Promising Experimental Treatment in Animal Models and Human Studies of Interstitial Cystitis/Bladder Pain Syndrome
Abstract
:1. Introduction
2. Anti-Inflammation, Anti-Angiogenesis, and Immune Modulation Therapies
2.1. Monoclonal Antibody Therapy
2.1.1. Anti-TNF-α Antibodies
2.1.2. Anti-NGF Antibodies
2.2. Anti-Vascular Endothelial Growth Factor (VEGF) Therapy and Hypoxia-Inducible Factor (HIF)-Prolyl Hydroxylase Inhibitors
3. Gene Therapy for Immune Modulation
4. Miscellaneous
4.1. SH2-Containing Inositol-5′-Phosphatase (SHIP) 1 Activator
4.2. Transient Receptor Potential Vanilloid Type 4 (TRPV4) Antagonist
4.3. Cannabinoids
5. Regenerative Medicine
5.1. Stem Cells
5.2. Platelet-Rich Plasma (PRP)
5.3. Low-Intensity Extracorporeal Shock Wave (Li-ESW) Therapy and Drug Delivery
6. Intravesical Delivery Systems
6.1. Promising Nanotechnologies in Intravesical Drug Delivery System
6.1.1. Liposomes
6.1.2. Biodegradable Ring-Shaped Implantable Device (BRID)
6.1.3. Thermosensitive Hydrogels/Protein Polymers
6.1.4. Nanoplatelets
6.2. Ultrasound-Mediated Microbubble (USMB) Delivery
6.3. Bridging the Bench to Bedside Gap
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Clemens, J.Q.; Erickson, D.R.; Varela, N.P.; Lai, H.H. Diagnosis and Treatment of Interstitial Cystitis/Bladder Pain Syndrome. J. Urol. 2022, 208, 34–42. [Google Scholar] [CrossRef]
- Khullar, V.; Chermansky, C.; Tarcan, T.; Rahnama’i, M.S.; Digesu, A.; Sahai, A.; Veit-Rubin, N.; Dmochowski, R. How can we improve the diagnosis and management of bladder pain syndrome? Part 1: ICI-RS 2018. Neurourol. Urodyn. 2019, 38 (Suppl. S5), S66–S70. [Google Scholar]
- Khullar, V.; Digesu, A.; Veit-Rubin, N.; Sahai, A.; Rahnama’i, M.S.; Tarcan, T.; Chermansky, C.; Dmochowski, R. How can we improve the diagnosis and management of bladder pain syndrome? Part 2: ICI-RS 2018. Neurourol. Urodyn. 2019, 38 (Suppl. S5), S71–S81. [Google Scholar]
- Shoskes, D.A.; Nickel, J.C. Classification and treatment of men with chronic prostatitis/chronic pelvic pain syndrome using the UPOINT system. World J. Urol. 2013, 31, 755–760. [Google Scholar] [CrossRef]
- Crane, A.; Lloyd, J.; Shoskes, D.A. Improving the utility of clinical phenotyping in interstitial cystitis/painful bladder syndrome: From UPOINT to INPUT. Can. J. Urol. 2018, 25, 9250–9254. [Google Scholar] [CrossRef]
- Homma, Y.; Akiyama, Y.; Tomoe, H.; Furuta, A.; Ueda, T.; Maeda, D.; Lin, A.T.; Kuo, H.-C.; Lee, M.-H.; Oh, S.-J.; et al. Clinical guidelines for interstitial cystitis/bladder pain syndrome. Int. J. Urol. 2020, 27, 578–589. [Google Scholar] [CrossRef]
- Ueda, T.; Hanno, P.M.; Saito, R.; Meijlink, J.M.; Yoshimura, N. Current Understanding and Future Perspectives of Interstitial Cystitis/Bladder Pain Syndrome. Int. Neurourol. J. 2021, 25, 99–110. [Google Scholar] [CrossRef]
- Bhide, A.; Tailor, V.; Khullar, V. Interstitial cystitis/bladder pain syndrome and recurrent urinary tract infection and the potential role of the urinary microbiome. Post Reprod. Health 2020, 26, 87–90. [Google Scholar] [CrossRef]
- Jhang, J.-F.; Hsu, Y.-H.; Peng, C.-W.; Jiang, Y.-H.; Ho, H.-C.; Kuo, H.-C. Epstein-Barr Virus as a Potential Etiology of Persistent Bladder Inflammation in Human Interstitial Cystitis/Bladder Pain Syndrome. J. Urol. 2018, 200, 590–596. [Google Scholar] [CrossRef]
- Yu, W.-R.; Jiang, Y.-H.; Jhang, J.-F.; Kuo, H.-C. Use of Urinary Cytokine and Chemokine Levels for Identifying Bladder Conditions and Predicting Treatment Outcomes in Patients with Interstitial Cystitis/Bladder Pain Syndrome. Biomedicines 2022, 10, 1149. [Google Scholar] [CrossRef]
- Akiyama, Y.; Luo, Y.; Hanno, P.M.; Maeda, D.; Homma, Y. Interstitial cystitis/bladder pain syndrome: The evolving landscape, animal models and future perspectives. Int. J. Urol. 2020, 27, 491–503. [Google Scholar] [CrossRef]
- Lai, H.H.; Gardner, V.; Ness, T.J.; Fereau, R.W., 4th. Segmnetal hyperalgesia to mechnical stimulus in interstitial cystitis/bladder pain syndrome: Evidence of central sensitization. J. Urol. 2014, 191, 1294–1299. [Google Scholar]
- Jhang, J.-F.; Jiang, Y.-H.; Kuo, H.-C. Current Understanding of the Pathophysiology and Novel Treatments of Interstitial Cystitis/Bladder Pain Syndrome. Biomedicines 2022, 10, 2380. [Google Scholar] [CrossRef]
- Chancellor, M.B.; Lamb, L.E.; Ward, E.P.; Bartolone, S.N.; Carabulea, A.; Sharma, P.; Janicki, J.; Smith, C.; Laudano, M.; Abraham, N.; et al. Comparing concentration of urinary inflammatory cytokines in interstitial cystitis, overactive bladder, urinary tract infection, and bladder cancer. Urol. Sci. 2022, 33, 199–204. [Google Scholar] [CrossRef]
- Lin, C.-T.; Chiang, B.-J.; Liao, C.-H. Perspectives of medical treatment for overactive bladder. Urol. Sci. 2020, 31, 91–98. [Google Scholar] [CrossRef]
- Kuo, H.-C. Potential urine and serum biomarkers for patients with bladder pain syndrome/interstitial cystitis. Int. J. Urol. 2014, 21 (Suppl. S1), 34–41. [Google Scholar] [CrossRef]
- Bosch, P.C. A Randomized, Double-blind, Placebo-controlled Trial of Certolizumab Pegol in Women with Refractory Interstitial Cystitis/Bladder Pain Syndrome. Eur. Urol. 2018, 74, 623–630. [Google Scholar] [CrossRef]
- Bosch, P.C. A randomized, double-blind, placebo controlled trial of adalimumab for interstitial cystitis/bladder pain syndrome. J. Urol. 2014, 191, 77–82. [Google Scholar] [CrossRef]
- Mykoniatis, I.; Tsiakaras, S.; Samarinas, M.; Anastasiadis, A.; Symeonidis, E.N.; Sountoulides, P. Monoclonal antibody therapy for the treatment of interstitial cystitis. Biologics 2022, 16, 47–55. [Google Scholar] [CrossRef]
- Nickel, J.C.; Mills, I.W.; Crook, T.J.; Jorga, A.; Smith, M.D.; Atkinson, G.; Krieger, J.N. Tanezumab Reduces Pain in Women with Interstitial Cystitis/Bladder Pain Syndrome and Patients with Nonurological Associated Somatic Syndromes. J. Urol. 2016, 195, 942–948. [Google Scholar] [CrossRef]
- Wang, H.; Russell, L.J.; Kelly, K.M.; Wang, S.; Thipphawong, J. Fulranumab in patients with interstitial cystitis/bladder pain syndrome: Observations from a randomized, double-blind, placebo-controlled study. BMC Urol. 2017, 17, 2. [Google Scholar] [CrossRef]
- Lee, J.; Doggweiler-Wiygul, R.; Kim, S.; Hill, B.D.; Yoo, T.J. Is interstitial cysttis an allergic disorder?: A case of intestitial cystitis treated sucessfully with anti-IgE. Int. J. Urol. 2006, 13, 631–634. [Google Scholar] [CrossRef]
- Evans, R.; Moldwin, R.; Cossons, N.; Darekar, A.; Mills, I.; Scholfield, D. Proof of Concept Trial of Tanezumab for the Treatment of Symptoms Associated with Interstitial Cystitis. J. Urol. 2011, 185, 1716–1721. [Google Scholar] [CrossRef]
- Abreu-Mendes, P.; Costa, A.; Charrua, A.; Pinto, R.A.; Cruz, F. The Role of Urinary VEGF in Observational Studies of BPS/IC Patients: A Systematic Review. Diagnostics 2022, 12, 1037. [Google Scholar] [CrossRef]
- Akiyama, Y.; Miyakawa, J.; O’donnell, M.A.; Kreder, K.J.; Luo, Y.; Maeda, D.; Ushiku, T.; Kume, H.; Homma, Y. Overexpression of HIF1α in Hunner Lesions of Interstitial Cystitis: Pathophysiological Implications. J. Urol. 2022, 207, 635–646. [Google Scholar] [CrossRef]
- Towner, R.A.; Smith, N.; Saunders, D.; Lerner, M.; Meerveld, B.G.-V.; Hurst, R.E. Assessing bladder hyper-permeability biomarkers in vivo using molecularly-targeted MRI. Am. J. Nucl. Med. Mol. Imaging 2020, 10, 57–65. [Google Scholar]
- Lai, H.H.; Shen, B.; Vijairania, P.; Zhang, X.; Vogt, S.K.; Gereau, R.W., 4th. Anti-vascular endothelial growth factor treatment decreases bladder pain in cyclophosphamide cystitis: A Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network animal model study. BJU Int. 2017, 120, 576–583. [Google Scholar] [CrossRef]
- Shin, J.H.; Ryu, C.-M.; Yu, H.Y.; Park, Y.S.; Shin, D.-M.; Choo, M.-S. Therapeutic effects of axitinib, an anti-angiogenic tyrosine kinase inhibitor, on interstitial cystitis. Sci. Rep. 2023, 13, 8329. [Google Scholar] [CrossRef]
- Clayton, D.B.; Tong, C.M.C.; Li, B.; Taylor, A.S.; De, S.; Mason, M.D.; Dudley, A.G.; Davidoff, O.; Kobayashi, H.; Haase, V.H. Inhibition of hypoxia-inducible factor-prolyl hydroxylation protects from cyclophosphamide-induced bladder injury and urinary dysfunction. Am. J. Physiol. Physiol. 2022, 323, F81–F91. [Google Scholar] [CrossRef]
- Funahashi, Y.; Oguchi, T.; Goins, W.F.; Gotoh, M.; Tyagi, P.; Goss, J.R.; Glorioso, J.C.; Yoshimura, N. Herpes simplex virus vector mediated gene therapy of tumor necrosis factor-α blockade for bladder overactivity and nociception in rats. J. Urol. 2013, 189, 366–373. [Google Scholar] [CrossRef]
- Fink, D.J.; Wechuck, J.; Mata, M.; Glorioso, J.C.; Goss, J.; Krisky, D.; Wolfe, D. Gene therapy for pain: Results of a phase I clinical trial. Ann. Neurol. 2011, 70, 207–212. [Google Scholar] [CrossRef]
- Joussain, C.; Le Coz, O.; Pichugin, A.; Marconi, P.; Lim, F.; Sicurella, M.; Foster, K.; Giuliano, F.; Epstein, A.L.; Aranda Munoz, A. Development and Assessment of Herpes Simplex Virus Type 1 (HSV-1) Amplicon Vectors with Sensory Neuron-Selective Promoters. Int. J. Mol. Sci. 2022, 23, 8474. [Google Scholar] [CrossRef]
- Rovner, E.; Chai, T.C.; Jacobs, S.; Christ, G.; Andersson, K.E.; Efros, M.; Nitti, V.; Davies, K.; McCullough, A.R.; Melman, A. Evaluating the safety and potential activity of URO-902 (hMaxi-K) gene transfer by intravesical instillation or direct injection into the bladder wall in female participants with idiopathic (non-neurogenic) overactive bladder syndrome and detrusor overactivity from two double-blind, imbalanced, placebo-controlled randomized phase 1 trials. Neurourol. Urodyn. 2020, 39, 744–753. [Google Scholar]
- Andersson, K.-E.; Christ, G.J.; Davies, K.P.; Rovner, E.S.; Melman, A. Gene Therapy for Overactive Bladder: A Review of BK-Channel α-Subunit Gene Transfer. Ther. Clin. Risk Manag. 2021, 17, 589–599. [Google Scholar] [CrossRef]
- Stenton, G.R.; Mackenzie, L.F.; Tam, P.; Cross, J.L.; Harwig, C.; Raymond, J.; Toews, J.; Wu, J.; Ogden, N.; MacRury, T.; et al. Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 1. Effects on inflammatory cell activation and chemotaxis in vitro and pharmacokinetic characterization in vivo. Br. J. Pharmacol. 2013, 168, 1506–1518. [Google Scholar] [CrossRef]
- Condé, C.; Gloire, G.; Piette, J. Enzymatic and non-enzymatic activities of SHIP-1 in signal transduction and cancer. Biochem. Pharmacol. 2011, 82, 1320–1334. [Google Scholar] [CrossRef]
- Stenton, G.R.; Mackenzie, L.F.; Tam, P.; Cross, J.L.; Harwig, C.; Raymond, J.; Toews, J.; Wu, J.; Ogden, N.; MacRury, T.; et al. Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 2. Efficacy studies in allergic and pulmonary inflammation models in vivo. Br. J. Pharmacol. 2013, 168, 1519–1529. [Google Scholar] [CrossRef]
- Nickel, J.C.; Egerdie, B.; Davis, E.; Evans, R.; Mackenzie, L.; Shrewsbury, S.B. A Phase II Study of the Efficacy and Safety of the Novel Oral SHIP1 Activator AQX-1125 in Subjects with Moderate to Severe Interstitial Cystitis/Bladder Pain Syndrome. J. Urol. 2016, 196, 747–754. [Google Scholar] [CrossRef]
- Nickel, J.C.; Moldwin, R.; Hanno, P.; Dmochowski, R.; Peters, K.M.; Payne, C.; Wein, A. Targeting the SHIP1 Pathway Fails to Show Treatment Benefit in Interstitial Cystitis/Bladder Pain Syndrome: Lessons Learned from Evaluating Potentially Effective Therapies in This Enigmatic Syndrome. J. Urol. 2019, 202, 301–308. [Google Scholar] [CrossRef]
- Yang, H.-H.; Jhang, J.-F.; Hsu, Y.-H.; Jiang, Y.-H.; Zhai, W.-J.; Kuo, H.-C. Smaller bladder capacity and stronger bladder contractility in patients with ketamine cystitis are associated with elevated TRPV1 and TRPV4. Sci. Rep. 2021, 11, 5200. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Lee, W.-C.; Chuang, Y.-C.; Tsai, C.-N.; Yu, C.-C.; Wang, H.-J.; Su, C.H. Using a rat model to translate and explore the pathogenesis of ketamine-induced cystitis. Urol. Sci. 2022; 33, 176–181. [Google Scholar] [CrossRef]
- Everaerts, W.; Zhen, X.; Ghosh, D.; Vriens, J.; Gevaert, T.; Gilbert, J.P.; Hayward, N.J.; McNamara, C.R.; Xue, F.; Moran, M.M.; et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc. Natl. Acad. Sci. USA 2010, 107, 19084–19089. [Google Scholar] [CrossRef] [PubMed]
- Charrua, A.; Cruz, C.D.; Jansen, D.; Rozenberg, B.; Heesakkers, J.; Cruz, F. Co-administration of transient receptor potential vanilloid 4 (TRPV4) and TRPV1 antagonists potentiate the effect of each drug in a rat model of cystitis. BJU Int. 2015, 115, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.; Birch, B. Cannabinoids in Urology. Which Benign Conditions Might They Be Appropriate to Treat: A Systematic Review. Urology 2021, 148, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Tambaro, S.; Casu, M.A.; Mastinu, A.; Lazzari, P. Evaluation of selective cannabinoid CB1 and CB2 receptor agonists in a mouse model of lipopolysaccharide-induced interstitial cystitis. Eur. J. Pharmacol. 2014, 729, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wu, Z.; Liu, Y.; Chen, L.; Zhao, H.; Guo, H.; Zhu, K.; Wang, W.; Chen, S.; Zhou, N.; et al. Cannabinoid receptor 2 activation decreases severity of cyclophosphamide-induced cystitis via regulating autophagy. Neurourol. Urodyn. 2020, 39, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Berger, G.; Arora, N.; Burkovskiy, I.; Xia, Y.; Chinnadurai, A.; Westhofen, R.; Hagn, G.; Cox, A.; Kelly, M.; Zhou, J.; et al. Experimental Cannabinoid 2 Receptor Activation by Phyto-Derived and Synthetic Cannabinoid Ligands in LPS-Induced Interstitial Cystitis in Mice. Molecules 2018, 24, 4239. [Google Scholar] [CrossRef] [PubMed]
- Kuret, T.; Kreft, M.E.; Romih, R.; Veranič, P. Cannabidiol as a Promising Therapeutic Option in IC/BPS: In Vitro Evaluation of Its Protective Effects against Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2023, 24, 5055. [Google Scholar] [CrossRef]
- Lin, C.C.; Huang, Y.C.; Lee, W.C.; Chuang, Y.C. New frontiers or the treatment of interstitial cystitis/bladder pain syndrome—Focused on stem cells, platelet-rich plasma, and low-energy shock wave. Int. Neurourol. J. 2020, 24, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Heo, J.; Chun, J.-Y.; Bae, H.S.; Kang, J.W.; Kang, H.; Cho, Y.M.; Kim, S.W.; Shin, D.-M.; Choo, M.-S. The Paracrine Effects of Mesenchymal Stem Cells Stimulate the Regeneration Capacity of Endogenous Stem Cells in the Repair of a Bladder-Outlet-Obstruction-Induced Overactive Bladder. Stem Cells Dev. 2014, 23, 654–663. [Google Scholar] [CrossRef]
- Sun, D.Z.; Abelson, B.; Babbar, P.; Damaser, M.S. Harnessing the mesenchymal stem cell secretome for regenerative urology. Nat. Rev. Urol. 2019, 16, 363–375. [Google Scholar] [CrossRef]
- Lin, C.-S.; Lin, G.; Lue, T.F. Allogeneic and Xenogeneic Transplantation of Adipose-Derived Stem Cells in Immunocompetent Recipients Without Immunosuppressants. Stem Cells Dev. 2012, 21, 2770–2778. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.-W.; Chun, S.Y.; Lee, E.H.; Ha, Y.-S.; Lee, J.N.; Song, P.H.; Yoo, E.S.; Kwon, T.G.; Chung, S.K.; Kim, B.S. Verification of mesenchymal stem cell injection therapy for interstitial cystitis in a rat model. PLoS ONE 2019, 14, e0226390. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Lee, S.; Ju, H.; Kim, Y.; Shin, J.-H.; Yun, H.; Ryu, C.-M.; Heo, J.; Lim, J.; Song, S.; et al. Intravital imaging and single cell transcriptomic analysis for engraftment of mesenchymal stem cells in an animal model of interstitial cystitis/bladder pain syndrome. Biomaterials 2022, 280, 121277. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Ryu, C.-M.; Yu, H.Y.; Park, J.; Kang, A.R.; Shin, J.M.; Hong, K.-S.; Kim, E.Y.; Chung, H.-M.; Shin, D.-M.; et al. Safety of Human Embryonic Stem Cell-derived Mesenchymal Stem Cells for Treating Interstitial Cystitis: A Phase I Study. Stem Cells Transl. Med. 2022, 11, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Dayem, A.A.; Song, K.; Lee, S.; Kim, A.; Cho, S.-G. New therapeutic approach with extracellular vesicles from stem cells for interstitial cystitis/bladder pain syndrome. BMB Rep. 2022, 55, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.; Grimalt, R. A Review of Platelet-Rich Plasma: History, Biology, Mechanism of Action, and Classification. Ski. Appendage Disord. 2018, 4, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Ke, Q.S.; Jhang, J.F.; Lin, T.Y.; Ho, H.C.; Jiang, Y.H.; Hsu, Y.H.; Kuo, H.C. Therapeutic potential of intravesical injections of platelet-rich plasma in the treatment of lower urinary tract disorders due to regenerative deficiency. CiJi Yi Xue Za Zhi 2019, 31, 135–143. [Google Scholar]
- Chen, Y.-H.; Man, K.-M.; Chen, W.-C.; Liu, P.-L.; Tsai, K.-S.; Tsai, M.-Y.; Wu, Y.-T.; Chen, H.-Y. Platelet-Rich Plasma Ameliorates Cyclophosphamide-Induced Acute Interstitial Cystitis/Painful Bladder Syndrome in a Rat Model. Diagnostics 2020, 10, 381. [Google Scholar] [CrossRef] [PubMed]
- Chueh, K.-S.; Huang, K.-H.; Lu, J.-H.; Juan, T.-J.; Chuang, S.-M.; Lin, R.-J.; Lee, Y.-C.; Long, C.-Y.; Shen, M.-C.; Sun, T.-W.; et al. Therapeutic Effect of Platelet-Rich Plasma Improves Bladder Overactivity in the Pathogenesis of Ketamine-Induced Ulcerative Cystitis in a Rat Model. Int. J. Mol. Sci. 2022, 23, 5771. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Jiang, Y.-H.; Jhang, J.-F.; Ho, H.-C.; Kuo, H.-C. Changes in the ultrastructure of the bladder urothelium in patients with interstitial cystitis after intravesical injections of platelet-rich plasma. Biomedicines 2022, 10, 1182. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Kuo, Y.-C.; Jhang, J.-F.; Lee, C.-L.; Hsu, Y.-H.; Ho, H.-C.; Kuo, H.-C. Repeated intravesical injections of platelet-rich plasma improve symptoms and alter urinary functional proteins in patients with refractory interstitial cystitis. Sci. Rep. 2020, 10, 15218. [Google Scholar] [CrossRef] [PubMed]
- Jhang, J.-F.; Yu, W.-R.; Kuo, H.-C. Comparison of the Clinical efficacy and adverse events between intravesical injections of platelet-rich plasma and botulinum toxin a for the treatment of interstitial cystitis refractory to conventional treatment. Toxins 2023, 15, 121. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Cheng, J.-H.; Wu, Z.-S.; Chuang, Y.-C. New Frontiers of Extracorporeal Shock Wave Medicine in Urology from Bench to Clinical Studies. Biomedicines 2022, 10, 675. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-H.; Chueh, K.-S.; Chuang, S.-M.; Wu, Y.-H.; Lin, K.-L.; Long, C.-Y.; Lee, Y.-C.; Shen, M.-C.; Sun, T.-W.; Juan, Y.-S. Low Intensity Extracorporeal Shock Wave Therapy as a Potential Treatment for Overactive Bladder Syndrome. Biology 2021, 10, 540. [Google Scholar] [CrossRef]
- Shen, Y.C.; Chen, C.H.; Chancellor, M.B.; Chuang, Y.C. Prospective, randomized, double-blind, placebo-controlled, pilot study of extracoporeal shock wave therpay for detrsuor underactivity/underactive bladder. Eur. Urol. Focus 2023, 9, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-L.; Chueh, K.-S.; Lu, J.-H.; Chuang, S.-M.; Wu, B.-N.; Lee, Y.-C.; Wu, Y.-H.; Shen, M.-C.; Sun, T.-W.; Long, C.-Y.; et al. Low Intensity Extracorporeal Shock Wave Therapy as a Novel Treatment for Stress Urinary Incontinence: A Randomized-Controlled Clinical Study. Medicina 2021, 57, 947. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J.; Lee, W.C.; Tyagi, P.; Huang, C.C.; Chuang, Y.C. Effects of low energy shock wave therapy on inflammatory molecules, bladder pain, and bladder function in a rat cystitis model. Neurourol. Urodyn. 2017, 36, 1440–1447. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Meng, E.; Chancellor, M.B.; Kuo, H.C. Pain reduction realized with extracorporeal shock wave therapy for the treatment of symptoms associatewd with interstitital cystitis/bladder pain syndrome-A prospective, muticenter, randomized, double-blind, placebo-contreolled study. Neurourol. Urodyn. 2020, 39, 1505–1514. [Google Scholar] [CrossRef]
- Shen, Y.C.; Tyagi, P.; Lee, W.C.; Chancellor, M.B.; Chuang, Y.C. Improved symptoms and urianry biomarkers in refractory interstitial cystitis/bladder pain syndrome patients randomized to extracoporeal shock wave therapy versus placebo. Sci. Rep. 2021, 11, 7558. [Google Scholar] [CrossRef]
- Jhang, L.S.; Hsieh, W.C.; Huang, T.X.; Chou, Y.C.; Lo, T.S.; Liang, C.C.; Lin, Y.H. Use of low-intensity extracoporeal shock wave therapy in the management of interstitial cystitis/bladder pain syndrome patients: A thirty case study in a tertiary medical center. Neurourol. Urodyn. 2023, 42, 65–72. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Huang, T.L.; Tyagi, P.; Huang, C.C. Urodynamic and immunohistochemical evaluation of intravesical botulinum toxin A delivery using low energy shock wave. J. Urol. 2016, 196, 599–608. [Google Scholar] [CrossRef]
- Nageib, M.; Zahran, M.H.; El-Hefnawy, A.S.; Barakat, N.; Awadalla, A.; Aamer, H.G.; Khater, S.; Shokeir, A.A. Low energy shock wave-delivered intravesical botulinum neurotoxin-A potentiates antioxidant genes and inhibits proinflammatory cytokines in rat model of overactive bladder. Neurourol. Urodyn. 2020, 39, 2447–2454. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-H.; Jhang, J.-F.; Lee, Y.-K.; Kuo, H.-C. Low-Energy Shock Wave Plus Intravesical Instillation of Botulinum Toxin A for Interstitial Cystitis/Bladder Pain Syndrome: Pathophysiology and Preliminary Result of a Novel Minimally Invasive Treatment. Biomedicines 2022, 10, 396. [Google Scholar] [CrossRef]
- Parsons, C.L. The role of a leaky epithelium and potassium in the generation of bladder symptoms in interstitial cystitis/overactive bladder, urethral syndrome, prostatitis and gynaecological chronic pelvic pain. BJU Int. 2011, 107, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.C. Clinical Application of Botulinum Neurotoxin in Lower-Urinary-Tract Diseases and Dysfunctions: Where Are We Now and What More Can We Do? Toxins 2022, 14, 498. [Google Scholar] [CrossRef]
- Lai, H.H.; Pickersgill, N.A.; Vetter, J.M. Hunner Lesion Phenotype in Interstitial Cystitis/Bladder Pain Syndrome: A Systematic Review and Meta-Analysis. J. Urol. 2020, 204, 518–523. [Google Scholar] [CrossRef]
- Hu, J.-C.; Hsu, L.-N.; Lee, W.-C.; Chuang, Y.-C.; Wang, H.-J. Role of urological botulinum Toxin-A injection for overactive bladder and voiding dysfunction in patients with Parkinson’s disease or post-stroke. Toxins 2023, 15, 166. [Google Scholar] [CrossRef] [PubMed]
- Shie, J.; Liu, H.; Wang, Y.; Kuo, H. Immunohistochemical evidence suggests repeated intravesical application of botulinum toxin A injections may improve treatment efficacy of interstitial cystitis/bladder pain syndrome. BJU Int. 2013, 111, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.E.; Azevedo, K.J.; Payne, C.K. Office bladder distention with electromotive drug administration (EMDA) is equivalent to distention under general anesthesia (GA). BMC Urol. 2005, 5, 14. [Google Scholar] [CrossRef]
- Gülpınar, O.; Haliloğlu, A.H.; Gökce, M.I.; Arıkan, N. Instillation of hyaluronic acid via electromotive drug administration can improve the efficacy of treatment in patients with interstitial cystitis/painful bladder syndrome: A randomized prospective study. Korean J. Urol. 2014, 55, 354–359. [Google Scholar] [CrossRef]
- Rahman-Yildir, J.; Fischer, B.; Breitkreutz, J. Development of sustained-release drug-loaded intravesical inserts via semi-solid micro-extrusion 3D-printing for bladder targeting. Int. J. Pharm. 2022, 622, 121849. [Google Scholar] [CrossRef]
- Uboldi, M.; Perrotta, C.; Moscheni, C.; Zecchini, S.; Napoli, A.; Castiglioni, C.; Gazzaniga, A.; Melocchi, A.; Zema, L. Insights into the Safety and Versatility of 4D Printed Intravesical Drug Delivery Systems. Pharmaceutics 2023, 15, 757. [Google Scholar] [CrossRef] [PubMed]
- Nickel, J.C.; Jain, P.; Shore, N.; Anderson, J.; Giesing, D.; Lee, H.; Kim, G.; Daniel, K.; White, S.; Larrivee-Elkins, C.; et al. Continuous intravesical lidocaine treatment for interstitial cystitis/bladder pain syndrome: Safety and efficacy of a new drug delivery device. Sci. Transl. Med. 2012, 4, 143ra100. [Google Scholar] [CrossRef] [PubMed]
- Dothan, D.; Raisin, G.; Malchi, N.; Gordon, A.; Touitou, D.; Chertin, B. Intravesical sustained release system of lidocaine and oxybutynin results from in vitro and animal study. Int. Urol. Nephrol. 2022, 54, 2167–2174. [Google Scholar] [CrossRef] [PubMed]
- Zoqlam, R.; Lazauskaite, S.; Glickman, S.; Zaitseva, L.; Ilie, P.-C.; Qi, S. Emerging molecular mechanisms and genetic targets for developing novel therapeutic strategies for treating bladder diseases. Eur. J. Pharm. Sci. 2022, 173, 106167. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, M.; Qamar, S.; Rehman, M.U.; Tahir, M.A.; Ijaz, M.; Ahsan, A.; Asim, M.H.; Nazir, I. Nano-Formulation Based Intravesical Drug Delivery Systems: An Overview of Versatile Approaches to Improve Urinary Bladder Diseases. Pharmaceutics 2022, 14, 1909. [Google Scholar] [CrossRef]
- GuhaSarkar, S.; More, P.; Banerjee, R. Urothelium-adherent, ion-triggered liposome-in-gel system as a platform for intravesical drug delivery. J. Control. Release 2017, 245, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Kolawole, O.M.; Lau, W.M.; Mostafid, H.; Khutoryanskiy, V.V. Advances in intravesical drug delivery systems to treat bladder cancer. Int. J. Pharm. 2017, 532, 105–117. [Google Scholar] [CrossRef]
- Morris, C.J.; Rohn, J.L.; Glickman, S.; Mansfield, K.J. Effective Treatments of UTI-Is Intravesical Therapy the Future? Pathogens 2023, 12, 417. [Google Scholar] [CrossRef]
- Tyagi, P.; Kashyap, M.; Majima, T.; Kawamorita, N.; Yoshizawa, T.; Yoshimura, N. Intravesical liposome therapy for interstitial cystitis. Int. J. Urol. 2017, 24, 262–271. [Google Scholar] [CrossRef]
- Rajaganapathy, B.R.; Chancellor, M.B.; Nirmal, J.; Dang, L.; Tyagi, P. Bladder Uptake of Liposomes after Intravesical Administration Occurs by Endocytosis. PLoS ONE 2015, 10, e0122766. [Google Scholar] [CrossRef]
- Lee, W.; Chuang, Y.; Chiang, P. Safety and dose flexibility clinical evaluation of intravesical liposome in patients with interstitial cystitis or painful bladder syndrome. Kaohsiung J. Med. Sci. 2011, 27, 437–440. [Google Scholar] [CrossRef]
- Chuang, Y.-C.; Kuo, H.-C. A Prospective, Multicenter, Double-Blind, Randomized Trial of Bladder Instillation of Liposome Formulation OnabotulinumtoxinA for Interstitial Cystitis/Bladder Pain Syndrome. J. Urol. 2017, 198, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Hung, F.C.; Kuo, H.C. Liposome-Encapsulated Botulinum Toxin A in Treatment of Functional Bladder Disorders. Toxins 2022, 14, 838. [Google Scholar] [CrossRef] [PubMed]
- Brossard, C.; Lefranc, A.-C.; Pouliet, A.-L.; Simon, J.-M.; Benderitter, M.; Milliat, F.; Chapel, A. Molecular Mechanisms and Key Processes in Interstitial, Hemorrhagic and Radiation Cystitis. Biology 2022, 11, 972. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.C.; Su, C.H.; Tain, Y.L.; Tsai, C.N.; Yu, C.C.; Chuang, Y.C. Potential Orphan Drug Therapy of Intravesical Liposomal Onabotulinumtoxin-A for Ketamine-Induced Cystitis by Mucosal Protection and Anti-inflammation in a Rat Model. Sci. Rep. 2018, 8, 5795. [Google Scholar] [CrossRef]
- Majima, T.; Tyagi, P.; Dogishi, K.; Kashyap, M.; Funahashi, Y.; Gotoh, M.; Chancellor, M.B.; Yoshimura, N. Effect of Intravesical Liposome-Based Nerve Growth Factor Antisense Therapy on Bladder Overactivity and Nociception in a Rat Model of Cystitis Induced by Hydrogen Peroxide. Hum. Gene Ther. 2017, 28, 598–609. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Tyagi, P.; Huang, H.Y.; Yoshimura, N.; Wu, M.; Kaufman, J.; Chancellor, M.B. Intravesical immune suppression by liposomal tacrolimus in cyclophosphamide-induced inflammatory cystitis. Neurourol. Urodyn. 2011, 30, 421–427. [Google Scholar] [CrossRef]
- Rajaganapathy, B.R.; Janicki, J.J.; Levanovich, P.; Tyagi, P.; Hafron, J.; Chancellor, M.B.; Krueger, S.; Marples, B. Intravesical Liposomal Tacrolimus Protects against Radiation Cystitis Induced by 3-Beam Targeted Bladder Radiation. J. Urol. 2015, 194, 578–584. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.H.; Wentworth, A.; Babaee, S.; Wong, K.; Collins, J.E.; Chu, J.; Ishida, K.; Kuosmanen, J.; Jenkins, J.; et al. Biodegradable ring-shaped implantable device for intravesical therapy of bladder disorders. Biomaterials 2022, 288, 121703. [Google Scholar] [CrossRef]
- Tyagi, P.; Li, Z.; Chancellor, M.; De Groat, W.C.; Yoshimura, N.; Huang, L. Sustained intravesical drug delivery using thermosensitive hydrogel. Pharm. Res. 2004, 21, 832–837. [Google Scholar] [CrossRef]
- Liu, J.; Yang, T.Y.; Dai, L.Q.; Shi, K.; Hao, Y.; Chu, B.Y.; Hu, D.R.; Bei, Z.W.; Yuan, L.P.; Pan, M.; et al. Intravesical chemotherapy synergize with an immune adjuvant by a thermo-sensitive hydrogel system for bladder cancer. Bioact. Mater. 2024, 31, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Krhut, J.; Navratilova, M.; Sykora, R.; Jurakova, M.; Gartner, M.; Mika, D.; Pavliska, L.; Zvara, P. Intravesical instillation of onabotulinum toxin A embedded in inert hydrogel in the treatment of idiopathic overactive bladder: A double-blind randomized pilot study. Scand. J. Urol. 2016, 50, 200–205. [Google Scholar] [CrossRef]
- Rappaport, Y.H.; Zisman, A.; Jeshurun-Gutshtat, M.; Gerassi, T.; Hakim, G.; Vinshtok, Y.; Stav, K. Safety and Feasibility of Intravesical Instillation of Botulinum Toxin-A in Hydrogel-based Slow-release Delivery System in Patients with Interstitial Cystitis-Bladder Pain Syndrome: A Pilot Study. Urology 2018, 114, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.M.; Jia, W.; Schults, A.J.; Isaacson, K.J.; Steinhauff, D.; Green, B.; Zachary, B.; Cappello, J.; Ghandehari, H.; Oottamasathien, S. Temperature-responsive silk-elastinlike protein polymer enhancement of intravesical drug delivery of a therapeutic glycosaminoglycan for treatment of interstitial cystitis/painful bladder syndrome. Biomaterials 2019, 217, 119293. [Google Scholar] [CrossRef]
- Ahmed, Z.; Malli, S.; Diaz-Salmeron, R.; Destruel, P.L.; Da Costa, A.; Guigner, J.M.; Porcher, F.; Baptiste, B.; Ponchel, G.; Bouchemal, K. New insights on the structure of hexagonally faceted platelets from hydrophobically modified chitosan and α-cyclodextrin. Int. J. Pharm. 2018, 548, 23–33. [Google Scholar] [CrossRef]
- Diaz-Salmeron, R.; Cailleau, C.; Denis, S.; Ponchel, G.; Bouchemal, K. Hyaluronan nanoplatelets exert an intrinsic anti-inflammatory activity in a rat model of bladder painful syndrome/interstitial cystitis. J. Control. Release 2023, 356, 434–447. [Google Scholar] [CrossRef]
- Cho, Y.; Youn, S. Intravesical Bladder Treatment and Deep Learning Applications to Improve Irritative Voiding Symptoms Caused by Interstitial Cystitis: A Literature Review. Int. Neurourol. J. 2023, 27 (Suppl. S1), S13–S20. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Leong, K.X.; Czarnota, G.J. Application of Ultrasound Combined with Microbubbles for Cancer Therapy. Int. J. Mol. Sci. 2022, 23, 4393. [Google Scholar] [CrossRef]
- Neto, A.C.; Santos-Pereira, M.; Abreu-Mendes, P.; Neves, D.; Almeida, H.; Cruz, F.; Charrua, A. The Unmet Needs for Studying Chronic Pelvic/Visceral Pain Using Animal Models. Biomedicines 2023, 11, 696. [Google Scholar] [CrossRef]
- Mostafaei, H.; Jilch, S.; Carlin, G.L.; Mori, K.; Quhal, F.; Pradere, B.; Laukhtina, E.; Schuettfort, V.M.; Aydh, A.; Sari Motlagh, R.; et al. The placebo and nocebo effects in functional urology. Nat. Rev. Urol. 2022, 19, 171–189. [Google Scholar] [CrossRef] [PubMed]
Antibody | Author (Year) | Medicine (Active/Placebo) | Patient Number | Study Design | Duration of Follow-Up | Route and Dosage | Clinical Outcome | Adverse Events (%) |
---|---|---|---|---|---|---|---|---|
Anti-NGF | Evans [23] (2011) | Tanezumab | (34/30) | Clinical | 16 wks | 200 μg/kg IV in single dose | Significantly improved in daily pain score and GRA | Paresthesia (17.6) Hyperesthesia (8.8) |
Nickel [20] (2016) | Tanezumab | (104/104) | Meta- analysis | At week of interest | 1. 200 μg/kg IV 2. 20 mg IV 3. 30 mg SC | Significant improvement of pain intensity in patients presenting somatic syndrome | Headache (16.3) Paresthesia (15.4) | |
Wang [21] (2017) | Fulranumab | (14/17) | Clinical trial | 12 wks | 9 mg SC | Efficacy was not demonstrated and this study was terminated prematurely | Rapidly progressing osteoarthritis or osteonecrosis. | |
Anti-TNF | Bosch [18] (2014) | Adalimub | (21/22) | Clinical trial | 12 wks | 80 mg SC loading dose and 40 mg/2 wk 400 mg SC/2 wk for 4 times | Similar to placebo effect Significantly improved in GRA ICSI, and urgency at week 18 | No severe adverse effect UTI (25) URI (3.6) |
Bosch [17] (2018) | Certolizumab pegol | (28/14) | Clinical trial | 18 wks | 400 mg SC/2 wk for 4 times | Significantly improved in GRA, ICSI, and urgency at week 18. | UTI (25) URI (3.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.-C.; Tzeng, H.-T.; Lee, W.-C.; Li, J.-R.; Chuang, Y.-C. Promising Experimental Treatment in Animal Models and Human Studies of Interstitial Cystitis/Bladder Pain Syndrome. Int. J. Mol. Sci. 2024, 25, 8015. https://doi.org/10.3390/ijms25158015
Hu J-C, Tzeng H-T, Lee W-C, Li J-R, Chuang Y-C. Promising Experimental Treatment in Animal Models and Human Studies of Interstitial Cystitis/Bladder Pain Syndrome. International Journal of Molecular Sciences. 2024; 25(15):8015. https://doi.org/10.3390/ijms25158015
Chicago/Turabian StyleHu, Ju-Chuan, Hong-Tai Tzeng, Wei-Chia Lee, Jian-Ri Li, and Yao-Chi Chuang. 2024. "Promising Experimental Treatment in Animal Models and Human Studies of Interstitial Cystitis/Bladder Pain Syndrome" International Journal of Molecular Sciences 25, no. 15: 8015. https://doi.org/10.3390/ijms25158015
APA StyleHu, J. -C., Tzeng, H. -T., Lee, W. -C., Li, J. -R., & Chuang, Y. -C. (2024). Promising Experimental Treatment in Animal Models and Human Studies of Interstitial Cystitis/Bladder Pain Syndrome. International Journal of Molecular Sciences, 25(15), 8015. https://doi.org/10.3390/ijms25158015