Opioid Monitoring in Clinical Settings: Strategies and Implications of Tailored Approaches for Therapy
Abstract
:1. Introduction
2. Pharmacogenomics and Enzyme-Mediated Opioid Activities
2.1. CYP2D6
2.2. COMT
2.3. OPRM1
2.4. Clinical Studies
Type of Study | Ethnicity (Number of Individuals) | N (Sex) | Outcome Measured | Gene Assessed | Variant | Findings | Reference |
---|---|---|---|---|---|---|---|
Clinical (Long-term use of opioids deprescription) | n.a. | 111 (76 W) | Long-term opioid deprescription | OPRM1; CYP2D6 | OPRM1 (rs1799971, 118A > G); CYP2D6 (*2, *3, *4, *5, *6, *10, *17, *29, *35, *41 and xN) | Long-term opioid deprescription was achieved in 49% of the patients; sex differences and a pharmacogenetic influence were detected. | [30] |
Clinical (Controlled study) | Caucasian | 50 (40 W) | Effectiveness and safety of PGx-guided opioid therapy | OPRM1; COMT; CYP2D6 | OPRM1 (rs1799971, A118G); COMT (rs4680, G472A); CYP2D6: *2 (1584C > G), *3 (2550delA), *4 (1847G > A), *5 (CYP2D6 full gene deletion), *6 (1708delT), *10 (100C > T), *17 (1022C > T), *29 (3184G > A), *35 (31G > A), *41 (2989G > A) | The genotype-guided treatment improved pain relief, quality of life, and reduced AE. It reduced opioid dose by 42% compared to usual prescribing. The final health utility score was higher, improving sleepiness and depression comorbidity, and reducing (30–34%) headache, dry mouth, nervousness, and constipation. | [21] |
Retrospective study | Caucasian | 250 (125 W) | Sex-mediated genetic–epigenetic interaction | COMT OPRM1 | OPRM1: rs1799971, A118G (A/A; A/G; G/G); COMT: rs4680, G472A (G/G; G/A; A/A) | OPRM1 DNA methylation is linked to lower opioid use disorder cases in women, with patients with lower methylation and the mutant G-allele requiring less opioids. COMT DNA methylation levels negatively affect pain relief quality of life and adverse events like constipation, insomnia, and nervousness. | [35] |
Start trial | European-American (599); African American (79); Others (96) | 764 (240 W) | Effects of variants in 11 genes on dropout rate and dose in patients receiving methadone or buprenorphine/naloxone | COMT; CYP2D6; OPRM1 | COMT (rs4680, G472A); OPRM1 (rs1799971, A118G); CYP2D6 Alleles: *1, *3, *4, *5, *6, *7, *8, *9, *41 | The pairwise analyses revealed that COMT (Val158Met; rs4860) had a nominally significant association with dropout rate in methadone patients. | [36] |
Cohort | Caucasian | 137 (56 W) | PGx-based changes and recommendations regarding current and potential future medication | COMT; CYP2D6; OPRM1 | OPRM1: A118G rs1799971 COMT: rs4633; rs4680; rs4818; rs6269 CYP2D6: * 2; *17; *41; *3; *4; *10; *5; *6; *7; *8; *14; *9; *11; *12; *15; *18; *19; *20; *29; *36 | PGx variants resulted in clinical recommendations to change PGx-triggering drugs in 33 (32.4%), and other current pharmacotherapy in 23 (22.5%). | [44] |
Multicentred study | Caucasian | 352 (196 W) | Test whether genotyping may play a role in pain patients clinical setting | COMT; CYP2D6; OPRM1 | COMT 472G > A; OPRM1 118A > G, CYP2D6 Alleles *1, *3, *4, *5, *6, *7, *8, *9, *41 | There was a tendency towards increased pain in a gene-dose-dependent manner with the µ-opioid receptor variant OPRM1 118A > G. | [38] |
Clinical study | Caucasian | 172 (128 W) | Sex-based differences | COMT; OPRM1 | OPRM1: rs1799971, A118G (A/A; A/G; G/G); COMT: rs4680, G472A (G/G; G/A; A/A) | PGx in a pharmacovigilance recording system enhances understanding of adverse events in CNCP pharmacological therapy, with OPRM1 and COMT polymorphisms linked to gender-specific AEs. | [41] |
Cohort (Low back pain) | Caucasian | 196 (130 W) | Effectiveness and safety of opioid-based drugs in clinical practice | CYP2D6 | Allele: *1; *4; *2; *41; *35; *5; *9; *10; *2N; *1N; *6; *15; *35 | CYP2D6*6 and *9 carriers, alleles characterised by a reduced (*9) or absent (*6) enzymatic activity were significant. | [43] |
Clinical study | Caucasian (54), African American (5), Hispanic (1) and American-Indian (1) | 61 (30 W) | Evaluate the clinical effectiveness of genotyping chronic pain patients on analgesic therapy | CYP2D6 | *3, *4, *5, *6, *7, *8 and gene duplication | Most patients were EMs (54%), followed by IMs (41%), and PMs (5%). Four out of five patients reported ADRs, with 80% having impaired CYP2D6 metabolism. The only patient with impaired CYP2D6 metabolism was taking multiple medications partially metabolised by CYP2D6. | [42] |
Clinical | Caucasian | 125 (74 W) | Genotype, inferred phenotype, and urinary and oral fluid codeine O-demethylation metabolites could predict codeine non-response following a short course of codeine | CYP2D6 | alleles *1, *2, *3, *4, *5, *6, *9, *10, *41 | A scoring system was developed to predict analgesic response from day 4 urinary metabolites, with an overall prediction success of 79% for morphine and 79% for the morphine/creatinine ratio, indicating that only 24.5% of normal metabolisers responded to codeine. | [39] |
Clinical trial (Comparison study) | Caucasian | 584 (415 W) | Effectiveness and security in daily pain practice | OPRM1 COMT | OPRM1: rs1799971, A118G (A/A; A/G; G/G); COMT: rs4680, G472A (G/G; G/A; A/A) | New-generation opioids, OXN and TAP, can control pain intensity but have worse tolerability and higher health resource compared to traditional opioids. COMT genotypes also increase the incidence of some opioid side-effects, especially in women. | [40] |
Clinical (Long-term use of opioids deprescription) | n.a. | 117 (77 W) | Impact of CYP2D6 phenotypes and sex on the clinical and safety outcomes | CYP2D6 | *1, *2, *3, *4, *5, *6, *10, *17, *41, 2D6*5, 2D6 × N, 2D6*4 × 2 gene variants) | CYP2D6-UM had three times less basal MEDD and experienced the highest number of adverse events and opioid withdrawal symptoms after deprescription, which was inversely correlated with their quality of life. Sex differences were found to have lower analgesic tolerability in women and lower quality of life in men. | [37] |
Clinical trial (Goals vs. Optin) | Asian (3); African American (51); Native or Islander (1); Other (5); Caucasian (162); more than one race (13); unknown (6) | Goals: 125 (70 W) Optin: 119 (55 W) | Patient willingness to consent to PGx testing and the potential for PGx information to support opioid management | CYP2D6; OPRM1 | CYP2D6: *1, *3; *4, *6; *9; *10; *17; *29; *41; OPRM1: rs1799971, A118G | The study shows that 55% and 65% of patients are open to pharmacogenetic testing, with 66% and 69% believing it can improve their medical care. It supports the potential of CYP2D6 PGx testing to inform chronic pain medication management for PMs and UMs. | [45] |
Clinical trial | n.a. | 370 (252 W) | Effects of CYP2D6-guided opioid prescribing on pain control | CYP2D6 | CYP2D6: *1, *2, *3; *4, *5; *6; *7; *8; *9; *10; *11; *15; *17; *29; *35; *41; | The study found that pain intensity among IM/PMs initially prescribed tramadol/codeine showed greater improvement in the CYP2D6-guided versus usual care arm, with 24% of CYP2D6-guided participants reporting a clinically meaningful reduction. However, no difference in change in composite pain intensity at 3 months was found between CYP2D6-guided and usual care groups. | [28] |
Clinical trial | Caucasian | 88 (56 W) | Prediction of adverse events in prescription opioid use disorder patients | OPRM1; COMT | OPRM1: rs1799971, A118G (A/A; A/G; G/G); COMT: rs4680, G472A (G/G; G/A; A/A) | Wild-type OPRM1-AA genotype carriers reported higher adverse events, particularly gastrointestinal system events like nausea. Men had three-times-higher predicted adverse events. The deprescription programme effectively reduced morphine equivalent daily dose and opioid use without affecting pain intensity or opiate abstinence syndrome. | [32] |
3. Monitoring Opioids
3.1. Main Therapeutic Opioid Groups
3.2. Importance of Monitoring
3.3. Biological Samples Used for Monitoring
3.4. Monitoring Techniques
Compound | Sample (mL) | LOD (ng/mL) | Sample Extraction | Extraction Technique | Instrumentation | Reference |
---|---|---|---|---|---|---|
COD, OXY, HYD, TRA | Urine and plasma (200 µL) | Urine: 4.5 for COD; OXY; HYD 7.6 TRA Plasma: 6.1 for COD; OXY; HYD; 9.1 TRA | Extractant solvent: 20 µL HPLC grade water pH = 2; Electric voltage: 400 V | IT-G-EME | HPLC-UV | [66] |
TRA | Serum (n.a) | n.a | Electrochemical (DVP) | CoNiWO4 | Sensor | [67] |
MTD, TRA, BUP | Plasma, urine (1 mL) | EME: urine: MTD 6.5; TML 5.0; BUP 8.5; plasma: MTD 50.0; TML 40.0; BUP 75.0 ng/mL; EME-SFME urine: MTD 0.80; TML 0.80; BUP 1.0; plasma: MTD 2.0; TML 2.0; BUP 3.5 ng/mL | EME: electric field of 248 V for 17.5 min and stirring rate at 750 rpm; SFME: 5 µL of 400 mM NaOH added to the acceptor solution (sample solution); organic extract (5 µL of toluene) | EME; EME-SFME | HPLC-UV; CD-IMS | [68] |
FNT, ACF, Troc-norfentanyl, Troc-noracetylfentanyl | Urine and plasma (1 mL) | 10 | LLE extraction 4 mL of solvent for urine and 12 mL for plasma, vortexed at 3000 rpm for 30 s and centrifuged at 5000× g for 5 min | LLE (1-clorobutane) | GC-(EI)-MS; HR-LC-(ESI+)-MS | [69] |
TRA, COD, MOR, 6-MAM | Blood and urine (1 mL) | 10 ng/mL for all except 6-MAM with 5 ng/mL | Extract solvent: 4 mL acetonitrile and 100 mg NaCl; agitated for 10 s; rotation time: 5 min; centrifuged for 3 min at 3500 rpm; extraction time: 35 min | m-d-SPE | GC-(EI)-MS | [70] |
MTD | Urine (4 mL) Plasma (1 mL) | n.a. | Plasma: alkalinised using 2 M kalium hydroxide (up to pH 10). Four millilitres of the solvent mixture LLE was added, vortexed for 15 min, and then centrifuged for 10 min at 3400 rpm and 15 °C; urine: alkalinised using 2 M kalium hydroxide (up to pH 10). Ten millilitres of the solvent mixture LLE was added, vortexed for 15 min, and then were centrifuged for 10 min at 3400 rpm and 15 °C | LLE (n-hexane/2-propanol, 97:3, v/v) | GC-(EI)-MS | [71] |
ACF, AF, ISF, VF, 4-FBF, OCF, FAF | Urine (5 mL) | ACF:4.4 ng/L; AF:9.4 ng/L; ISF:3.1 ng/L; VF:5.5 ng/L; 4-FBF:3 ng/L OCF:3.6 ng/L; FAF:9 ng/L | Magnetic biochar (15 mg) was added to sample and shaken for 20 min at a speed of 200 rpm; desorption step: 200 µL methanol for 2 min at 1400 rpm | MSPE | LC-(ESI+)-MS | [72] |
MOR | Urine (n.a) | 0.58 µM | Electrochemical (SWV) | Fe1W3@CPE | Sensor | [73] |
COD, MOR, TRA, OXY | Plasma and urine (1000 μL) | 0.5 | Conditioning: methanol and water; load: 3×; elution: 200 µL acetonitrile/2-propanol (1:1) | (PT-μSPE) | HPLC-UV | [74] |
SUF | Plasma (500 µL) | 0.01 | LLE for 10 min and centrifuged at 1390× g | LLE (2 mL ethyl acetate) | UHPLC-(ESI)-QqQ-MS-MS | [75] |
4-ANPP, ACF, AH-7921; ALF, AMF, OHBF, CFN, FNT, FF, isotonitazene; MT-45, DPFF, NMNF, NF, OCF, RF, SUF, TF, U-47700, 6-MAM, BUP, COD, EDDP, EMDP, HYD, HM, MTD, MOR, NC, normorphine, NOR, NOM, OXY, OXM, TRA | Urine (1 mL) | n.a. | The samples were extracted twice with LLE | LLE (1.5 mL chloroform/isopropanol (9:1, v/v) | GC-(EI)-MS; UHPLC-HRMS (MS2+/−) | [76] |
MTD | Plasma, urine, hair (n.a) | 0.12 ng/mL | Stirred for 5 min at 70 °C; extraction time: 15 min | HS-SPME | IMS | [77] |
MANF, ANF, NF, +/− trans-3-methylnorfentanyl, RF, BCM, VFCM ACF, OCF, BHF, ALF AF, BTF, FNT, 4-ANPP +/− cis-3-methylthiofentanyl, Furanylfentanyl, +/− cis-3-methylfentanyl, para-Fluorofentanyl, ortho-Fluorofentanyl, DPFF, AMF, CFN, Butyrylfentanyl, SUF | Oral fluid (100 uL) | 0.05–0.50 ng/mL | Conditioning: 3 times with 250 µL of methanol; 3 times with 250 µL of H2O/methanol/acetonitrile (75:15:10); load: 5 times; washing: 3 times with water; elution: 5 times with 50 µL of methanol 1% HCOOH | MEPS (C18) | LC-(ESI+)-HRMS/MS | [78] |
TRA | Urine, Oral fluid (n.a.) | 9.42 µg/mL | Electrochemical (CV) | Au-SPE/(PANI + AgNPs)/MIP | Sensor | [79] |
MOR, COD | Plasma, urine (n.a.) | 1.5 ng/mL | pH of the DP: 6.0; membrane composition (agarose concentration: 1% (w/v) in aqueous media with pH 3.0, and 15 mm thickness); voltage: 25 V; and extraction time: 30 min | G-EME | HPLC-UV | [80] |
MOR, OXM, HM, COD OXY, HYD, 6-MAM, ACF, Fentanyl, BEG, TRA, COC, MTD, MPD | Blood (1 mL) | PP: 0.0625–2.5 SPE: 0.125–5 | SPE: conditioning: 3 mL of hexane, followed by 3 mL of methanol, and 3 mL of water and 1 mL of 0.1 M phosphate buffer (pH6); washing: 3 mL of water, 2 mL of 0.5 M acetic acid and 3 mL of methanol; elution: 3 mL of dichloromethane/isopropanol/ammonium hydroxide (78:20:2) | PP (2.0 mL of acetonitrile); SPE (200 mg, ZSDAU200 CleanScreen) | LC-(ESI+)-MS/MS | [81] |
4-MBF, AF, ALF, CNFDespropionyl-2-fluorofentanyl; 4-ANPP, FNT, FAF, MAF, NF, OCF, RF, SUF | Blood and urine (500 µL) | Blood: 0.01–0.20 Urine: 0.02–0.05 | Agitation on a rotating mechanism for 5 min and centrifugation at 2.500× g for 5 min | LLE (heptane/isopropyl alcohol/dichloromethane) | UHPL-(ESI+) QTRAP-MS/MS | [82] |
MTD; TRA | Urine, plasma, oral fluid (2 mL) | Urine: TRA 0.45; MTD 0.15; Plasma: TRA 2.5; MET 1.2; Oral fluid: TRA 0.8; MTD 0.5 | Ultrasonic bath for 5 min; phase separation was done using a magnet.The supernatant was discarded and desorption process was carried out by adding 100 µL acetone to aggregated LDH. Desorption was completed under sonication for 15 min. Magnetic nanoparticles were again separated from the eluent solution by a magnet, the supernatant containing desorbed | UA-MμSPE | GC-MS (n.a) | [83] |
NF, ACF, OCF, AF, 4-ANPP, FNT, FAF, AMF, CPF, CFN, butyrfentanyl; 4-FBF | Hair (50 mg) | 0.2–1.2 pg/mg | Dichloromethane washed two times and then methanol (1 mL of solvent, vortex mixed for 3 min). The solvent washes were removed following each vortex mixing steps. Following the washing steps, hair was dried at room. One millilitre of methanol was added and the mixture was incubated at 55 °C for 15 h without stirring | n.a. | UHPLC-(ESI+)-QTOF-HRMS | [84] |
BUP, COD, FNT, NF, MOR, OXY, TRA, ODT | Hair (50 mg) | n.a. | Sample was treated in an ultrasonic bath for 5 h in 3 mL methanol (50 °C) and allowed to cool down to room temperature; 1.5 mL of the supernatant were evaporated to dryness under nitrogen (55 °C), and reconstituted in 20 µL acetonitrile and 130 µL 2 M ammonium acetate solution | n.a. | LC-(ESI+)-QTRAP-MS | [85] |
MTD | Urine, oral fluid, plasma (n.a.) | GC-FID: Urine: 2.5; Plasma 2.7; Oral fluid 9.5 GC-MS: Urine:0.06; Plasma/oral fluid: 0.2 | 75 µL of 1-undecanol added to the sample; then 500 µL of acetonitrile was added a demulsified; ice-bath for 1 min. The solidified solvent was subsequently transferred to microtube by a spatula and melted at room temperature | DLLME-SFO | GC-FID; GC-MS | [86] |
MOR, COD, MTD, TRA, O-TRA, | Blood (100 µL) | 5 | Centrifuged for 10 min at 14,000 rpm | PP (300 µL methanol) | LC-(ESI+/−)-HRMS | [87] |
TRA | Plasma (1 mL); oral fluid (100 µL), urine (10 mL) | Urine and oral fluid:1.5 Plasma: 2.4 | 20 µL of supramolecular solvent and 20 mg of the sorbent were added into the solution. Air assisted was applied five times in 1 min. Fe3O4@Cu–Fe –LDH was dispersed thoroughly in the solution and combined with the supramolecular solvent. The sorption of tramadol was accelerated in a short time (1 min) on the surface of the Fe3O4@Cu–Fe–LDH sorbent. After that, the sorbent was separated from the sample solution by applying a strong magnet (150 × 130 × 50 mm). Subsequently, 100 µL of ethanol was added to elute tramadol from the sorbent by sonication for 1 min. After desorption, the sorbent was isolated from the eluent using a magnet | SUPRAS (1 mL of 1-dodecanol, 3 min of THF); PP (2 mL of acetonitrile to, centrifuged at 2000 rpm for 10 min) | GC-FID | [88] |
HYD | Plasma (500 µL) Oral fluid (1 mL) | n.a. | Conditioning: 3 mL methanol and 2 mL of 0.1% TFA; washing: 4 mL of H2O/acetonitrile (95:5, v/v) and 0.1% TFA; elution: 1 mL acetonitrile/H2O (80:20, v/v) and 0.1% TFA | SPE (50 mg, 1 mL Discovery, Supelco) | LC-(ESI)-MS/MS | [89] |
MOR | Urine (n.a) | 10 | n.a. | LLE (n.a.) | SI-MS (EI+) | [90] |
COD, MOR, 6-MAM | Blood (250 µL) | 5 | Conditioning: 3 × 250 µL methanol; 3 × 250 µL 2% formic acid; load: 20 × 250 µL; washing: 1 × 250 µL 3.36% formic acid; elution: 11 × 250 µL 2.36% ammonium hydroxide in methanol. | MEPS (80% C8 and 20% SCX) | GC-(ESI+)-MS/MS | [91] |
MOR, COD | Blood and urine (1 mL) | 0.0018–0.0021 | After that, the mixture was placed on the shaker (IKA ® KS 260 basic) for 15 min. Then, the magnetic NC was separated from the sample solution with a forceful magnet (N42 50 × 20; 4123 G). The limpid supernatant solution was decanted after 5 min. Subsequently, the preconcentrated MOR and COD were desorbed from the magnetic adsorbent by using 1 mL of methanol: acetic acid (80: 20 v/v) solution | MSPE | HPLC-UV-Vis | [92] |
TRA, COD, MOR, 6-AC, 6-MAM, FNT | Hair (50 mg) | 0.010 TRA, COD, 6-AC; 0.025 MOR; 6-MAM; FNT | Conditioning: 3 × 250 µL of methanol, 3 × 250 µL formic acid 2%; load: 15 × 150 µL; washing: 150 µL of 3.36% formic acid; elution: 8× 100 µL ammonium hydroxide 2.36% in methanol | MEPS (80% C8 and 20% SCX) | GC-(ESI+)-MS/MS | [93] |
OXY, HYD; FNT, NOR; NH, NF | Urine (10 µL) | 40–180 pg/mL | n.a. | n.a. | FSA-CIR | [94] |
MOR, HM, COD | Blood (500 µL) | n.a. | Conditioning: 3 mL of methanol, followed by 3 mL of deionised water, and 1 mL of phosphate buffer; washing: 1.5 mL of water, 0.5 mL of 0.1 M acetic acid and 1.5 mL of methanol; elution: 2 mL of ethyl acetate/acetonitrile/ammonium hydroxide (78:20:2) | SPE (130 mg Clean Screen® Dau) | LC-(ESI+)-MS/MS | [95] |
4. Materials and Methods
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Edinoff, A.; Sathivadivel, N.; McBride, T.; Parker, A.; Okeagu, C.; Kaye, A.D.; Kaye, A.M.; Kaye, J.S.; Kaye, R.J.; Sheth, M.M.; et al. Chronic Pain Treatment Strategies in Parkinson’s Disease. Neurol. Int. 2020, 12, 61–76. [Google Scholar] [CrossRef]
- Pandelani, F.F.; Nyalunga, S.L.N.; Mogotsi, M.M.; Mkhatshwa, V.B. Chronic pain: Its impact on the quality of life and gender. Front. Pain Res. 2023, 4, 1253460. [Google Scholar] [CrossRef]
- Hylands-White, N.; Duarte, R.V.; Raphael, J.H. An overview of treatment approaches for chronic pain management. Rheumatol. Int. 2017, 37, 29–42. [Google Scholar] [CrossRef]
- Blyth, F.M.; Briggs, A.M.; Schneider, C.H.; Hoy, D.G.; March, L.M. The Global Burden of Musculoskeletal Pain—Where to From Here? Am. J. Public Health 2019, 109, 35. [Google Scholar] [CrossRef]
- Rikard, S.M.; Strahan, A.E.; Schmit, K.M.; Guy, G.P. Chronic Pain Among Adults—United States, 2019–2021. MMWR. Morb. Mortal. Wkly. Rep. 2023, 72, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Buonanno, P.; Marra, A.; Iacovazzo, C.; Vargas, M.; Nappi, S.; Squillacioti, F.; de Siena, A.U.; Servillo, G. The PATIENT Approach: A New Bundle for the Management of Chronic Pain. J. Pers. Med. 2023, 13, 1551. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic pain: An update on burden, best practices, and new advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Bauer, B.A.; Wahner-Roedler, D.L.; Chon, T.Y.; Xiao, L. The modified WHO analgesic ladder: Is it appropriate for chronic non-cancer pain? J. Pain Res. 2020, 13, 411–417. [Google Scholar] [CrossRef]
- Peiró, A.M. Pharmacogenetics in Pain Treatment. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 83, pp. 247–273. ISBN 9780128133811. [Google Scholar]
- Connors, N.J.; Mazer-Amirshahi, M.; Motov, S.; Kim, H.K. Relative addictive potential of opioid analgesic agents. Pain Manag. 2021, 11, 201–215. [Google Scholar] [CrossRef]
- Bonnie, R.J.; Ford, M.A.; Phillips, J.K. (Eds.) Pain Management and the Opioid Epidemic; National Academies Press: Washington, DC, USA, 2017; ISBN 978-0-309-45954-9. [Google Scholar]
- Atisook, R.; Euasobhon, P.; Saengsanon, A.; Jensen, M.P. Validity and Utility of Four Pain Intensity Measures for Use in International Research. J. Pain Res. 2021, 14, 1129. [Google Scholar] [CrossRef] [PubMed]
- Karcioglu, O.; Topacoglu, H.; Dikme, O.; Dikme, O. A systematic review of the pain scales in adults: Which to use? Am. J. Emerg. Med. 2018, 36, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Hawker, G.A.; Mian, S.; Kendzerska, T.; French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011, 63 (Suppl. 11), S240–S252. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.L.; Phung, A.; Dominguez, M.; Remotti, E.; Ricciardelli, R.; Momah, D.U.; Wahab, S.; Kim, R.S.; Norman, M.; Zhang, E.; et al. Pain Scales: What Are They and What Do They Mean. Curr. Pain Headache Rep. 2023, 28, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Wesson, D.R.; Ling, W. The clinical opiate withdrawal scale (COWS). J. Psychoact. Drugs 2003, 35, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Queremel Milani, D.A.; Davis, D.D. Pain Management Medications. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560692/ (accessed on 6 January 2024).
- Simão, A.; Antunes, M.; Gonçalves, J.; Pires Seixo Soares, S.; Castro, T.; Rosado, T.; Caramelo, D.; Barroso, M.; Araujo, A.; Lopez Rodilla, J.; et al. The role of gas chromatography in clinical and forensic toxicology. In Gas Chromatography: History, Methods and Applications; Nova Publisher: New York, NY, USA, 2019; pp. 1–104. ISBN 978-1-53617-350-5. [Google Scholar]
- Fredrikson, K.M.; Fasolino, T. Pharmacogenetic Testing: The Ethics of Implementing in Clinical Practice for Chronic Pain Patients. J. Pain Palliat. Care Pharmacother. 2020, 34, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Agulló, L.; Aguado, I.; Muriel, J.; Margarit, C.; Gómez, A.; Escorial, M.; Sánchez, A.; Fernández, A.; Peiró, A.M. Pharmacogenetic Guided Opioid Therapy Improves Chronic Pain Outcomes and Comorbid Mental Health: A Randomized, Double-Blind, Controlled Study. Int. J. Mol. Sci. 2023, 24, 754. [Google Scholar] [CrossRef]
- Crews, K.R.; Monte, A.A.; Huddart, R.; Caudle, K.E.; Kharasch, E.D.; Gaedigk, A.; Dunnenberger, H.M.; Leeder, J.S.; Callaghan, J.T.; Samer, C.F.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6, OPRM1, and COMT Genotypes and Select Opioid Therapy. Clin. Pharmacol. Ther. 2021, 110, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Magarbeh, L.; Gorbovskaya, I.; Le Foll, B.; Jhirad, R.; Müller, D.J. Reviewing pharmacogenetics to advance precision medicine for opioids. Biomed. Pharmacother. 2021, 142, 112060. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.; Bishop, J.; Sangkuhl, K.; Müller, D.; Ji, Y.; Leckband, S.; Leeder, J.; Graham, R.; Chiulli, D.; LLerena, A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef]
- Ballantyne, J.C. Opioid Therapy. ASA Refresh. Courses Anesthesiol. 2006, 34, 31–42. [Google Scholar] [CrossRef]
- Antunes, M.; Simão, A.Y.; Fonseca, S.; Gonçalves, J.; Soares, S.; Almeida, E.; Gameiro, C.; Rosado, T.; Duarte, A.P.; Barroso, M.; et al. The role of CYP2D6 in opiates and opioids consumers and its implications in clinical and forensic toxicology. In Advances in Medicine and Biology; Nova Science: New York, NY, USA, 2020; ISBN 9781621003250. [Google Scholar]
- Nerenz, R.D.; Tsongalis, G.J. Pharmacogenetics of Opioid Use and Implications for Pain Management. J. Appl. Lab. Med. 2018, 2, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.M.; Weitzel, K.W.; Elsey, A.R.; Langaee, T.; Gong, Y.; Wake, D.T.; Duong, B.Q.; Hagen, M.; Harle, C.A.; Mercado, E.; et al. CYP2D6-guided opioid therapy improves pain control in CYP2D6 intermediate and poor metabolizers: A pragmatic clinical trial. Genet. Med. 2019, 21, 1842–1850. [Google Scholar] [CrossRef] [PubMed]
- Ruaño, G.; Larsen, K.; Kocherla, M.; Graydon, J.S.; Kost, J. Complications of psychotropic and pain medications in an ultrarapid metabolizer patient at the upper 1% of Cytochrome P450 (CYP450) function quantified by combinatorial CYP450 genotyping. J. Pain Palliat. Care Pharmacother. 2017, 31, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Muriel, J.; Escorial, M.; Margarit, C.; Barrachina, J.; Carvajal, C.; Morales, D.; Peiró, A.M. Long-term deprescription in chronic pain and opioid use disorder patients: Pharmacogenetic and sex differences. Acta Pharm. 2023, 73, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Cornett, E.M.; Carroll Turpin, M.A.; Pinner, A.; Thakur, P.; Sekaran, T.S.G.; Siddaiah, H.; Rivas, J.; Yates, A.; Huang, G.J.; Senthil, A.; et al. Pharmacogenomics of Pain Management: The Impact of Specific Biological Polymorphisms on Drugs and Metabolism. Curr. Oncol. Rep. 2020, 22, 18. [Google Scholar] [CrossRef] [PubMed]
- Muriel, J.; Margarit, C.; Barrachina, J.; Ballester, P.; Flor, A.; Morales, D.; Horga, J.F.; Fernández, E.; Peiró, A.M. Pharmacogenetics and prediction of adverse events in prescription opioid use disorder patients. Basic Clin. Pharmacol. Toxicol. 2019, 124, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Lopes, G.S.; Bielinski, S.J.; Moyer, A.M.; Black, J.L.; Jacobson, D.J.; Jiang, R.; Larson, N.B.; Sauver, J.L.S. Sex Differences in Associations Between CYP2D6 Phenotypes and Response to Opioid Analgesics. Pharmgenomics. Pers. Med. 2020, 13, 71. [Google Scholar] [CrossRef] [PubMed]
- Vetterlein, A.; Monzel, M.; Reuter, M. Are catechol-O-methyltransferase gene polymorphisms genetic markers for pain sensitivity after all?—A review and meta-analysis. Neurosci. Biobehav. Rev. 2023, 148, 105112. [Google Scholar]
- Agulló, L.; Muriel, J.; Margarit, C.; Escorial, M.; Garcia, D.; Herrero, M.J.; Hervás, D.; Sandoval, J.; Peiró, A.M. Sex Differences in Opioid Response Linked to OPRM1 and COMT genes DNA Methylation/Genotypes Changes in Patients with Chronic Pain. J. Clin. Med. 2023, 12, 3449. [Google Scholar] [CrossRef]
- Crist, R.C.; Li, J.; Doyle, G.A.; Gilbert, A.; Dechairo, B.M.; Berrettini, W.H. Pharmacogenetic analysis of opioid dependence treatment dose and dropout rate. Am. J. Drug Alcohol Abus. 2018, 44, 431–440. [Google Scholar] [CrossRef]
- Muriel, J.; Barrachina, J.; Del Barco, G.; Carvajal, C.; Escorial, M.; Margarit, C.; Ballester, P.; Peiró, A.M. Impact of CYP2D6 genotype on opioid use disorder deprescription: An observational prospective study in chronic pain with sex-differences. Front. Pharmacol. 2023, 14, 1200430. [Google Scholar] [CrossRef] [PubMed]
- Lötsch, J.; von Hentig, N.; Freynhagen, R.; Griessinger, N.; Zimmermann, M.; Doehring, A.; Rohrbacher, M.; Sittl, R.; Geisslinger, G. Cross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers. Pharmacogenet. Genom. 2009, 19, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Radford, H.; Simpson, K.H.; Rogerson, S.; Johnson, M.I. A single site population study to investigate CYP2D6 phenotype of patients with persistent non-malignant pain. Medicina 2019, 55, 220. [Google Scholar] [CrossRef] [PubMed]
- Barrachina, J.; Margarit, C.; Muriel, J.; López-Gil, S.; López-Gil, V.; Vara-González, A.; Planelles, B.; del Inda, M.-M.M.; Morales, D.; Peiró, A.M. Oxycodone/naloxone versus tapentadol in real-world chronic non-cancer pain management: An observational and pharmacogenetic study. Sci. Rep. 2022, 12, 10126. [Google Scholar] [CrossRef] [PubMed]
- Planelles, B.; Margarit, C.; Inda, M.-M.; Ballester, P.; Muriel, J.; Barrachina, J.; Ajo, R.; Esteban, M.-D.; Peiró, A.M. Gender based differences, pharmacogenetics and adverse events in chronic pain management. Pharmacogenomics J. 2020, 20, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Jannetto, P.J.; Bratanow, N.C. Utilization of pharmacogenomics and therapeutic drug monitoring for opioid pain management. Pharmacogenomics 2009, 10, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Dagostino, C.; Allegri, M.; Napolioni, V.; D’agnelli, S.; Bignami, E.; Mutti, A.; van Schaik, R.H.N. CYP2D6 genotype can help to predict effectiveness and safety during opioid treatment for chronic low back pain: Results from a retrospective study in an italian cohort. Pharmgenomics. Pers. Med. 2018, 11, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Niedrig, D.F.; Rahmany, A.; Heib, K.; Hatz, K.-D.; Ludin, K.; Burden, A.M.; Béchir, M.; Serra, A.; Russmann, S. Clinical Relevance of a 16-Gene Pharmacogenetic Panel Test for Medication Management in a Cohort of 135 Patients. J. Clin. Med. 2021, 10, 3200. [Google Scholar] [CrossRef]
- Kusic, D.; Heil, J.; Zajic, S.; Brangan, A.; Dairo, O.; Smith, G.; Morales-Scheihing, D.; Buono, R.J.; Ferraro, T.N.; Haroz, R.; et al. Patient Perceptions and Potential Utility of Pharmacogenetic Testing in Chronic Pain Management and Opioid Use Disorder in the Camden Opioid Research Initiative. Pharmaceutics 2022, 14, 1863. [Google Scholar] [CrossRef]
- Morrone, L.A.; Scuteri, D.; Rombolà, L.; Mizoguchi, H.; Bagetta, G. Opioids Resistance in Chronic Pain Management. Curr. Neuropharmacol. 2017, 15, 444. [Google Scholar] [CrossRef] [PubMed]
- Larochelle, M.R.; Lodi, S.; Yan, S.; Clothier, B.A.; Goldsmith, E.S.; Bohnert, A.S.B. Comparative Effectiveness of Opioid Tapering or Abrupt Discontinuation vs. No Dosage Change for Opioid Overdose or Suicide for Patients Receiving Stable Long-term Opioid Therapy. JAMA Netw. Open 2022, 5, E2226523. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Rosado, T.; Barroso, M.; Gallardo, E. Solid Phase-Based Microextraction Techniques in Therapeutic Drug Monitoring. Pharmaceutics 2023, 15, 1055. [Google Scholar] [CrossRef] [PubMed]
- Oellerich, M. International Association of Therapeutic Drug Monitoring and Clinical Toxicology: Newsletter. Ther. Drug Monit. 1996, 18, 1. [Google Scholar] [CrossRef]
- De Rosa, F.; Giannatiempo, B.; Charlier, B.; Coglianese, A.; Mensitieri, F.; Gaudino, G.; Cozzolino, A.; Filippelli, A.; Piazza, O.; Dal Piaz, F.; et al. Pharmacological Treatments and Therapeutic Drug Monitoring in Patients with Chronic Pain. Pharmaceutics 2023, 15, 2088. [Google Scholar] [CrossRef] [PubMed]
- Adaway, J.E.; Keevil, B.G. Therapeutic drug monitoring and LC–MS/MS. J. Chromatogr. B 2012, 883–884, 33–49. [Google Scholar] [CrossRef] [PubMed]
- SAMHSA. Clinical Drug Testing in Primary Care: Technical Assistance Publication Series TAP 32; SAMHSA: Rockville, MD, USA, 2012.
- Gudoski, A.J. Prescription drug monitoring programs: Combating prescription drug misuse. Nurse Pract. 2015, 40, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Validity of Outcome Measures-Clinical Review Report: Buprenorphine Extended-Release Injection (Sublocade)-NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK546449/ (accessed on 3 March 2024).
- Avataneo, V.; D’Avolio, A.; Cusato, J.; Cantù, M.; De Nicolò, A. LC-MS application for therapeutic drug monitoring in alternative matrices. J. Pharm. Biomed. Anal. 2019, 166, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Keçili, R.; Ghorbani-Bidkorbeh, F.; Hussain, C.M. Green miniaturized technologies in analytical and bioanalytical chemistry. TrAC Trends Anal. Chem. 2021, 143, 116383. [Google Scholar] [CrossRef]
- Gallardo, E.; Rosado, T.; Barroso, M. The potential of oral fluid in drug monitoring: An update. Bioanalysis 2023, 15, 657–660. [Google Scholar] [CrossRef]
- Rosendo, L.M.; Brinca, A.T.; Pires, B.; Catarro, G.; Rosado, T.; Guiné, R.P.F.; Araújo, A.R.T.S.; Anjos, O.; Gallardo, E. Miniaturized Solid Phase Extraction Techniques Applied to Natural Products. Processes 2023, 11, 243. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Green analytical chemistry metrics: A review. Talanta 2022, 238, 123046. [Google Scholar] [CrossRef] [PubMed]
- Krishna, M.V.; Padmalatha, K.; Madhavi, G. Electromembrane Extraction in Analytical Toxicology. Microextraction Tech. Anal. Toxicol. 2021, 171–182. [Google Scholar] [CrossRef]
- Poole, C.F.; Poole, S.K. Principles and Practice of Solid-Phase Extraction. Compr. Sampl. Sample Prep. Anal. Tech. Sci. 2012, 37, 273–297. [Google Scholar] [CrossRef]
- Kyle, P.B. Toxicology: GCMS. In Mass Spectrometry for the Clinical Laboratory; Academic Press: Cambridge, MA, USA, 2017; pp. 131–163. ISBN 9780128008713. [Google Scholar]
- Bayatloo, M.R.; Tabani, H.; Nojavan, S.; Alexovič, M.; Ozkan, S.A.; Alexovi, M. Liquid-Phase Microextraction Approaches for Preconcentration and Analysis of Chiral Compounds: A Review on Current Advances. Crit. Rev. Anal. Chem. 2023, 53, 1623–1637. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chu, S.; Tan, S.; Yin, X.; Jiang, Y.; Dai, X.; Gong, X.; Fang, X.; Tian, D. Towards Higher Sensitivity of Mass Spectrometry: A Perspective From the Mass Analyzers. Front. Chem. 2021, 9, 813359. [Google Scholar] [CrossRef]
- Rosado, T.; Soares, S.; Malaca, S.; Gonçalves, J.; Barroso, M.; Gallardo, E. The role of liquid chromatography in toxicological analysis. In High-Performance Liquid Chromatography: Types, Parameters and Applications; Lucero, I., Ed.; Nova Science Publisher Inc.: New York, NY, USA, 2018; pp. 1–120. ISBN 9781536135442. [Google Scholar]
- Rahbarian, H.; Nojavan, S.; Maghsoudi, M.; Tabani, H. In-tube gel electromembrane extraction: A green strategy for the extraction of narcotic drugs from biological samples. J. Chromatogr. A 2023, 1688, 463714. [Google Scholar] [CrossRef]
- Zafar, K.; Wasim, M.; Fatima, B.; Hussain, D.; Mehmood, R.; Najam-ul-Haq, M. Quantification of tramadol and serotonin by cobalt nickel tungstate in real biological samples to evaluate the effect of analgesic drugs on neurotransmitters. Sci. Rep. 2023, 13, 10239. [Google Scholar] [CrossRef]
- Behpour, M.; Maghsoudi, M.; Nojavan, S. Analysis of methamphetamine, methadone, tramadol, and buprenorphine in biological samples by ion mobility spectrometry after electromembrane extraction in tandem with slug flow microextraction. J. Chromatogr. A 2022, 1678, 463355. [Google Scholar] [CrossRef]
- Valdez, C.A.; Leif, R.N.; Corzett, T.H.; Dreyer, M.L. Analysis, identification and confirmation of synthetic opioids using chloroformate chemistry: Retrospective detection of fentanyl and acetylfentanyl in urine and plasma samples by EI-GC-MS and HR-LC-MS. PLoS ONE 2022, 17, e0275931. [Google Scholar] [CrossRef]
- Yasien, S.; Ali, E.; Javed, M.; Iqbal, M.M.; Iqbal, S.; Alrbyawi, H.; Aljazzar, S.O.; Elkaeed, E.B.; Dera, A.A.; Pashameah, R.A.; et al. Simultaneous Quantification of Opioids in Blood and Urine by Gas Chromatography-Mass Spectrometer with Modified Dispersive Solid-Phase Extraction Technique. Molecules 2022, 27, 6761. [Google Scholar] [CrossRef]
- Ciucă Anghel, D.M.; Ciobanu, A.M.; Guțu, C.M.; Stan, M.; Tudor, G.; Baconi, D.L. GC-MS Analysis of Methadone and EDDP in Addicted Patients under Methadone Substitution Treatment: Comparison of Urine and Plasma as Biological Samples. Molecules 2022, 27, 8360. [Google Scholar] [CrossRef]
- Zhang, S.; Hua, Z.; Yao, W.; Lü, T.; Zhang, D.; Zhao, Q.; Li, J.; Zhao, H. Preparation of bamboo-derived magnetic biochar for solid-phase microextraction of fentanyls from urine. J. Sep. Sci. 2022, 45, 1766–1773. [Google Scholar] [CrossRef]
- Ognjanović, M.; Nikolić, K.; Bošković, M.; Pastor, F.; Popov, N.; Marciuš, M.; Krehula, S.; Antić, B.; Stanković, D.M. Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor. Biosensors 2022, 12, 932. [Google Scholar] [CrossRef] [PubMed]
- Hejabri Kandeh, S.; Amini, S.; Ebrahimzadeh, H. Simultaneous trace-level monitoring of seven opioid analgesic drugs in biological samples by pipette-tip micro solid phase extraction based on PVA-PAA/CNT-CNC composite nanofibers followed by HPLC-UV analysis. Microchim. Acta 2021, 188, 275. [Google Scholar] [CrossRef]
- Zawadzki, M.; Kowalski, G.; Chłopaś-Konowałek, A.; Siczek, M.; Sobieszczańska, M.; Leppert, W.; Wieczorowska-Tobis, K.; Szpot, P. Rapid Determination of Sufentanil in Human Plasma by UHPLC–QqQ-MS-MS. J. Anal. Toxicol. 2021, 45, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Marchei, E.; Ferri, M.A.; Torrens, M.; Farré, M.; Pacifici, R.; Pichini, S.; Pellegrini, M. Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry and High-Sensitivity Gas Chromatography-Mass Spectrometry Screening of Classic Drugs and New Psychoactive Substances and Metabolites in Urine of Consumers. Int. J. Mol. Sci. 2021, 22, 4000. [Google Scholar] [CrossRef] [PubMed]
- Abedi, H. Solid-phase microextraction of methadone by using a chitosan nanocomposite incorporated with Polyoxomolibdate nanocluster/Graphene oxide. J. Sep. Sci. 2021, 44, 1969–1977. [Google Scholar] [CrossRef]
- Vincenti, F.; Montesano, C.; Pirau, S.; Gregori, A.; Di Rosa, F.; Curini, R.; Sergi, M. Simultaneous quantification of 25 fentanyl derivatives and metabolites in oral fluid by means of microextraction on packed sorbent and lc–hrms/ms analysis. Molecules 2021, 26, 5870. [Google Scholar] [CrossRef]
- Diouf, A.; Aghoutane, Y.; Burhan, H.; Sen, F.; Bouchikhi, B.; El Bari, N. Tramadol sensing in non-invasive biological fluids using a voltammetric electronic tongue and an electrochemical sensor based on biomimetic recognition. Int. J. Pharm. 2021, 593, 120114. [Google Scholar] [CrossRef]
- Rahimi, A.; Nojavan, S.; Tabani, H. Inside gel electromembrane extraction: A novel green methodology for the extraction of morphine and codeine from human biological fluids. J. Pharm. Biomed. Anal. 2020, 184, 113175. [Google Scholar] [CrossRef]
- Wagner, R.; Moses, L. Validation of two methods for the quantitative analysis of cocaine and opioids in biological matrices using LCMSMS. J. Forensic Sci. 2021, 66, 1124–1135. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Kolodziej, A.; Pape, E.; Bisch, M.; Javot, L.; Gibaja, V.; Jouzeau, J.-Y.; Scala-Bertola, J.; Gambier, N. Multiplex detection of 14 fentanyl analogues and U-47700 in biological samples: Application to a panel of French hospitalized patients. Forensic Sci. Int. 2020, 317, 110437. [Google Scholar] [CrossRef] [PubMed]
- Adlnasab, L.; Shahdousti, P.; Ahmar, H. Layered double hydroxide intercalated with tyrosine for ultrasonic-assisted microextraction of tramadol and methadone from biological samples followed by GC/MS analysis. Microchim. Acta 2020, 187, 265. [Google Scholar] [CrossRef]
- Salomone, A.; Di Corcia, D.; Negri, P.; Kolia, M.; Amante, E.; Gerace, E.; Vincenti, M. Targeted and untargeted detection of fentanyl analogues and their metabolites in hair by means of UHPLC-QTOF-HRMS. Anal. Bioanal. Chem. 2021, 413, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Musshoff, F.; Schwarz, G.; Sachs, H.; Skopp, G.; Franz, T. Concentration distribution of more than 100 drugs and metabolites in forensic hair samples. Int. J. Legal Med. 2020, 134, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Jafarinejad, M.; Ezoddin, M.; Lamei, N.; Abdi, K.; Babhadi-Ashar, N.; Pirooznia, N.; Akhgari, M. Effervescent tablet-assisted demulsified dispersive liquid–liquid microextraction based on solidification of floating organic droplet for determination of methadone in water and biological samples prior to GC-flame ionization and GC-MS. J. Sep. Sci. 2020, 43, 3266–3274. [Google Scholar] [CrossRef] [PubMed]
- Joye, T.; Rocher, K.; Déglon, J.; Sidibé, J.; Favrat, B.; Augsburger, M.; Thomas, A. Driving Under the Influence of Drugs: A Single Parallel Monitoring-Based Quantification Approach on Whole Blood. Front. Chem. 2020, 8, 552190. [Google Scholar] [CrossRef]
- Ezoddin, M.; Adlnasab, L.; Afshari Kaveh, A.; Karimi, M.A.; Mahjoob, B. Development of air-assisted dispersive micro-solid-phase extraction-based supramolecular solvent-mediated Fe3O4@Cu–Fe–LDH for the determination of tramadol in biological samples. Biomed. Chromatogr. 2019, 33, e4572. [Google Scholar] [CrossRef]
- Deatherage Kaiser, B.L.; Jacobs, J.M.; Schepmoes, A.A.; Brewer, H.M.; Webb-Robertson, B.J.M.; Valtier, S.; Bebarta, V.S.; Adkins, J.N. Assessment of the Utility of the Oral Fluid and Plasma Proteomes for Hydrocodone Exposure. J. Med. Toxicol. 2020, 16, 49–60. [Google Scholar] [CrossRef]
- Usmanov, D.T.; Akhunov, S.D.; Khasanov, U.; Rotshteyn, V.M.; Kasimov, B.S. Direct detection of morphine in human urine by surface-ionization mass spectrometry. Eur. J. Mass Spectrom. 2020, 26, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Prata, M.; Ribeiro, A.; Figueirinha, D.; Rosado, T.; Oppolzer, D.; Restolho, J.; Araújo, A.R.T.S.; Costa, S.; Barroso, M.; Gallardo, E. Determination of opiates in whole blood using microextraction by packed sorbent and gas chromatography-tandem mass spectrometry. J. Chromatogr. A 2019, 1602, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Abdolmohammad-Zadeh, H.; Zamani, A.; Shamsi, Z. Preconcentration of morphine and codeine using a magnetite/reduced graphene oxide/silver nano-composite and their determination by high-performance liquid chromatography. J. Chromatogr. A 2019, 1590, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Rosado, T.; Barroso, M.; Vieira, D.N.; Gallardo, E. Determination of Selected Opiates in Hair Samples Using Microextraction by Packed Sorbent: A New Approach for Sample Clean-up. J. Anal. Toxicol. 2019, 43, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Kammer, M.N.; Kussrow, A.; Gandhi, I.; Drabek, R.; Batchelor, R.H.; Jackson, G.W.; Bornhop, D.J. Quantification of Opioids in Urine Using an Aptamer-Based Free-Solution Assay. Anal. Chem. 2019, 91, 10582–10588. [Google Scholar] [CrossRef]
- Cannaert, A.; Vasudevan, L.; Friscia, M.; Mohr, A.L.A.; Wille, S.M.R.; Stove, C.P. Activity-Based Concept to Screen Biological Matrices for Opiates and (Synthetic) Opioids. Clin. Chem. 2018, 64, 1221–1229. [Google Scholar] [CrossRef]
Extraction Technique | Advantage | Disadvantage | Solvent/Sorbent Based | References |
---|---|---|---|---|
PP | Simple, fast and inexpensive | Often requires filtration and centrifugation; limited specificity | Solvent-based | [60] |
SPE | High selectivity and concentration capability | Can be time-consuming and uses significant solvent volumes | Sorbent-based | [61] |
MEPS | Requires less sample and solvent, automated | Limited capacity for sample loading | Sorbent-based | [48,58] |
SPME | Solvent-free, integrates sampling and pre-concentration | Limited to volatile and semi-volatile compounds | Sorbent-based | |
µ-SPE | Miniaturised, low solvent use, high throughput | Limited sorbent capacity, potential clogging issues | Sorbent-based | |
MSPE | Magnetic separation, easy and fast | Requires magnetic particles, potential for particle loss | Sorbent-based | |
LLE | Simple, widely applicable | Uses large amounts of solvent | Solvent-based | [62] |
DLLME-SFO | Very low solvent consumption, high enrichment factor | Requires careful handling of the solidified phase | Solvent-based | [63] |
SUPRAS | Environmentally friendly, high selectivity | Limited solvent types, sometimes complex preparation | Solvent-based | |
EME | High selectivity, low solvent use | Requires specialised equipment, optimal conditions critical | Solvent-based | |
IT-G-EME | Enhanced extraction efficiency | Still under research, specifics not widely documented | Solvent-based | |
EME-SFME | Combines EME and solid-phase microextraction benefits, high selectivity | Requires complex setup, less widely tested | Solvent-based | |
G-EME | Uses greener solvents, potentially more eco-friendly | May involve more complex chemistry, less widely adopted | Solvent-based |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosendo, L.M.; Rosado, T.; Zandonai, T.; Rincon, K.; Peiró, A.M.; Barroso, M.; Gallardo, E. Opioid Monitoring in Clinical Settings: Strategies and Implications of Tailored Approaches for Therapy. Int. J. Mol. Sci. 2024, 25, 5925. https://doi.org/10.3390/ijms25115925
Rosendo LM, Rosado T, Zandonai T, Rincon K, Peiró AM, Barroso M, Gallardo E. Opioid Monitoring in Clinical Settings: Strategies and Implications of Tailored Approaches for Therapy. International Journal of Molecular Sciences. 2024; 25(11):5925. https://doi.org/10.3390/ijms25115925
Chicago/Turabian StyleRosendo, Luana M., Tiago Rosado, Thomas Zandonai, Karem Rincon, Ana M. Peiró, Mário Barroso, and Eugenia Gallardo. 2024. "Opioid Monitoring in Clinical Settings: Strategies and Implications of Tailored Approaches for Therapy" International Journal of Molecular Sciences 25, no. 11: 5925. https://doi.org/10.3390/ijms25115925
APA StyleRosendo, L. M., Rosado, T., Zandonai, T., Rincon, K., Peiró, A. M., Barroso, M., & Gallardo, E. (2024). Opioid Monitoring in Clinical Settings: Strategies and Implications of Tailored Approaches for Therapy. International Journal of Molecular Sciences, 25(11), 5925. https://doi.org/10.3390/ijms25115925