumar, S.; Anand, S.; Ang, C.S.; Adda, C.G.; Versteegen, E.; Jois, M.; Mathivanan, S. Bovine Milk-Derived Exosomes from Colostrum Are Enriched with Proteins Implicated in Immune Response and Growth. Sci. Rep. 2017, 7, 5933. [Google Scholar] [CrossRef]
- Matic, S.; D’Souza, D.H.; Wu, T.; Pangloli, P.; Dia, V.P. Bovine Milk Exosomes Affect Proliferation and Protect Macrophages against Cisplatin-Induced Cytotoxicity. Immunol. Investig. 2020, 49, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Ascanius, S.R.; Hansen, M.S.; Ostenfeld, M.S.; Rasmussen, J.T. Milk-Derived Extracellular Vesicles Suppress Inflammatory Cytokine Expression and Nuclear Factor-ΚB Activation in Lipopolysaccharide-Stimulated Macrophages. Dairy 2021, 2, 165–178. [Google Scholar] [CrossRef]
- Matic, S.; Dia, V.P. Bovine Milk Exosomes Affected Proliferation of Macrophages under Hypoxia. Curr. Res. Food Sci. 2022, 5, 2108–2113. [Google Scholar] [CrossRef] [PubMed]
- Pieters, B.C.H.; Arntz, O.J.; Bennink, M.B.; Broeren, M.G.A.; Van Caam, A.P.M.; Koenders, M.I.; Van Lent, P.L.E.M.; Van Den Berg, W.B.; De Vries, M.; Van Der Kraan, P.M.; et al. Commercial Cow Milk Contains Physically Stable Extracellular Vesicles Expressing Immunoregulatory TGF-β. PLoS ONE 2015, 10, e0121123. [Google Scholar] [CrossRef]
- Komine-Aizawa, S.; Ito, S.; Aizawa, S.; Namiki, T.; Hayakawa, S. Cow Milk Exosomes Activate NK Cells and ΓδT Cells in Human PBMCs in Vitro. Immunol. Med. 2020, 43, 161–170. [Google Scholar] [CrossRef]
- Nordgren, T.M.; Heires, A.J.; Zempleni, J.; Swanson, B.J.; Wichman, C.; Romberger, D.J. Bovine Milk-Derived Extracellular Vesicles Enhance Inflammation and Promote M1 Polarization Following Agricultural Dust Exposure in Mice. J. Nutr. Biochem. 2019, 64, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, X.; Zhang, C.; Yang, J.; Chi, H.; Li, A.; Li, C. Comparative Study on the Immunomodulatory Function of Extracellular Vesicles from Different Dairy Products. Food Funct. 2022, 13, 2504–2514. [Google Scholar] [CrossRef] [PubMed]
- Mobley, C.B.; Mumford, P.W.; McCarthy, J.J.; Miller, M.E.; Young, K.C.; Martin, J.S.; Beck, D.T.; Lockwood, C.M.; Roberts, M.D. Whey Protein-Derived Exosomes Increase Protein Synthesis and Hypertrophy in C2 C12 Myotubes. J. Dairy Sci. 2017, 100, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Parry, H.A.; Brooks Mobley, C.; Mumford, P.W.; Romero, M.A.; Haun, C.T.; Zhang, Y.; Roberson, P.A.; Zempleni, J.; Ferrando, A.A.; Vechetti, I.J.; et al. Bovine Milk Extracellular Vesicles (EVs) Modification Elicits Skeletal Muscle Growth in Rats. Front. Physiol. 2019, 10, 436. [Google Scholar] [CrossRef] [PubMed]
- Leiferman, A.; Shu, J.; Grove, R.; Cui, J.; Adamec, J.; Zempleni, J. A Diet Defined by Its Content of Bovine Milk Exosomes and Their RNA Cargos Has Moderate Effects on Gene Expression, Amino Acid Profiles and Grip Strength in Skeletal Muscle in C57BL/6 Mice. J. Nutr. Biochem. 2018, 59, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Arntz, O.J.; Pieters, B.C.H.; Oliveira, M.C.; Broeren, M.G.A.; Bennink, M.B.; De Vries, M.; Van Lent, P.L.E.M.; Koenders, M.I.; Van den Berg, W.B.; Van der Kraan, P.M.; et al. Oral Administration of Bovine Milk Derived Extracellular Vesicles Attenuates Arthritis in Two Mouse Models. Mol. Nutr. Food Res. 2015, 59, 1701–1712. [Google Scholar] [CrossRef] [PubMed]
- Go, G.; Jeon, J.; Lee, G.; Lee, J.H.; Lee, S.H. Bovine Milk Extracellular Vesicles Induce the Proliferation and Differentiation of Osteoblasts and Promote Osteogenesis in Rats. J. Food Biochem. 2021, 45, e13705. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Liu, S.; Wu, S.; Xia, M.; Liu, W.; Wang, L.; Dong, M.; Niu, W. Milk-Derived Small Extracellular Vesicles Promote Osteogenic Differentiation and Inhibit Inflammation via MicroRNA-21. Int. J. Mol. Sci. 2023, 24, 13873. [Google Scholar] [CrossRef]
- Yun, B.; Maburutse, B.E.; Kang, M.; Park, M.R.; Park, D.J.; Kim, Y.; Oh, S. Short Communication: Dietary Bovine Milk–Derived Exosomes Improve Bone Health in an Osteoporosis-Induced Mouse Model. J. Dairy Sci. 2020, 103, 7752–7760. [Google Scholar] [CrossRef]
- Maru, Y. Therapeutic Potential. In Inflammation and Metastasis; Springer: Singapore, 2021; pp. 465–518. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Pieters, B.C.H.; Guimarães, P.B.; Duffles, L.F.; Heredia, J.E.; Silveira, A.L.M.; Oliveira, A.C.C.; Teixeira, M.M.; Ferreira, A.V.M.; Silva, T.A.; et al. Bovine Milk Extracellular Vesicles Are Osteoprotective by Increasing Osteocyte Numbers and Targeting RANKL/OPG System in Experimental Models of Bone Loss. Front. Bioeng. Biotechnol. 2020, 8, 891. [Google Scholar] [CrossRef]
- Silva, F.R.F.; Heredia, J.E.; Duffles, L.F.; Arntz, O.J.; Teixeira, M.M.; Ferreira, A.V.M.; Silva, T.A.; van de Loo, F.A.J.; Macari, S.; Oliveira, M.C. Protective Effect of Bovine Milk Extracellular Vesicles on Alveolar Bone Loss. Mol. Nutr. Food Res. 2023, 68, 2300445. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Shi, C.; Yu, X.; Yang, Q.; Wu, S.; Liu, R.; Liu, T.; Wang, L.; Niu, W. Milk-Derived Small Extracellular Vesicles: Nanomaterials to Promote Bone Formation. J. Nanobiotechnol. 2022, 20, 370. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.C.; Arntz, O.J.; Blaney Davidson, E.N.; van Lent, P.L.E.M.; Koenders, M.I.; van der Kraan, P.M.; van den Berg, W.B.; Ferreira, A.V.M.; van de Loo, F.A.J. Milk Extracellular Vesicles Accelerate Osteoblastogenesis but Impair Bone Matrix Formation. J. Nutr. Biochem. 2016, 30, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of Fibrosis: Therapeutic Translation for Fibrotic Disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef] [PubMed]
- Reif, S.; Atias, A.; Musseri, M.; Koroukhov, N.; Gerstl, R.G. Beneficial Effects of Milk-Derived Extracellular Vesicles on Liver Fibrosis Progression by Inhibiting Hepatic Stellate Cell Activation. Nutrients 2022, 14, 4049. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lu, X.; Hu, J.; Li, P.; Yan, J.; Ling, X.; Xiao, J. Bovine Milk Exosomes Alleviate Cardiac Fibrosis via Enhancing Angiogenesis In Vivo and In Vitro. J. Cardiovasc. Transl. Res. 2022, 15, 560–570. [Google Scholar] [CrossRef]
- Munagala, R.; Aqil, F.; Jeyabalan, J.; Gupta, R.C. Bovine Milk-Derived Exosomes for Drug Delivery. Cancer Lett. 2016, 371, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Munagala, R.; Aqil, F.; Jeyabalan, J.; Agrawal, A.K.; Mudd, A.M.; Kyakulaga, A.H.; Singh, I.P.; Vadhanam, M.V.; Gupta, R.C. Exosomal Formulation of Anthocyanidins against Multiple Cancer Types. Cancer Lett. 2017, 393, 94–102. [Google Scholar] [CrossRef]
- Fonseka, P.; Kang, T.; Chee, S.; Chitti, S.V.; Sanwlani, R.; Ang, C.S.; Mathivanan, S. Temporal Quantitative Proteomics Analysis of Neuroblastoma Cells Treated with Bovine Milk-Derived Extracellular Vesicles Highlights the Anti-Proliferative Properties of Milk-Derived Extracellular Vesicles. Cells 2021, 10, 750. [Google Scholar] [CrossRef]
- Sanwlani, R.; Kang, T.; Gummadi, S.; Nedeva, C.; Ang, C.S.; Mathivanan, S. Bovine Milk-Derived Extracellular Vesicles Enhance Doxorubicin Sensitivity in Triple Negative Breast Cancer Cells by Targeting Metabolism and STAT Signalling. Proteomics 2023, 23, 2200482. [Google Scholar] [CrossRef]
- Samuel, M.; Fonseka, P.; Sanwlani, R.; Gangoda, L.; Chee, S.H.; Keerthikumar, S.; Spurling, A.; Chitti, S.V.; Zanker, D.; Ang, C.S.; et al. Oral Administration of Bovine Milk-Derived Extracellular Vesicles Induces Senescence in the Primary Tumor but Accelerates Cancer Metastasis. Nat. Commun. 2021, 12, 3950. [Google Scholar] [CrossRef] [PubMed]
- Quan, S.Y.; Nan, X.M.; Wang, K.; Zhao, Y.G.; Jiang, L.S.; Yao, J.H.; Xiong, B.H. Replacement of Forage Fiber with Non-Forage Fiber Sources in Dairy Cow Diets Changes Milk Extracellular Vesicle-MiRNA Expression. Food Funct. 2020, 11, 2154–2162. [Google Scholar] [CrossRef] [PubMed]
- Santoro, J.; Mukhopadhya, A.; Oliver, C.; Brodkorb, A.; Giblin, L.; O’Driscoll, L. An Investigation of Extracellular Vesicles in Bovine Colostrum, First Milk and Milk over the Lactation Curve. Food Chem. 2023, 401, 134029. [Google Scholar] [CrossRef] [PubMed]
- Saenz-de-juano, M.D.; Silvestrelli, G.; Ulbrich, S.E. One-Week Storage of Refrigerated Bovine Milk Does Not Affect the Size, Concentration, or Molecular Properties of Extracellular Vesicles. J. Dairy Sci. 2024, 107, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Sattari, Z.; Kjærup, R.B.; Rasmussen, M.K.; Yue, Y.; Poulsen, N.A.; Larsen, L.B.; Purup, S. Bovine Mammary Epithelial Cells Can Grow and Express Milk Protein Synthesis Genes at Reduced Fetal Bovine Serum Concentration. Cell Biol. Int. 2024, 48, 473–482. [Google Scholar] [CrossRef]
- Sapugahawatte, D.N.; Godakumara, K.; Mäesaar, M.; Ekanayake, G. Harnessing Nature ’ s Defence: The Antimicrobial Efficacy of Pasteurised Cattle Milk-Derived Extracellular Vesicles on Staphylococcus Aureus ATCC 25923. Int. J. Mol. Sci. 2024, 25, 4759. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages | References |
---|---|---|---|
Differential centrifugation/ ultracentrifugation | Low cost Results in a higher number of particles | Damage to the EVs Co precipitation of contaminants Requires a larger starting volume | [17,18,19] |
Density gradient centrifugation | Results a comparatively pure population than the ultracentrifugation High separation efficiency Does not affect the integrity of the particles | Low productivity Time consuming Preparation of solutions needs time and a complex procedure Involves expensive instruments | [20,21] |
Immunomagnetic beads | Specific subpopulations can be separated based on the expression of specific EV markers regardless of the size | Separating the EVs from the magnetic beads is difficult Expensive method Not suitable for large sample volumes | [22,23] |
Commercially available polymer-based precipitation kits | Not labor-intensive Simple and faster method Can be used for small sample volumes High recovery rate More suitable for isolating sEVs | Formation of aggregates Co precipitation of lipoproteins Expensive | [16,24] |
Size exclusion chromatography | EVs retain their functionality and integrity High purity Uniform in size Easy to setup Can be used for low volumes | Low yield Dilution of the EV population Not suitable for higher sample volumes | [11,15] |
Ultrafiltration | Simplicity of the procedure Can be used for low sample volumes | Deformation of the particles Loss of particles due to the absorption of the membranes Varying efficiency of filtering due to the clogging of the pores in the membranes | [25,26] |
Field-flow fractionation | Suitable for scalable production Retaining of particle integrity | Complex instrumentation setup Loss of samples | [27,28,29] |
Tangential flow filtration | Suitable for scalable production Reduced sample contamination Recovery efficiency is high | Complex instrumentation setup Frequent changes to the membranes are required | [9,25] |
Microfluidic devices | Suitable for small sample volumes Targeted isolation of EVs resulting in a homogenous population | Low recovery rate Needs to be optimized and expensive equipment is involved | [30,31] |
Model | Source of MEV | Dosage | References | |
---|---|---|---|---|
In vitro studies | IEC-6 cells | Yak and cow milk | 50–200 ng/μL of exosome protein | [40] |
IEC-6 cells | Yak milk | 50 nM of bta-miR-34a miRNA in exosomes | [41] | |
IEC-6 cells | Yak and cow milk | 120–240 ng/μL of exosome protein | [42] | |
Caco-2 cells | Cow milk and colostrum | 0.001–0.625 μg/μL of exosome protein | [43] | |
NCM460 and RAW264.7 cells | Cow milk colostrum | 0.1–1 mg/mL of exosome protein | [44] | |
IPEC-J2 cells | Cow milk colostrum | 0.015–150 μg of exosome protein | [55] | |
LS174T cells | Cow milk | 0.1 μg/μL of exosome proteins | [56] | |
In vivo studies | C57BL/6J mice | Cow milk | 4.83 × 106 milk EVs/g of BW | [38] |
C57BL/6J mice | Cow milk | 0.6–3.0 mg/kg BW | [39] | |
Balb/c mice | Cow milk | 50 mg/kg BW | [45] | |
C57BL/6 mice | Cow milk | 3.0 × 109 particles/g/BW | [46] | |
C57BL/6 mice | Cow milk | 1 mg protein/mL BW | [47] | |
C57BL/6 mice | Cow milk | 0.6–3.0 mg per BW per day | [48] | |
C57BL/6 mice | Cow milk | 1.5 × 108–1.5 × 109 particles/g BW | [49] | |
C57BL/6J mice | Skimmed cow milk | EVs from 10 mL of milk | [51] | |
C57BL/6 mice | Cow milk | 2 × 1012 exosomes/mL | [52] | |
BALB/c mice | Cow milk | 1 mg/mL/per day | [50] | |
C57BL/6 mice | Cow milk | 0.3–1.2 mg/kg BW | [53] | |
C57BL/6 mice | Cow milk | 1 μg/μL/gavage feed | [56] | |
C57BL/6 mice | Cow milk | 1 μg/μL/feed | [57] |
Model | Source of MEV | Dosage | Reference | |
---|---|---|---|---|
In vitro studies | Mouse melanoma B16F10 cells and human melanoma MNT-1 cells | Cow milk | 20 and 50 µg/mL | [58] |
RAW264.7 cells IEC-18 cells | Cow milk | 1 × 108–1 × 1010 particles/well | [59] | |
CCC-ESF-1 and HaCaT cells | Cow milk | 6.25–50 µg/mL | [60] | |
3T3 cells (mouse dermal fibroblasts) and HUVEC cells | Cow milk | 1.0 μg/μL per well | [61] | |
HUVEC cells | Cow milk | 4 μg per well | [63] | |
In vivo studies | C57 BL/6J mice | Cow milk | 1.0 μg/μL per dose | [61] |
BALB/c mice | Cow milk | 1.0 μg/μL of miR-31-5p-loaded MEVs | [62] | |
C57BL/6 mice | Cow milk | 2 μg/wound | [63] | |
Clinical study | Human trial | Cow milk | 60 μg/mL per twice a day | [60] |
Model | Source of MEV | Dosage | Reference | |
---|---|---|---|---|
In vitro studies | IEC-6 cells | Cow milk (skimmed) | 50–800 µg/mL | [68] |
IEC-6 cells | Cow milk (skimmed) | 50–800 µg/mL | [69] |
Model | Source of MEV | Dosage | Reference | |
---|---|---|---|---|
In vitro studies | RAW 264.7 cell | Cow milk (skimmed) | 15–60 µg/mL | [76] |
RAW264.7 cells | Cow milk | 10–100 µg/mL | [77] | |
RAW 264.7 cells | Cow milk (skimmed) | 100 and 200 μg/mL | [78] | |
Native splenic T cells | Cow milk (semi-skimmed) | 400 μg/mL | [79] | |
Human PBMCs | Cow milk | 10–100 µg/mL | [80] | |
MH-S murine alveolar macrophage cell line | Cow milk (semi-skimmed) | 24.8 × 106 exosomes per well | [81] | |
RAW264.7 cells | Fresh milk, pasteurized milk, UHT milk, freeze-dried powder, and organic milk powder). | 1 × 106 EVs/100 µL of media | [82] | |
In vivo studies | C57BL/6 mice | Cow milk (semi-skimmed) | Feeds were formulated to achieve 10% of total calories from milk | [81] |
Model | Source of MEV | Dosage | Reference | |
---|---|---|---|---|
In vitro studies | C2C12 myoblast cells | Hydrolyzed whey powder | 1–10 mg/mL | [83] |
Saos cells | Cow milk | 100–1000 µg/mL | [87] | |
MC3T3-E1 and RAW 264.7 cells | Cow milk | 20 µg/mL | [88] | |
MC3T3-E1 preosteoclast cells | Cow milk colostrum | 20–500 ng/mL | [89] | |
MLO-Y4 osteocytes | Cow milk (semi-skimmed) | 10–100 µg/mL | [91] | |
In vivo studies | Fisher 344 rats | Cow milk | 5–15 µg/µL | [84] |
C57BL/6 mice | Cow milk | Diet included 0.5 L of milk | [85] | |
IL-1Ra−/−mice and DBA/1J mice | Cow milk (semi-skimmed) | 4 × 106–28 × 106 particles | [86] | |
Sprague Dawley rats | Cow milk | 0.5–50 mg/BW/dose | [87] | |
C57BL/6 mice | Cow milk (semi-skimmed) | 14.3 × 106 particles/mL | [92] | |
C57BL/6 mice | Cow milk | 1.2 μg EVs | [93] | |
DBA/1J mice | Cow milk (semi-skimmed) | 4.7 × 106/mL or 14.3 × 106/mL | [94] |
Model | Source of MEV | Dosage | Reference | |
---|---|---|---|---|
In vitro studies | HUVEC cells | Cow milk | 100 µg/mL | [97] |
In vivo studies | BALB/c mice | Cow milk | 13 mg/kg BW | [96] |
Sprague Dawley rats | Cow milk | 600 μg of MEV | [97] |
Model | Source of MEV | Dosage | Reference | |
---|---|---|---|---|
In vitro studies | Human lung cancer (A549 and H1299), breast cancer (MDA-MB-231, MCF7), pancreatic (PANC1, Mia PaCa2), Prostate (PC3, DU145), colon (HCT116), and ovarian (OVCA432) cells | Cow milk | 50 µg/mL of EV protein | [100] |
SK-N-BE2 NBL and C26 colon cancer cells | Cow milk | 100 µg/mL | [101] | |
SW620 colorectal cancer cells | Cow milk | 20 µg/mL | [102] | |
In vivo studies | Athymic nude mice | Cow milk and colostrum | 25 mg protein/kg BW | [98] |
Athymic nude mice | Cow milk | 50 mg protein/kg BW | [99] | |
Balb/c mice | Cow milk | 25 mg/kg | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasadani, M.; Kodithuwakku, S.; Pennarossa, G.; Fazeli, A.; Brevini, T.A.L. Therapeutic Potential of Bovine Milk-Derived Extracellular Vesicles. Int. J. Mol. Sci. 2024, 25, 5543. https://doi.org/10.3390/ijms25105543
Prasadani M, Kodithuwakku S, Pennarossa G, Fazeli A, Brevini TAL. Therapeutic Potential of Bovine Milk-Derived Extracellular Vesicles. International Journal of Molecular Sciences. 2024; 25(10):5543. https://doi.org/10.3390/ijms25105543
Chicago/Turabian StylePrasadani, Madhusha, Suranga Kodithuwakku, Georgia Pennarossa, Alireza Fazeli, and Tiziana A. L. Brevini. 2024. "Therapeutic Potential of Bovine Milk-Derived Extracellular Vesicles" International Journal of Molecular Sciences 25, no. 10: 5543. https://doi.org/10.3390/ijms25105543
APA StylePrasadani, M., Kodithuwakku, S., Pennarossa, G., Fazeli, A., & Brevini, T. A. L. (2024). Therapeutic Potential of Bovine Milk-Derived Extracellular Vesicles. International Journal of Molecular Sciences, 25(10), 5543. https://doi.org/10.3390/ijms25105543