ijms-logo

Journal Browser

Journal Browser

Latest Review Papers in Molecular Pharmacology 2024

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pharmacology".

Deadline for manuscript submissions: closed (30 September 2024) | Viewed by 5427

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
Interests: cardiovascular G protein-coupled receptors (GPCRs); heart failure; autonomic control of the circulation; adrenal physiology and pharmacology; adrenergic receptors; angiotensin receptors; signal transduction; gene therapy; aldosterone pharmacology; GPCR-Kinases; arrestins; G protein signaling
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to collect high-quality review papers in all topics related to molecular pharmacology for 2024. We encourage researchers from related fields to contribute review papers highlighting the latest developments in molecular pharmacology, or to invite relevant experts and colleagues to do so. Comprehensive, authoritative reviews are strongly encouraged.

Dr. Anastasios Lymperopoulos
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular pharmacology
  • drug discovery
  • drug targets
  • biochemical pharmacology
  • biomarkers
  • medicinal chemistry
  • drug interactions

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

22 pages, 3621 KiB  
Review
Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2
by Wenqi Xu, Sigrid A. Langhans, David K. Johnson, Erik Stauff, Vinay V. R. Kandula, Heidi H. Kecskemethy, Lauren W. Averill and Xuyi Yue
Int. J. Mol. Sci. 2024, 25(17), 9419; https://doi.org/10.3390/ijms25179419 - 30 Aug 2024
Viewed by 1423
Abstract
Angiotensin-converting enzymes (ACE) are well-known for their roles in both blood pressure regulation via the renin-angiotensin system as well as functions in fertility, immunity, hematopoiesis, and many others. The two main isoforms of ACE include ACE and ACE-2 (ACE2). Both isoforms have similar [...] Read more.
Angiotensin-converting enzymes (ACE) are well-known for their roles in both blood pressure regulation via the renin-angiotensin system as well as functions in fertility, immunity, hematopoiesis, and many others. The two main isoforms of ACE include ACE and ACE-2 (ACE2). Both isoforms have similar structures and mediate numerous effects on the cardiovascular system. Most remarkably, ACE2 serves as an entry receptor for SARS-CoV-2. Understanding the interaction between the virus and ACE2 is vital to combating the disease and preventing a similar pandemic in the future. Noninvasive imaging techniques such as positron emission tomography and single photon emission computed tomography could noninvasively and quantitatively assess in vivo ACE2 expression levels. ACE2-targeted imaging can be used as a valuable tool to better understand the mechanism of the infection process and the potential roles of ACE2 in homeostasis and related diseases. Together, this information can aid in the identification of potential therapeutic drugs for infectious diseases, cancer, and many ACE2-related diseases. The present review summarized the state-of-the-art radiotracers for ACE2 imaging, including their chemical design, pharmacological properties, radiochemistry, as well as preclinical and human molecular imaging findings. We also discussed the advantages and limitations of the currently developed ACE2-specific radiotracers. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Pharmacology 2024)
Show Figures

Figure 1

32 pages, 380 KiB  
Review
Opioid Monitoring in Clinical Settings: Strategies and Implications of Tailored Approaches for Therapy
by Luana M. Rosendo, Tiago Rosado, Thomas Zandonai, Karem Rincon, Ana M. Peiró, Mário Barroso and Eugenia Gallardo
Int. J. Mol. Sci. 2024, 25(11), 5925; https://doi.org/10.3390/ijms25115925 - 29 May 2024
Viewed by 1026
Abstract
This review emphasises the importance of opioid monitoring in clinical practice and advocates for a personalised approach based on pharmacogenetics. Beyond effectively managing pain, meticulous oversight is required to address concerns about side effects, specially due to opioid-crisis-related abuse and dependence. Various monitoring [...] Read more.
This review emphasises the importance of opioid monitoring in clinical practice and advocates for a personalised approach based on pharmacogenetics. Beyond effectively managing pain, meticulous oversight is required to address concerns about side effects, specially due to opioid-crisis-related abuse and dependence. Various monitoring techniques, along with pharmacogenetic considerations, are critical for personalising treatment and optimising pain relief while reducing misuse and addiction risks. Future perspectives reveal both opportunities and challenges, with advances in analytical technologies holding promise for increasing monitoring efficiency. The integration of pharmacogenetics has the potential to transform pain management by allowing for a precise prediction of drug responses. Nevertheless, challenges such as prominent pharmacogenetic testing and guideline standardisation persist. Collaborative efforts are critical for transforming scientific advances into tangible improvements in patient care. Standardised protocols and interdisciplinary collaboration are required to ensure consistent and evidence-based opioid monitoring. Future research should look into the long-term effects of opioid therapy, as well as the impact of genetic factors on individual responses, to help guide personalised treatment plans and reduce adverse events. Lastly, embracing innovation and collaboration can improve the standard of care in chronic pain management by striking a balance between pain relief and patient safety. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Pharmacology 2024)
20 pages, 940 KiB  
Review
Xanthohumol—A Miracle Molecule with Biological Activities: A Review of Biodegradable Polymeric Carriers and Naturally Derived Compounds for Its Delivery
by Ewa Oledzka
Int. J. Mol. Sci. 2024, 25(6), 3398; https://doi.org/10.3390/ijms25063398 - 17 Mar 2024
Cited by 4 | Viewed by 2006
Abstract
Xanthohumol (Xn), a prenylated chalcone found in Hop (Humulus lupulus L.), has been shown to have potent anti-aging, diabetes, inflammation, microbial infection, and cancer properties. Unfortunately, this molecule has undesirable characteristics such as inadequate intake, low aqueous solubility, and a short half-life. [...] Read more.
Xanthohumol (Xn), a prenylated chalcone found in Hop (Humulus lupulus L.), has been shown to have potent anti-aging, diabetes, inflammation, microbial infection, and cancer properties. Unfortunately, this molecule has undesirable characteristics such as inadequate intake, low aqueous solubility, and a short half-life. To address these drawbacks, researchers have made numerous attempts to improve its absorption, solubility, and bioavailability. Polymeric drug delivery systems (PDDSs) have experienced significant development over the last two decades. Polymeric drug delivery is defined as a formulation or device that allows the introduction of a therapeutic substance into the body. Biodegradable and bioreducible polymers are the ideal choice for a variety of new DDSs. Xn formulations based on biodegradable polymers and naturally derived compounds could solve some of the major drawbacks of Xn-based drug delivery. In this regard, the primary concern of this study is on presenting innovative formulations for Xn delivery, such as nanoparticles (NPs), nanomicelles, nanoliposomes, solid lipid nanoparticles (SLNs), and others, as well as the received in vitro and in vivo data. Furthermore, this work describes the chemistry and broad biological activity of Xn, which is particularly useful in modern drug technology as well as the cosmetics industry. It is also important to point out that the safety of using Xn, and its biotransformation, pharmacokinetics, and clinical applications, have been thoroughly explained in this review. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Pharmacology 2024)
Show Figures

Graphical abstract

Back to TopTop