Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2
Abstract
:1. Introduction
2. The Renin-Angiotensin System
3. Role of ACE2 in RAS
4. Tissue Distribution of ACE2 Protein
5. ACE2-Targeting Radiotracers
5.1. PET Tracers Targeting ACE2
5.2. SPECT Tracers Targeting ACE2
5.3. Radiotherapeutics Targeting ACE2
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, S.; Rauf, A.; Khan, H.; Abu-Izneid, T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed. Pharmacother. 2017, 94, 317–325. [Google Scholar] [CrossRef]
- Laghlam, D.; Jozwiak, M.; Nguyen, L.S. Renin-angiotensin-aldosterone system and immunomodulation: A state-of-the-art review. Cells 2021, 10, 1767. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef]
- Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020, 63, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, W.; Yang, L.; You, R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol. Res. 2020, 157, 104833. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef]
- Wu, J.T.; Leung, K.; Bushman, M.; Kishore, N.; Niehus, R.; de Salazar, P.M.; Cowling, B.J.; Lipsitch, M.; Leung, G.M. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 2020, 26, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Meeting the challenge of long COVID. Nat. Med. 2020, 26, 1803. [CrossRef] [PubMed]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Yelin, D.; Wirtheim, E.; Vetter, P.; Kalil, A.C.; Bruchfeld, J.; Runold, M.; Guaraldi, G.; Mussini, C.; Gudiol, C.; Pujol, M.; et al. Long-term consequences of COVID-19: Research needs. Lancet Infect. Dis. 2020, 20, 1115–1117. [Google Scholar] [CrossRef]
- Akbarialiabad, H.; Taghrir, M.H.; Abdollahi, A.; Ghahramani, N.; Kumar, M.; Paydar, S.; Razani, B.; Mwangi, J.; Asadi-Pooya, A.A.; Malekmakan, L.; et al. Long COVID, a comprehensive systematic scoping review. Infection. 2021, 49, 1163–1186. [Google Scholar] [CrossRef]
- Joshee, S.; Vatti, N.; Chang, C. Long-term effects of COVID-19. Mayo Clin. Proc. 2022, 97, 579–599. [Google Scholar] [CrossRef]
- Saloner, B.; Parish, K.; Ward, J.A.; DiLaura, G.; Dolovich, S. COVID-19 Cases and deaths in federal and state prisons. JAMA 2020, 324, 602–603. [Google Scholar] [CrossRef]
- Burki, T. Understanding variants of SARS-CoV-2. Lancet 2021, 397, 462. [Google Scholar] [CrossRef]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; COVID-10 Genomics UK (COG-UK) Consortium; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef]
- NIH. NIH to Open Long COVID Clinical Trials to Study Sleep Disturbances, Exercise Intolerance, and Post Exertional Malaise. Available online: https://www.nih.gov/news-events/news-releases/nih-open-long-covid-clinical-trials-study-sleep-disturbances-exercise-intolerance-post-exertional-malaise (accessed on 26 June 2024).
- Xiu, S.; Dick, A.; Ju, H.; Mirzaie, S.; Abdi, F.; Cocklin, S.; Zhan, P.; Liu, X. Inhibitors of SARS-CoV-2 entry: Current and future opportunities. J. Med. Chem. 2020, 63, 12256–12274. [Google Scholar] [CrossRef] [PubMed]
- Dutta, K. Allosteric Site of ACE-2 as a drug target for COVID-19. ACS Pharmacol. Transl. Sci. 2022, 5, 179–182. [Google Scholar] [CrossRef]
- Luan, B.; Huynh, T. Insights into SARS-CoV-2’s mutations for evading human antibodies: Sacrifice and survival. J. Med. Chem. 2022, 65, 2820–2826. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, R.; Zhang, L.; Yao, W.; Li, J.; Yuan, Y. Angiotensin-converting enzyme 2 acts as a potential molecular target for pancreatic cancer therapy. Cancer Lett. 2011, 307, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Tang, W.; Wang, Y.; Shen, Q.; Wang, B.; Cai, C.; Meng, X.; Zou, F. Downregulation of ACE2/Ang-(1–7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Lett. 2016, 376, 268–277. [Google Scholar] [CrossRef]
- Zong, H.; Yin, B.; Zhou, H.; Cai, D.; Ma, B.; Xiang, Y. Loss of angiotensin-converting enzyme 2 promotes growth of gallbladder cancer. Tumor Biol. 2015, 36, 5171–5177. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.R.; Guo, Y.; Wan, H.Y.; Fan, L.; Feng, Y.; Ni, L.; Xiang, Y.; Li, Q.Y. Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition. Oncol. Rep. 2013, 29, 2408–2414. [Google Scholar] [CrossRef]
- Khanna, P.; Soh, H.J.; Chen, C.H.; Saxena, R.; Amin, S.; Naughton, M.; Joslin, P.N.; Moore, A.; Bakouny, Z.; O’Callaghan, C.; et al. ACE2 abrogates tumor resistance to VEGFR inhibitors suggesting angiotensin-(1-7) as a therapy for clear cell renal cell carcinoma. Sci. Transl. Med. 2021, 13, eabc0170. [Google Scholar] [CrossRef]
- Ye, G.; Qin, Y.; Lu, X.; Xu, X.; Xu, S.; Wu, C.; Wang, X.; Wang, S.; Pan, D. The association of renin-angiotensin system genes with the progression of hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 2015, 459, 18–23. [Google Scholar] [CrossRef]
- Der Sarkissian, S.; Huentelman, M.J.; Stewart, J.; Katovich, M.J.; Raizada, M.K. ACE2: A novel therapeutic target for cardiovascular diseases. Prog. Biophys. Mol. Biol. 2006, 91, 163–198. [Google Scholar] [CrossRef]
- Santiago, T.C.; Parra, L.; Nani, J.V.; Fidalgo, T.M.; Bradshaw, N.J.; Hayashi, M.A.F. Angiotensin-converting enzymes as druggable features of psychiatric and neurodegenerative disorders. J. Neurochem. 2023, 166, 138–155. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.P.; Zhan, Q.T.; Le, F.; Zheng, Y.M.; Jin, F. Angiotensin-converting enzymes play a dominant role in fertility. Int. J. Mol. Sci. 2013, 14, 21071–21086. [Google Scholar] [CrossRef] [PubMed]
- Simoes e Silva, A.C.; Silveira, K.D.; Ferreira, A.J.; Teixeira, M.M. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br. J. Pharmacol. 2013, 169, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.P.; Kolachala, V.L.; Joshi, G.N.; Nagpal, S.; Gibson, G.; Gupta, N.A. Angiotensin-converting enzyme-2 (ACE2) expression in pediatric liver disease. Appl. Immunohistochem. Mol. Morphol. 2022, 30, 647–653. [Google Scholar] [CrossRef]
- Hargreaves, R.J.; Rabiner, E.A. Translational PET imaging research. Neurobiol. Dis. 2014, 61, 32–38. [Google Scholar] [CrossRef]
- Tarkin, J.M.; Joshi, F.R.; Rudd, J.H. PET imaging of inflammation in atherosclerosis. Nat. Rev. Cardiol. 2014, 11, 443–457. [Google Scholar] [CrossRef]
- Crisan, G.; Moldovean-Cioroianu, N.S.; Timaru, D.G.; Andries, G.; Cainap, C.; Chis, V. Radiopharmaceuticals for PET and SPECT imaging: A literature review over the last decade. Int. J. Mol. Sci. 2022, 23, 5023. [Google Scholar] [CrossRef]
- Wright, J.S.; Kaur, T.; Preshlock, S.; Tanzey, S.S.; Winton, W.P.; Sharninghausen, L.S.; Wiesner, N.; Brooks, A.F.; Sanford, M.S.; Scott, P.J.H. Copper-mediated late-stage radiofluorination: Five years of impact on preclinical and clinical PET imaging. Clin. Transl. Imaging 2020, 8, 167–206. [Google Scholar] [CrossRef]
- Shegani, A.; Kealey, S.; Luzi, F.; Basagni, F.; Machado, J.D.M.; Ekici, S.D.; Ferocino, A.; Gee, A.D.; Bongarzone, S. Radiosynthesis, preclinical, and clinical positron emission tomography studies of carbon-11 labeled endogenous and natural exogenous compounds. Chem. Rev. 2023, 123, 105–229. [Google Scholar] [CrossRef]
- Zhao, L.; Kang, F.; Pang, Y.; Fang, J.; Sun, L.; Wu, H.; Lan, X.; Wang, J.; Chen, H. Fibroblast activation protein inhibitor tracers and their preclinical, translational, and clinical status in China. J. Nucl. Med. 2024, 65, 4S–11S. [Google Scholar] [CrossRef]
- Mathews, W.B.; Szabo, Z. Radioligands for the angiotensin II subtype 1 (AT1) receptor. Curr. Top. Med. Chem. 2010, 10, 1585–1599. [Google Scholar] [CrossRef]
- Shirani, J.; Dilsizian, V. Molecular imaging in heart failure. Curr. Opin. Biotechnol. 2007, 18, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Schindler, T.H.; Dilsizian, V. Cardiac positron emission tomography/computed tomography imaging of the Renin-Angiotensin system in humans holds promise for image-guided approach to heart failure therapy. J Am Coll Cardiol 2012, 60, 2535–2538. [Google Scholar] [CrossRef] [PubMed]
- Shirani, J.; Dilsizian, V. Novel molecular angiotensin converting enzyme and angiotensin receptor imaging techniques. Curr. Cardiol. Rep. 2014, 16, 466. [Google Scholar] [CrossRef]
- Shirani, J.; Singh, A.; Agrawal, S.; Dilsizian, V. Cardiac molecular imaging to track left ventricular remodeling in heart failure. J. Nucl. Cardiol. 2017, 24, 574–590. [Google Scholar] [CrossRef]
- Valenta, I.; Pacher, P.; Dilsizian, V.; Schindler, T.H. Novel Myocardial PET/CT receptor imaging and potential therapeutic targets. Curr. Cardiol. Rep. 2019, 21, 55. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, T.; Tian, W.; Zhang, Q.; Wang, Z.; Hou, X.; Ren, Y.; Yan, W.; Xu, M.; Han, H.; et al. Unique role of molecular imaging probes for viral infection. TrAC Trends Anal. Chem. 2024, 170, 117470. [Google Scholar] [CrossRef]
- Li, Z.; Hasson, A.; Daggumati, L.; Zhang, H.; Thorek, D.L.J. Molecular imaging of ACE2 expression in infectious disease and cancer. Viruses 2023, 15, 1982. [Google Scholar] [CrossRef]
- Tigerstedt, R.; Bergman, P.G. Niere und kreislauf. Arch. Physiol. 1898, 8, 223–271. [Google Scholar] [CrossRef]
- Schmieder, R.E.; Hilgers, K.F.; Schlaich, M.P.; Schmidt, B.M.W. Renin-angiotensin system and cardiovascular risk. Lancet 2007, 369, 1208–1219. [Google Scholar] [CrossRef]
- Paz Ocaranza, M.; Riquelme, J.A.; Garcia, L.; Jalil, J.E.; Chiong, M.; Santos, R.A.S.; Lavandero, S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 2020, 17, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Martyniak, A.; Tomasik, P.J. A new perspective on the renin-angiotensin system. Diagnostics 2022, 13, 16. [Google Scholar] [CrossRef]
- Jackson, L.; Eldahshan, W.; Fagan, S.C.; Ergul, A. Within the brain: The renin angiotensin system. Int. J. Mol. Sci. 2018, 19, 876. [Google Scholar] [CrossRef]
- Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circ. Res. 2020, 126, 1456–1474. [Google Scholar] [CrossRef]
- Goldblatt, H.; Lynch, J.; Hanzal, R.F.; Summerville, W.W. Studies on experimental hypertension: I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J. Exp. Med. 1934, 59, 347–379. [Google Scholar] [CrossRef] [PubMed]
- Page, I.H.; Helmer, O.M. Angiotonin-activator, renin-and angiotonin-inhibitor, and the mechanism of angiotonin tachyphylaxis in normal, hypertensive, and nephrectomized animals. J. Exp. Med. 1940, 71, 495–519. [Google Scholar] [CrossRef] [PubMed]
- Elliott, D.F.; Peart, W.S. Amino-acid sequence in a hypertensin. Nature 1956, 177, 527–528. [Google Scholar] [CrossRef]
- Lentz, K.E.; Skeggs, L.T., Jr.; Woods, K.R.; Kahn, J.R.; Shumway, N.P. The amino acid composition of hypertensin II and its biochemical relationship to hypertensin I. J. Exp. Med. 1956, 104, 183–191. [Google Scholar] [CrossRef]
- Skeggs, L.T., Jr.; Kahn, J.R.; Shumway, N.P. The preparation and function of the hypertensin-converting enzyme. J. Exp. Med. 1956, 103, 295–299. [Google Scholar] [CrossRef]
- Young, D.; Waitches, G.; Birchmeier, C.; Fasano, O.; Wigler, M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 1986, 45, 711–719. [Google Scholar] [CrossRef]
- Santos, R.A.; Brosnihan, K.B.; Chappell, M.C.; Pesquero, J.; Chernicky, C.L.; Greene, L.J.; Ferrario, C.M. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension 1988, 11, I153–I1157. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, M.T.; Santos, R.A.; Brosnihan, K.B.; Khosla, M.C.; Ferrario, C.M. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc. Natl. Acad. Sci. USA 1988, 85, 4095–4098. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Goodfriend, T.L. Angiotensin receptors. Am. J. Physiol. 1970, 218, 1319–1328. [Google Scholar] [CrossRef]
- Murphy, T.J.; Alexander, R.W.; Griendling, K.K.; Runge, M.S.; Bernstein, K.E. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 1991, 351, 233–236. [Google Scholar] [CrossRef]
- Sasaki, K.; Yamano, Y.; Bardhan, S.; Iwai, N.; Murray, J.J.; Hasegawa, M.; Matsudat, Y.; Lnagami, T. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 1991, 351, 230–233. [Google Scholar] [CrossRef]
- Kambayashi, Y.; Bardhan, S.; Takahashi, K.; Tsuzuki, S.; Inui, H.; Hamakubo, T.; Inagami, T. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J. Biol. Chem. 1993, 268, 24543–24546. [Google Scholar] [CrossRef] [PubMed]
- Mukoyama, M.; Nakajima, M.; Horiuchi, M.; Sasamura, H.; Pratt, R.E.; Dzau, V.J. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J. Biol. Chem. 1993, 268, 24539–24542. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 2000, 87, E1–E9. [Google Scholar] [CrossRef]
- Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 2000, 275, 33238–33243. [Google Scholar] [CrossRef]
- Crackower, M.A.; Sarao, R.; Oudit, G.Y.; Yagil, C.; Kozieradzki, I.; Scanga, S.E.; Oliveira-dos-Santos, A.J.; da Costa, J.; Zhang, L.; Pei, Y. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002, 417, 822–828. [Google Scholar] [CrossRef]
- Drosten, C.; Günther, S.; Preiser, W.; Van Der Werf, S.; Brodt, H.-R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.M. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef]
- Ondetti, M.A.; Cushman, D.W. Angiotensin-converting enzyme inhibitors: Biochemical properties and biological actions. CRC Crit. Rev. Biochem. 1984, 16, 381–411. [Google Scholar] [CrossRef]
- Daskaya-Dikmen, C.; Yucetepe, A.; Karbancioglu-Guler, F.; Daskaya, H.; Ozcelik, B. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients 2017, 9, 316. [Google Scholar] [CrossRef]
- Hwang, D.R.; Eckelman, W.C.; Mathias, C.J.; Petrillo, E.W., Jr.; Lloyd, J.; Welch, M.J. Positron-labeled angiotensin-converting enzyme (ACE) inhibitor: Fluorine-18-fluorocaptopril. Probing the ACE activity in vivo by positron emission tomography. J. Nucl. Med. 1991, 32, 1730–1737. [Google Scholar]
- Mathews, W.B.; Burns, H.D.; Dannals, R.F.; Ravert, H.T.; Naylor, E.M. Carbon-11 labeling of a potent, nonpeptide, at1-selective angiotensin-II receptor antagonist: MK-996. J. Label. Compd. Radiopharm. 1995, 36, 729–737. [Google Scholar] [CrossRef]
- Hamill, T.G.; Burns, H.D.; Dannals, R.F.; Mathews, W.B.; Musachio, J.L.; Ravert, H.T.; Naylor, E.M. Development of [11C]L-159,884: A radiolabelled, nonpeptide angiotensin II antagonist that is useful for angiotensin II, AT1 receptor imaging. Appl. Radiat. Isot. 1996, 47, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Szabo, Z.; Speth, R.C.; Brown, P.R.; Kerenyi, L.; Kao, P.F.; Mathews, W.B.; Ravert, H.T.; Hilton, J.; Rauseo, P.; Dannals, R.F.; et al. Use of positron emission tomography to study AT1 receptor regulation in vivo. J. Am. Soc. Nephrol. 2001, 12, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Mathews, W.B.; Yoo, S.E.; Lee, S.H.; Scheffel, U.; Rauseo, P.A.; Zober, T.G.; Gocco, G.; Sandberg, K.; Ravert, H.T.; Dannals, R.F.; et al. A novel radioligand for imaging the AT1 angiotensin receptor with PET. Nucl. Med. Biol. 2004, 31, 571–574. [Google Scholar] [CrossRef]
- Åberg, O.; Lindhe, Ö.; Hall, H.; Hellman, P.; Kihlberg, T.; Långström, B. Synthesis and biological evaluation of [carboxyl-11C]eprosartan. J. Label. Compd. Radiopharm. 2009, 52, 295–303. [Google Scholar] [CrossRef]
- Hadizad, T.; Kirkpatrick, S.A.; Mason, S.; Burns, K.; Beanlands, R.S.; Dasilva, J.N. Novel O-[(11)C]methylated derivatives of candesartan as angiotensin II AT1 receptor imaging ligands: Radiosynthesis and ex vivo evaluation in rats. Bioorg. Med. Chem. 2009, 17, 7971–7977. [Google Scholar] [CrossRef]
- Hadizad, T.; Collins, J.; Antoun, R.E.; Beanlands, R.S.; DaSilva, J.N. [11C]methyl-losartan as a potential ligand for PET imaging angiotensin II AT1 receptors. J. Label. Compd. Radiopharm. 2011, 54, 754–757. [Google Scholar] [CrossRef]
- Lortie, M.; DaSilva, J.N.; Kirkpatrick, S.A.; Hadizad, T.; Ismail, B.A.; Beanlands, R.S.; deKemp, R.A. Analysis of [11C]methyl-candesartan kinetics in the rat kidney for the assessment of angiotensin II type 1 receptor density in vivo with PET. Nucl. Med. Biol. 2013, 40, 252–261. [Google Scholar] [CrossRef]
- Ismail, B.; Hadizad, T.; Antoun, R.; Lortie, M.; deKemp, R.A.; Beanlands, R.S.; DaSilva, J.N. Evaluation of [11C]methyl-losartan and [11C]methyl-EXP3174 for PET imaging of renal AT1receptor in rats. Nucl. Med. Biol. 2015, 42, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Arksey, N.; Hadizad, T.; Ismail, B.; Hachem, M.; Valdivia, A.C.; Beanlands, R.S.; deKemp, R.A.; DaSilva, J.N. Synthesis and evaluation of the novel 2-[18F]fluoro-3-propoxy-triazole-pyridine-substituted losartan for imaging AT1 receptors. Bioorg. Med. Chem. 2014, 22, 3931–3937. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hirano, M.; Werner, R.A.; Decker, M.; Higuchi, T. Novel 18F-labeled PET imaging agent FV45 targeting the renin-angiotensin system. ACS Omega 2018, 3, 10460–10470. [Google Scholar] [CrossRef]
- Hoffmann, M.; Chen, X.; Hirano, M.; Arimitsu, K.; Kimura, H.; Higuchi, T.; Decker, M. 18F-labeled derivatives of irbesartan for angiotensin II receptor PET imaging. ChemMedChem 2018, 13, 2546–2557. [Google Scholar] [CrossRef]
- Abreu Diaz, A.M.; Drumeva, G.O.; Petrenyov, D.R.; Carrier, J.F.; DaSilva, J.N. Synthesis of the novel AT1 receptor tracer [18F]fluoropyridine-candesartan via click chemistry. ACS Omega 2020, 5, 20353–20362. [Google Scholar] [CrossRef]
- Pijeira, M.S.O.; Nunes, P.S.G.; Dos Santos, S.N.; Zhang, Z.; Nario, A.P.; Perini, E.A.; Turato, W.M.; Riera, Z.R.; Chammas, R.; Elsinga, P.H.; et al. Synthesis and evaluation of [18F]FEtLos and [18F]AMBF(3)Los as novel 18F-labelled losartan derivatives for molecular imaging of angiotensin II type 1 receptors. Molecules 2020, 25, 1872. [Google Scholar] [CrossRef]
- Abreu Diaz, A.M.; Drumeva, G.O.; Laporte, P.; Alonso Martinez, L.M.; Petrenyov, D.R.; Carrier, J.F.; DaSilva, J.N. Evaluation of the high affinity [18F]fluoropyridine-candesartan in rats for PET imaging of renal AT1 receptors. Nucl. Med. Biol. 2021, 96–97, 41–49. [Google Scholar] [CrossRef]
- Åberg, O.; Stevens, M.; Lindh, J.; Wallinder, C.; Hall, H.; Monazzam, A.; Larhed, M.; Långström, B. Synthesis and evaluation of a 11C-labelled angiotensin II AT2 receptor ligand. J. Label. Compd. Radiopharm. 2010, 53, 616–624. [Google Scholar] [CrossRef]
- Parker, M.F.L.; Blecha, J.; Rosenberg, O.; Ohliger, M.; Flavell, R.R.; Wilson, D.M. Cyclic 68Ga-labeled peptides for specific detection of human angiotensin-converting enzyme 2. J. Nucl. Med. 2021, 62, 1631–1637. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, H.; Zhou, N.; Ding, J.; Jiang, J.; Liu, T.; Liu, Z.; Wang, F.; Zhang, Q.; Zhang, Z.; et al. Molecular PET/CT profiling of ACE2 expression in vivo: Implications for infection and outcome from SARS-CoV-2. Adv. Sci. 2021, 8, e2100965. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wada, J.; Hida, K.; Tsuchiyama, Y.; Hiragushi, K.; Shikata, K.; Wang, H.; Lin, S.; Kanwar, Y.S.; Makino, H. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J. Biol. Chem. 2001, 276, 17132–17139. [Google Scholar] [CrossRef]
- Santos, R.A.; Simoes e Silva, A.C.; Maric, C.; Silva, D.M.; Machado, R.P.; de Buhr, I.; Heringer-Walther, S.; Pinheiro, S.V.; Lopes, M.T.; Bader, M.; et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc. Natl. Acad. Sci. USA 2003, 100, 8258–8263. [Google Scholar] [CrossRef]
- Sumners, C.; Peluso, A.A.; Haugaard, A.H.; Bertelsen, J.B.; Steckelings, U.M. Anti-fibrotic mechanisms of angiotensin AT2-receptor stimulation. Acta. Physiol. 2019, 227, e13280. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.A.S.; Oudit, G.Y.; Verano-Braga, T.; Canta, G.; Steckelings, U.M.; Bader, M. The renin-angiotensin system: Going beyond the classical paradigms. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H958–H970. [Google Scholar] [CrossRef] [PubMed]
- Steckelings, U.M.; Widdop, R.E.; Sturrock, E.D.; Lubbe, L.; Hussain, T.; Kaschina, E.; Unger, T.; Hallberg, A.; Carey, R.M.; Sumners, C. The angiotensin AT(2) receptor: From a binding site to a novel therapeutic target. Pharmacol. Rev. 2022, 74, 1051–1135. [Google Scholar] [CrossRef]
- Vickers, C.; Hales, P.; Kaushik, V.; Dick, L.; Gavin, J.; Tang, J.; Godbout, K.; Parsons, T.; Baronas, E.; Hsieh, F.; et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem. 2002, 277, 14838–14843. [Google Scholar] [CrossRef]
- Gottschalk, G.; Knox, K.; Roy, A. ACE2: At the crossroad of COVID-19 and lung cancer. Gene Rep. 2021, 23, 101077. [Google Scholar] [CrossRef]
- Wang, C.W.; Chuang, H.C.; Tan, T.H. ACE2 in chronic disease and COVID-19: Gene regulation and post-translational modification. J. Biomed. Sci. 2023, 30, 71. [Google Scholar] [CrossRef]
- Komukai, K.; Mochizuki, S.; Yoshimura, M. Gender and the renin-angiotensin-aldosterone system. Fundam. Clin. Pharmacol. 2010, 24, 687–698. [Google Scholar] [CrossRef]
- Galasso, V.; Pons, V.; Profeta, P.; Becher, M.; Brouard, S.; Foucault, M. Gender differences in COVID-19 attitudes and behavior: Panel evidence from eight countries. Proc. Natl. Acad. Sci. USA 2020, 117, 27285–27291. [Google Scholar] [CrossRef] [PubMed]
- Harmer, D.; Gilbert, M.; Borman, R.; Clark, K.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002, 532, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Hamming, I.; Timens, W.; Bulthuis, M.L.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral. Sci. 2020, 12, 8. [Google Scholar] [CrossRef]
- Salamanna, F.; Maglio, M.; Landini, M.P.; Fini, M. Body localization of ACE-2: On the trail of the keyhole of SARS-CoV-2. Front. Med. 2020, 7, 594495. [Google Scholar] [CrossRef]
- Pirola, C.J.; Sookoian, S. SARS-CoV-2 virus and liver expression of host receptors: Putative mechanisms of liver involvement in COVID-19. Liver Int. 2020, 40, 2038–2040. [Google Scholar] [CrossRef]
- Lindsley, C.W.; Muller, C.E.; Bongarzone, S. Diagnostic and therapeutic radiopharmaceuticals: A “hot” topic. J. Med. Chem. 2023, 66, 16457–16463. [Google Scholar] [CrossRef]
- Reubi, J.C.; Maecke, H.R. Peptide-based probes for cancer imaging. J. Nucl. Med. 2008, 49, 1735–1738. [Google Scholar] [CrossRef]
- Piel, M.; Vernaleken, I.; Rosch, F. Positron emission tomography in CNS drug discovery and drug monitoring. J. Med. Chem. 2014, 57, 9232–9258. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Wei, W.; Cao, M. PET imaging of lung cancers in precision medicine: Current landscape and future perspective. Mol. Pharm. 2022, 19, 3471–3483. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Fan, X.; Zhang, Z.; Wang, Y.; Li, Z. A molecular toolbox of positron emission tomography tracers for general anesthesia mechanism research. J. Med. Chem. 2023, 66, 6463–6497. [Google Scholar] [CrossRef]
- Wang, X.; Chen, C.; Yan, J.; Xu, Y.; Pan, D.; Wang, L.; Yang, M. Druggability of Targets for diagnostic radiopharmaceuticals. ACS Pharmacol. Transl. Sci. 2023, 6, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Warner, F.J.; Smith, A.I.; Hooper, N.M.; Turner, A.J. Angiotensin-converting enzyme-2: A molecular and cellular perspective. Cell Mol. Life Sci. 2004, 61, 2704–2713. [Google Scholar] [CrossRef] [PubMed]
- Dales, N.A.; Gould, A.E.; Brown, J.A.; Calderwood, E.F.; Guan, B.; Minor, C.A.; Gavin, J.M.; Hales, P.; Kaushik, V.K.; Stewart, M.; et al. Substrate-based design of the first class of angiotensin-converting enzyme-related carboxypeptidase (ACE2) inhibitors. J. Am. Chem. Soc. 2002, 124, 11852–11853. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Sexton, D.J.; Skogerson, K.; Devlin, M.; Smith, R.; Sanyal, I.; Parry, T.; Kent, R.; Enright, J.; Wu, Q.L.; et al. Novel peptide inhibitors of angiotensin-converting enzyme 2. J. Biol. Chem. 2003, 278, 15532–15540. [Google Scholar] [CrossRef]
- Steinmetz, W.E.; Carrell, T.N.; Peprah, R.B. The conformation and assignment of the proton NMR spectrum in water of DX600, a Bioactive peptide with a random coil conformation. Int. J. Spectrosc. 2011, 2011, 296256. [Google Scholar] [CrossRef]
- Harman, M.A.J.; Stanway, S.J.; Scott, H.; Demydchuk, Y.; Bezerra, G.A.; Pellegrino, S.; Chen, L.; Brear, P.; Lulla, A.; Hyvonen, M.; et al. Structure-guided chemical optimization of bicyclic peptide (bicycle) inhibitors of angiotensin-converting enzyme 2. J. Med. Chem. 2023, 66, 9881–9893. [Google Scholar] [CrossRef]
- Ji, X.; Nielsen, A.L.; Heinis, C. Cyclic peptides for drug development. Angew. Chem. Int. Ed. 2023, 136, e202308251. [Google Scholar] [CrossRef]
- Eder, M.; Pavan, S.; Bauder-Wust, U.; van Rietschoten, K.; Baranski, A.C.; Harrison, H.; Campbell, S.; Stace, C.L.; Walker, E.H.; Chen, L.; et al. Bicyclic peptides as a new modality for imaging and targeting of proteins overexpressed by tumors. Cancer Res. 2019, 79, 841–852. [Google Scholar] [CrossRef]
- Gan, Q.; Cui, K.; Cao, Q.; Zhang, N.; Yang, M.F.; Yang, X. Development of a 18F-labeled bicyclic peptide targeting EphA2 for molecular imaging of PSMA-negative prostate cancer. J. Med. Chem. 2023, 66, 14623–14632. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Xia, L.; Zhang, Z.; Ren, Y.; Pomper, M.G.; Rowe, S.P.; Li, X.; Li, N.; Zhang, N.; Zhu, H.; et al. First-in-human study of the radioligand 68Ga-N188 targeting nectin-4 for PET/CT imaging of advanced urothelial carcinoma. Clin. Cancer Res. 2023, 29, 3395–3407. [Google Scholar] [CrossRef] [PubMed]
- Price, E.W.; Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 2014, 43, 260–290. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Ghosh, A. 18F-AlF labeled peptide and protein conjugates as positron emission tomography imaging pharmaceuticals. Bioconjug. Chem. 2018, 29, 953–975. [Google Scholar] [CrossRef]
- Kostelnik, T.I.; Orvig, C. Radioactive main group and rare earth metals for imaging and therapy. Chem. Rev. 2019, 119, 902–956. [Google Scholar] [CrossRef]
- Morgan, K.A.; Rudd, S.E.; Noor, A.; Donnelly, P.S. Theranostic nuclear medicine with gallium-68, lutetium-177, copper-64/67, actinium-225, and lead-212/203 radionuclides. Chem. Rev. 2023, 123, 12004–12035. [Google Scholar] [CrossRef]
- Rong, J.; Haider, A.; Jeppesen, T.E.; Josephson, L.; Liang, S.H. Radiochemistry for positron emission tomography. Nat. Commun. 2023, 14, 3257. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, Q.; Jiang, J.; Zhou, N.; Wang, Z.; Meng, X.; Liu, T.; Wang, F.; Lu, Z.; Yang, X.; et al. Preclinical evaluation and pilot clinical study of AI18F DX600 BCH for non-invasive PET mapping of angiotension-converting enzyme 2 in mammal. Res. Sq. 2021, preprint. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, Q.; Jiang, J.; Zhou, N.; Yu, Z.; Wang, Z.; Meng, X.; Daggumati, L.; Liu, T.; Wang, F.; et al. Preclinical evaluation and pilot clinical study of 18F-labeled inhibitor peptide for noninvasive positron emission tomography mapping of angiotensin converting enzyme 2. ACS Pharmacol. Transl. Sci. 2024, 7, 1758–1769. [Google Scholar] [CrossRef]
- Ren, F.; Jiang, H.; Shi, L.; Zhang, L.; Li, X.; Lu, Q.; Li, Q. 68Ga-cyc-DX600 PET/CT in ACE2-targeted tumor imaging. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2056–2067. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, T.; Ding, J.; Zhou, N.; Yu, Z.; Ren, Y.; Qin, X.; Du, P.; Yang, Z.; Zhu, H. Evaluation of (68)Ga- and (177)Lu-labeled HZ20 angiotensin-converting enzyme 2-targeting peptides for tumor-specific imaging. Mol. Pharm. 2022, 19, 4149–4156. [Google Scholar] [CrossRef]
- Li, R.; Xu, A.; Cheng, C.; Chen, J.; Wang, M.; Luo, X.; Liang, S.; Hou, W.; Cui, B.; Feng, Y.; et al. ACE2 PET in healthy and diseased conditions. View 2023, 4, 20230009. [Google Scholar] [CrossRef]
- Li, X.; Yin, W.; Li, A.; Li, D.; Gao, X.; Wang, R.; Cui, B.; Qiu, S.; Li, R.; Jia, L.; et al. ACE2 PET to reveal the dynamic patterns of ACE2 recovery in an infection model with pseudocorona virus. J. Med. Virol. 2023, 95, e28470. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, C.; Li, C.; Liu, S.; Ding, J.; He, C.; Liu, J.; Dong, B.; Yang, Z.; Liu, Q.; et al. Molecular PET/CT mapping of rhACE2 distribution and quantification in organs to aid in SARS-CoV-2 targeted therapy. J. Med. Virol. 2023, 95, e29221. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, G.; Ding, L.; Ding, J.; Zhang, Q.; Li, D.; Hou, X.; Kong, X.; Zou, J.; Zhang, S.; et al. Evaluation of SARS-CoV-2-neutralizing nanobody using virus receptor binding domain-administered model mice. Research 2022, 2022, 9864089. [Google Scholar] [CrossRef]
- Li, D.; Ding, J.; Liu, T.L.; Wang, F.; Meng, X.X.; Liu, S.; Yang, Z.; Zhu, H. SARS-CoV-2 receptor binding domain radio-probe: A non-invasive approach for angiotensin-converting enzyme 2 mapping in mice. Acta. Pharmacol. Sin. 2022, 43, 1749–1757. [Google Scholar] [CrossRef]
- Beyer, D.; Vaccarin, C.; Deupi, X.; Mapanao, A.K.; Cohrs, S.; Sozzi-Guo, F.; Grundler, P.V.; van der Meulen, N.P.; Wang, J.; Tanriver, M.; et al. A tool for nuclear imaging of the SARS-CoV-2 entry receptor: Molecular model and preclinical development of ACE2-selective radiopeptides. EJNMMI Res. 2023, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xiong, L.; Pan, G.; Wang, T.; Li, R.; Zhu, L.; Tong, Q.; Yang, Q.; Peng, Y.; Zuo, C.; et al. Molecular imaging on ACE2-dependent transocular infection of coronavirus. J. Med. Virol. 2022, 94, 4878–4889. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, Z.; Li, D.; Xue, S.; Li, R.; Zhang, L.; Bai, Q.; Li, X. [99mTc]Tc-labeled cyc-DX600-HYNIC as a SPECT probe for ACE2-specific pancreatic cancer imaging. Am. J. Nucl. Med. Mol. Imaging 2024, 14, 122–133. [Google Scholar] [CrossRef]
- Salonia, A.; Pontillo, M.; Capogrosso, P.; Gregori, S.; Tassara, M.; Boeri, L.; Carenzi, C.; Abbate, C.; Cignoli, D.; Ferrara, A.M.; et al. Severely low testosterone in males with COVID-19: A case-control study. Andrology 2021, 9, 1043–1052. [Google Scholar] [CrossRef]
- Ametamey, S.M.; Honer, M.; Schubiger, P.A. Molecular imaging with PET. Chem. Rev. 2008, 108, 1501–1516. [Google Scholar] [CrossRef]
- McBride, W.J.; Sharkey, R.M.; Goldenberg, D.M. Radiofluorination using aluminum-fluoride (Al18F). EJNMMI Res. 2013, 3, 36. [Google Scholar] [CrossRef]
- van der Born, D.; Pees, A.; Poot, A.J.; Orru, R.V.A.; Windhorst, A.D.; Vugts, D.J. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem. Soc. Rev. 2017, 46, 4709–4773. [Google Scholar] [CrossRef]
- McBride, W.J.; Sharkey, R.M.; Karacay, H.; D’Souza, C.A.; Rossi, E.A.; Laverman, P.; Chang, C.H.; Boerman, O.C.; Goldenberg, D.M. A novel method of 18F radiolabeling for PET. J. Nucl. Med. 2009, 50, 991–998. [Google Scholar] [CrossRef]
- Qu, L.; Yi, Z.; Shen, Y.; Lin, L.; Chen, F.; Xu, Y.; Wu, Z.; Tang, H.; Zhang, X.; Tian, F.; et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 2022, 185, 1728–1744.e1716. [Google Scholar] [CrossRef]
- Zhao, Y.; Ni, W.; Liang, S.; Dong, L.; Xiang, M.; Cai, Z.; Niu, D.; Zhang, Q.; Wang, D.; Zheng, Y.; et al. Vaccination with S(pan), an antigen guided by SARS-CoV-2 S protein evolution, protects against challenge with viral variants in mice. Sci. Transl. Med. 2023, 15, eabo3332. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Zhou, P.; Li, D.; Wang, M.; Tong, Q.; Chen, J.; Zuo, C.; Zhang, L.; Li, R. The functional views on response of host rabbit post coronavirus vaccination via ACE2 PET. Am. J. Nucl. Med. Mol. Imaging 2023, 13, 43–50. [Google Scholar]
- Linsky, T.W.; Vergara, R.; Codina, N.; Nelson, J.W.; Walker, M.J.; Su, W.; Barnes, C.O.; Hsiang, T.Y.; Esser-Nobis, K.; Yu, K.; et al. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science 2020, 370, 1208–1214. [Google Scholar] [CrossRef]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020, 94, e00127-20. [Google Scholar] [CrossRef]
- Gai, J.; Ma, L.; Li, G.; Zhu, M.; Qiao, P.; Li, X.; Zhang, H.; Zhang, Y.; Chen, Y.; Ji, W.; et al. A potent neutralizing nanobody against SARS-CoV-2 with inhaled delivery potential. MedComm 2021, 2, 101–113. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhao, Y.B.; Wang, Q.; Li, J.Y.; Zhou, Z.J.; Liao, C.H.; Ge, X.Y. Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2. Microbes Infect. 2020, 22, 221–225. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Yang, L.; Ding, J.; Wang, F.; Liu, T.; Yang, Z.; Wang, C.; Zhu, H.; Liu, Y. Noninvasive mapping of angiotensin converting enzyme-2 in pigeons using micro positron emission tomography. Life 2022, 12, 793. [Google Scholar] [CrossRef]
- Pathania, A.S.; Prathipati, P.; Abdul, B.A.A.; Chava, S.; Katta, S.S.; Gupta, S.C.; Gangula, P.R.; Pandey, M.K.; Durden, D.L.; Byrareddy, S.N.; et al. COVID-19 and cancer comorbidity: Therapeutic opportunities and challenges. Theranostics 2021, 11, 731–753. [Google Scholar] [CrossRef]
- Xu, J.; Fan, J.; Wu, F.; Huang, Q.; Guo, M.; Lv, Z.; Han, J.; Duan, L.; Hu, G.; Chen, L.; et al. The ACE2/angiotensin-(1-7)/Mas receptor axis: Pleiotropic roles in cancer. Front. Physiol. 2017, 8, 276. [Google Scholar] [CrossRef]
- Wang, J.; Beyer, D.; Vaccarin, C.; He, Y.; Tanriver, M.; Benoit, R.; Deupi, X.; Mu, L.; Bode, J.W.; Schibli, R.; et al. Development of radiofluorinated MLN-4760 derivatives for PET imaging of the SARS-CoV-2 entry receptor ACE2. bioRxiv 2024, preprint. [Google Scholar] [CrossRef]
- Rahmim, A.; Zaidi, H. PET versus SPECT: Strengths, limitations and challenges. Nucl. Med. Commun. 2008, 29, 193–207. [Google Scholar] [CrossRef]
- Ye, M.; Wysocki, J.; Gonzalez-Pacheco, F.R.; Salem, M.; Evora, K.; Garcia-Halpin, L.; Poglitsch, M.; Schuster, M.; Batlle, D. Murine recombinant angiotensin-converting enzyme 2: Effect on angiotensin II-dependent hypertension and distinctive angiotensin-converting enzyme 2 inhibitor characteristics on rodent and human angiotensin-converting enzyme 2. Hypertension 2012, 60, 730–740. [Google Scholar] [CrossRef]
- Xia, J.; Tong, J.; Liu, M.; Shen, Y.; Guo, D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J. Med. Virol. 2020, 92, 589–594. [Google Scholar] [CrossRef]
- Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef]
- Jia, H.; Yue, X.; Lazartigues, E. ACE2 mouse models: A toolbox for cardiovascular and pulmonary research. Nat. Commun. 2020, 11, 5165. [Google Scholar] [CrossRef]
- Seymen, C.M. The other side of COVID-19 pandemic: Effects on male fertility. J. Med. Virol. 2021, 93, 1396–1402. [Google Scholar] [CrossRef]
- Banerjee, S.; Pillai, M.R.; Knapp, F.F. Lutetium-177 therapeutic radiopharmaceuticals: Linking chemistry, radiochemistry, and practical applications. Chem. Rev. 2015, 115, 2934–2974. [Google Scholar] [CrossRef] [PubMed]
- Hennrich, U.; Kopka, K. Lutathera((R)): The first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals 2019, 12, 114. [Google Scholar] [CrossRef] [PubMed]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- Yue, X.; Johnson, D.; Langhans, S.; Nikam, R.; Shaffer, T. Rational design and synthesis of angiotensin-converting enzyme 2 inhibitors targeting severe acute respiratory syndrome coronavirus 2. Physiology 2023, 38, 5735074. [Google Scholar] [CrossRef]
Radioligand | Imaging Modality | Preclinical /Clinical | Experimental Model | Binding Affinity | Radiochemical Yield | Specific/Molar Activity | Stability | Reference |
---|---|---|---|---|---|---|---|---|
Al18F-DX600-BCH | PET | Clinical | Healthy volunteers | NR | 20.4 ± 5.2% (non-decay corrected) | 3.7–18.5 GBq/μmol (n = 15) | Stable in saline up to 4 h | Ding 2021 [129,130] |
68Ga-HZ20 (68Ga-cyc-DX600) | PET | Clinical | Recovered SARS-CoV-2 infection patients, patients with tumor, healthy volunteers, ACE2 expressing HepG2 tumor-bearing mice, HEK293 xenograft mice, HEK293T/hACE2 xenograft mice, hACE2 mice, ACE2-KO mice, pigeon, rabbit | Kd = 66 ± 1 nM (4 °C), 143 ± 1 nM (37 °C) | 59.9 ± 3.9% (non-decay corrected, n = 10) | 6.0 × 104 GBq/mmol (n = 3) | Stable in 0.01 M PBS solution at 37 °C up to 120 min | Zhu 2021 [93,131,132,133,134,135] |
64Cu-HZ20 | PET | Preclinical | HEK293-hACE2 xenograft mice, hACE2 transgenic mice | Kd = 100.0 nM | NR | NR | NR | Zhu 2021 [93] |
68Ga-NOTA-PEP4 | PET | Preclinical | K18-hACE2 transgenic mice | IC50 = 67.6 nM | 63.2 ± 6.4% (decay corrected, n = 8) | Up to 15.6 GBq/μmol | NR | Parker 2021 [92] |
68Ga-Nb1159 | PET | Preclinical | SARS-CoV-2 RBD administered mice | Kd = 25.53 nM (RBD) | 49.48 ± 3.12% (non-decay corrected) | 2.74–10.99 MBq/nmol | Stable in 0.01 M PBS solution and 5% HSA up to 8 h | Liu 2022 [136] |
124I-RBD | PET | Preclinical | HepG2ACE2+ tumor-bearing mice | Kd = 75.7 nM | 83.9 ± 4.6% (non-decay corrected, n = 10) | 25.3–28.9 GBq/nmol | Stable in saline and 5% HSA up to 120 h | Li 2022 [137] |
67Ga-HBED-CC-DX600 | SPECT | Preclinical | HEK-ACE2/HEK-ACE xenograft mice | Kd = 113 ± 17 nM | NR | 60 MBq/ nmol | Stable in human blood plasma up to 24 h | Beyer 2023 [138] |
67Ga-DOTA-DX600 | SPECT | Preclinical | HEK-ACE2/HEK-ACE xenograft mice | Kd = 98 ± 10 nM | NR | 20 MBq/nmol | A release of gallium-67 was observed in mouse blood plasma (~4% after 3 h and >50% after 24 h) | Beyer 2023 [138] |
67Ga-NODAGA-DX600 | SPECT | Preclinical | HEK-ACE2/HEK-ACE xenograft mice | Kd = 83 ± 19 nM | NR | 20 MBq/nmol | Stable in human blood plasma up to 24 h | Beyer 2023 [138] |
125I-CoV | SPECT | Preclinical | hACE2 mice, ACE2-KO mice | NR | 35.1 ± 2.5% | NR | Stable in 0.01 M PBS at 4 °C up to 72 h | Li 2022 [139] |
99mTc-HYNIC-DX600 | SPECT | Preclinical | HEK293T/hACE2 xenograft mice | NR | NR | NR | NR | Zhou 2024 [140] |
177Lu-HZ20 | Beta radionuclide therapy | Preclinical | HepG2ACE2+ tumor-bearing mice | NR | 84.71 ± 9.75% (n > 10) | (17.85 ± 1.62) × 106 GBq/mmol | Stable in saline up to 100 min | Zhang 2023 [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Langhans, S.A.; Johnson, D.K.; Stauff, E.; Kandula, V.V.R.; Kecskemethy, H.H.; Averill, L.W.; Yue, X. Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2. Int. J. Mol. Sci. 2024, 25, 9419. https://doi.org/10.3390/ijms25179419
Xu W, Langhans SA, Johnson DK, Stauff E, Kandula VVR, Kecskemethy HH, Averill LW, Yue X. Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2. International Journal of Molecular Sciences. 2024; 25(17):9419. https://doi.org/10.3390/ijms25179419
Chicago/Turabian StyleXu, Wenqi, Sigrid A. Langhans, David K. Johnson, Erik Stauff, Vinay V. R. Kandula, Heidi H. Kecskemethy, Lauren W. Averill, and Xuyi Yue. 2024. "Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2" International Journal of Molecular Sciences 25, no. 17: 9419. https://doi.org/10.3390/ijms25179419
APA StyleXu, W., Langhans, S. A., Johnson, D. K., Stauff, E., Kandula, V. V. R., Kecskemethy, H. H., Averill, L. W., & Yue, X. (2024). Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2. International Journal of Molecular Sciences, 25(17), 9419. https://doi.org/10.3390/ijms25179419