Chemical Composition, Physiological and Morphological Variations in Salvia subg. Perovskia Populations in Response to Different Salinity Levels
Abstract
:1. Introduction
2. Results
2.1. Plant Growth
2.2. RWC and EL
2.3. Mineral Concentration (Na, K and K/Na Ratio)
2.4. MDA, H2O2, and Proline Content
2.5. APX and G-POX Activities
2.6. Relationships Between Two Sets of Information (Populations and Traits)
2.7. Essential Oil Content
2.8. EO Chemical Composition
3. Discussion
3.1. Effect of Plant Growth
3.2. Changes in RWC and EL
3.3. Changes on Essential Oil Composition
4. Materials and Methods
4.1. Plant Materials and Growing Conditions
4.2. Salt Treatments
4.3. Essential Oil Extraction
4.4. GC-MS Analysis
4.5. Plant Growth Parameters
4.6. Relative Water Content (RWC)
4.7. Electrolyte Leakage
4.8. Na and Root Na, K Concentrations
4.9. Lipid Peroxidation (MDA)
4.10. Hydrogen Peroxide (H2O2)
4.11. Measurement of Proline Content
4.12. Measurement of Antioxidant Enzymes
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Afshari, M.; Rahimmalek, M.; Sabzalian, M.R.; Miroliaei, M.; Szumny, A. Essential oil profiles, improvement of enzymatic and non-enzymatic antioxidant systems in different populations of Salvia subg. Perovskia by irrigation management. Ind. Crops. Prod. 2024, 208, 117849. [Google Scholar] [CrossRef]
- Ghaffari, Z.; Rahimmalek, M.; Sabzalian, M.R. Variations in essential oil composition and antioxidant activity in Perovskia abrotanoides Kar. collected from different regions in Iran. Chem. Biodivers. 2018, 15, e1700565. [Google Scholar] [CrossRef]
- Hashemifar, Z.; Rahimmalek, M. Genetic structure and variation in Perovskia abrotanoides Karel and P. atriplicifolia as revealed by molecular and morphological markers. Sci. Hortic. 2018, 230, 169–177. [Google Scholar] [CrossRef]
- Sairafianpour, M.; Christensen, J.; Stærk, D.; Budnik, B.A.; Kharazmi, A.; Bagherzadeh, K.; Jaroszewski, J.W. Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1, 2-quinones from Perovskia abrotanoides: New source of tanshinones. J. Nat. Prod. 2001, 64, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Afshari, M.; Rahimmalek, M.; Miroliaei, M.; Sabzalian, M.R.; Sadeghi, M.; Matkowski, A.; Szumny, A. Attenuation of protein glycation by phenolic compounds of Salvia subg. Perovskia: Insights from experimental and computational studies. Ind. Crops. Prod. 2024, 208, 117859. [Google Scholar] [CrossRef]
- Miroliaei, M.; Aminjafari, A.; Ślusarczyk, S.; Nawrot-Hadzik, I.; Rahimmalek, M.; Matkowski, A. Inhibition of glycation-induced cytotoxicity, protein glycation, and activity of proteolytic enzymes by extract from Perovskia atriplicifolia Roots. Pharmacog. Mag. 2017, 13, S676. [Google Scholar]
- Perveen, S.; Malik, A.; Tareen, R.B. Phytochemical studies on Perovskia atriplicifolia. J. Chem. Soc. Pak. 2009, 31, 314–318. [Google Scholar]
- Arzani, A.; Ashraf, M. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit. Rev. Plant Sci. 2016, 35, 146–189. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Arzani, A. Improving salinity tolerance in crop plants: A biotechnological view. In Vitro Cell. Dev. Biol. Plant. 2008, 44, 373–383. [Google Scholar] [CrossRef]
- Negrão, S.; Schmöckel, S.; Tester, M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 2017, 119, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoli, E.; Fatehi, F.; Coventry, S.; Rengasamy, P.; McDonald, G.K. Additive effects of Na+ and Cl–ions on barley growth under salinity stress. J. Exp. Bot. 2011, 62, 2189–2203. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Lao, M.T. The effects of salt stress on ornamental plants and integrative cultivation practices. Sci. Hortic. 2018, 240, 430–439. [Google Scholar] [CrossRef]
- Sabra, A.; Daayf, F.; Renault, S. Differential physiological and biochemical responses of three Echinacea species to salinity stress. Sci. Hortic. 2012, 135, 23–31. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Alvarez, S.; Castillo, M.; Bañón, S.; Ortuño, M.F.; Sánchez-Blanco, M.J. Water relations, nutrient content and developmental responses of Euonymus plants irrigated with water of different degrees of salinity and quality. J. Plant Res. 2013, 126, 567–576. [Google Scholar] [CrossRef] [PubMed]
- García-Caparrós, P.; Llanderal, A.; Pestana, M.; Correia, P.J.; Lao, M.T. Lavandula multifida response to salinity: Growth, nutrient uptake, and physiological changes. J. Plant Nutr. Soil. Sci. 2017, 180, 96–104. [Google Scholar] [CrossRef]
- Valdes, R.; Franco, J.; Sánchez-Blanco, M.; Bañón, S. Relationships among electrical conductivity measurements during saline irrigation of potted Osteospermum and their effects on plant growth. J. Hortic. Sci. Biotechnol. 2015, 90, 571–577. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Castillo, M.; Álvarez, S.; Acosta, J.R.; Alarcón, J.J.; Bañón, S.; Ortuño, M.F.; Sánchez-Blanco, M.J. Effect of Different Quality Irrigation Water on the Growth, Mineral Concentration and Physiological Parameters of Viburnum tinus Plants, 1099th ed.; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2015; pp. 479–486. [Google Scholar]
- Sánchez-Blanco, M.J.; Alvarez, S.; Ortuño, M.F.; Ruiz-Sánchez, M.C. Root System Response to Drought and Salinity: Root Distribution and Water Transport, Root Engineering; Springer: Berlin/Heidelberg, Germany, 2014; pp. 325–352. [Google Scholar]
- Tanaka, H.; Yamada, S.; Masunaga, T.; Yamamoto, S.; Tsuji, W.; Murillo-Amador, B. Comparison of nutrient uptake and antioxidative response among four Labiatae herb species under salt stress condition. Soil. Sci. Plant Nutr. 2018, 64, 589–597. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef]
- Cassaniti, C.; Romano, D.; Hop, M.; Flowers, T. Growing floricultural crops with brackish water. Environ. Exp. Bot. 2013, 92, 165–175. [Google Scholar] [CrossRef]
- Niu, G.; Rodriguez, D.S. Relative salt tolerance of selected herbaceous perennials and groundcovers. Sci. Hortic. 2006, 110, 352–358. [Google Scholar] [CrossRef]
- Álvarez Martín, S.; Gómez-Bellot, M.; Bañón, S.; Sánchez-Blanco, M.J. Growth, water relations and ion accumulation in Phlomis purpurea plants under water deficit and salinity. Acta Hortic. 2012, 937, 719–725. [Google Scholar] [CrossRef]
- Niu, G.; Rodriguez, D.S. Relative salt tolerance of five herbaceous perennials. Hort. Sci. 2006, 41, 1493–1497. [Google Scholar] [CrossRef]
- Niu, G.; Rodriguez, D.S.; McKenney, C. Response of selected wildflower species to saline water irrigation. Hort. Sci. 2012, 47, 1351–1355. [Google Scholar] [CrossRef]
- Farkhondeh, R.; Nabizadeh, E.; Jalilnezhad, N. Effect of salinity stress on proline content, membrane stability and water relations in two sugar beet cultivars. Int. J. Agrisci. 2012, 2, 385–392. [Google Scholar]
- Sevengor, S.; Yasar, F.; Kusvuran, S.; Ellialtioglu, S. The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. Afr. J. Agric. Res. 2011, 6, 4920–4924. [Google Scholar]
- Rademacher, W. Plant growth regulators: Backgrounds and uses in plant production. J. Plant Growth. Regul. 2015, 34, 845–872. [Google Scholar] [CrossRef]
- Attia, H.; Karray, N.; Ellili, A.; Msilini, N.; Lachaâl, M. Sodium transport in basil. Acta Physiol. Plant 2009, 31, 1045–1051. [Google Scholar] [CrossRef]
- Mehdizadeh, L.; Moghaddam, M.; Lakzian, A. Alleviating negative effects of salinity stress in summer savory (Satureja hortensis L.) by biochar application. Acta Physiol. Plant. 2019, 41, 98. [Google Scholar] [CrossRef]
- Dkhil, B.B.; Denden, M. Effect of salt stress on growth, anthocyanins, membrane permeability and chlorophyll fluorescence of Okra (Abelmoschus esculentus L.) seedlings. Am. J. Plant Sci. 2012, 7, 174–183. [Google Scholar]
- Akbari, S.; Kordi, S.; Fatahi, S.; Ghanbari, F. Physiological responses of summer savory (Satureja hortensis L.) under salinity stress. Int. J. Agric. 2013, 5, 1702–1708. [Google Scholar]
- Delavari, P.; Baghizadeh, A.; Enteshari, S.; Kalantari, K.M.; Yazdanpanah, A.; Mousavi, E. The effects of salicylic acid on some of biochemical and morphological characteristic of Ocimum basilicucm under salinity stress. Aust. J. Basic. Appl. Sci. 2010, 4, 4832–4845. [Google Scholar]
- Gapińska, M.; Skłodowska, M.; Gabara, B. Effect of short-and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol. Plant 2008, 30, 11. [Google Scholar] [CrossRef]
- Amini, S.; Ghobadi, C.; Yamchi, A. Proline accumulation and osmotic stress: An overview of P5CS gene in plants. J. Plant Mol. Breed. 2015, 3, 44–55. [Google Scholar]
- Kaur, G.; Asthir, B. Proline: A key player in plant abiotic stress tolerance. Biol. Plant. 2015, 59, 609–619. [Google Scholar] [CrossRef]
- Breś, W.; Bandurska, H.; Kupska, A.; Niedziela, J.; Frąszczak, B. Responses of pelargonium (Pelargonium × hortorum LH Bailey) to long-term salinity stress induced by treatment with different NaCl doses. Acta Physiol. Plant 2016, 38, 26. [Google Scholar] [CrossRef]
- Tounekti, T.; Vadel, A.M.; Oñate, M.; Khemira, H.; Munné-Bosch, S. Salt-induced oxidative stress in rosemary plants: Damage or protection? Environ. Exp. Bot. 2011, 71, 298–305. [Google Scholar] [CrossRef]
- Oreizi, E.; Rahiminejad, M.R.; Asghari, G. Influence of Environment on Glandular Trichomes and Composition of Essential Oil of Perovskia abrotanoides Kar. Jundishapur J. Nat. Pharm. Prod. 2014, 9, e16432. [Google Scholar] [CrossRef]
- Safaeighomi, J.; Batooli, H. Determination of bioactive molecules from flowers, leaves, stems and roots of Perovskia abrotanoides Kar. Growing in central Iran by nano scale injection. Dig. J. Nanomater. Biostruct. 2010, 5, 551–556. [Google Scholar]
- Yu, X.; Liang, C.; Chen, J.; Qi, X.; Liu, Y.; Li, W. The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and composition in Mentha canadensis L. Sci. Horticu. 2015, 197, 579–583. [Google Scholar] [CrossRef]
- Karray-Bouraoui, N.; Rabhi, M.; Neffati, M.; Baldan, B.; Ranieri, A.; Marzouk, B.; Lachaal, M.; Smaoui, A. Salt effect on yield and composition of shoot essential oil and trichome morphology and density on leaves of Mentha pulegium. Ind. Crops Prod. 2009, 30, 338–343. [Google Scholar] [CrossRef]
- Farsaraei, S.; Moghaddam, M.; Pirbalouti, A.G. Changes in growth and essential oil composition of sweet basil in response of salinity stress and superabsorbents application. Sci. Hortic. 2020, 271, 109465. [Google Scholar] [CrossRef]
- Sajjadi, S.E.; Mehregan, I.; Khatamsaz, M.; Asgari, G. Chemical composition of the essential oil of Perovskia abrotanoides Kar. Growing wild in Iran. Flavour. Fragr. J. 2005, 20, 445–446. [Google Scholar] [CrossRef]
- Stanojevic, L.P.; Marjanovic-Balaban, Z.R.; Kalaba, V.D.; Stanojevic, J.S.; Cvetkovic, D.J.; Cakic, M.D. Chemical composition, antioxidant and antimicrobial activity of basil (Ocimum basilicum L.) essential oil. J. Essent. Oil Bear. Pl. 2017, 20, 1557–1569. [Google Scholar] [CrossRef]
- Fernandez, G.C. Effective selection criteria for assessing plant stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Shanhua, Taiwan, 13–16 August 1992; pp. 257–270. [Google Scholar]
- Askari, E.; Ehsanzadeh, P. Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare Mill.) genotypes. Acta Physiol. Plant 2015, 37, 4. [Google Scholar] [CrossRef]
- Kiani, R.; Arzani, A.; Habibi, F. Physiology of salinity tolerance in Aegilops cylindrica. Acta Physiol. Plant. 2015, 37, 135. [Google Scholar] [CrossRef]
- Taulavuori, E.; Hellström, E.K.; Taulavuori, K.; Laine, K. Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. J. Exp. Bot. 2001, 52, 2375–2380. [Google Scholar] [CrossRef] [PubMed]
- Bates, L.S.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil. 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Herzog, V.; Fahimi, H.D. A new sensitive colorimetric assay for peroxidase using 3,3′-diaminobenzidine as hydrogen donor. Anal. Biochem. 1973, 55, 554–562. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
Mean squares | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S.V. | df | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 | x15 | x16 | x17 |
Treatment | 3 | 201.21 ** | 139.65 ** | 0.105 n.s | 12.94 ** | 766.64 ** | 0.34 ** | 0.008 ** | 0.36 ** | 3.27 n.s | 15.17 ** | 60.95 ** | 2.07 ** | 1.58 ** | 0.015 n.s | 894.42 ** | 0.31 ** | 0.02 ** |
Genotype | 4 | 104.80 ** | 272.37 ** | 0.404 ** | 8.53 ** | 110.50 ** | 0.014 n.s | 0.004 * | 0.019 n.s | 31.20 ** | 4.43 ** | 12.56 * | 1.77 ** | 2.10 ** | 0.09 ** | 83.01 n.s | 0.17 ** | 0.003 ** |
Gen× treat | 12 | 20.81 ns | 167.77 ** | 0.096 * | 7.61 ** | 138.87 ** | 0.014 n.s | 0.004 ** | 0.044 ** | 23.13 ** | 0.95 n.s | 13.05 ** | 0.45 ** | 4.35 ** | 0.03 ** | 80.17 n.s | 0.29 ** | 0.005 ** |
Error | 40 | 14.88 | 11.24 | 0.037 | 0.032 | 3.33 | 0.011 | 0.001 | 0.010 | 7.88 | 0.80 | 3.95 | 0.15 | 0.31 | 0.008 | 92.50 | 0.006 | 0.001 |
C.V. | - | 5.88 | 31.77 | 22.70 | 15.30 | 18.79 | 27.15 | 19.83 | 15.35 | 23.89 | 30.08 | 25.06 | 16.64 | 11.68 | 18.22 | 18.82 | 17.54 | 12.65 |
Salinity (mM) | Gen. | EL (%) | RWC (%) | MDA nMgFW−1 | Proline µmolgFW−1 | H2O2 mMgFW−1 | Shoot DW (g) | Root DW (g) | Shoot/Root DW (g) | Shoot Height (cm) | APX μmol min−1 mg−1 Protein |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | PABAY | 0 b | 71.70 a | 0.20 c | 1.67 a | 0.88 c | 9.72 b | 34.68 b | 0.28 b | 60.33 a | 0.16 b |
PABSM | 0 b | 72.45 a | 0.80 a | 1.62 a | 0.47 d | 4.69 c | 37.64 b | 0.13 c | 56.33 a | 0.64 a | |
PABAD | 0 b | 67.61 a | 0.42 b | 9.28 a | 0.74 d | 9.04 b | 58.68 a | 0.15 c | 58.67 a | 0.10 c | |
PABKH | 9.47 a | 67.03 a | 0.64 a | 3.13 a | 1.68 a | 14.24 a | 23.02 c | 0.63 a | 58.67 a | 0.18 b | |
PATKH | 8.64 a | 73.22 a | 0.50 ab | 2.15 a | 1.31 b | 5. 01 c | 23.44 c | 0.23 bc | 66.33 a | 0.61 a | |
60 | PABAY | 1.45 c | 67.49 ab | 0.30 a | 7.46 a | 0.30 b | 8.79 a | 22.08 b | 0.42 a | 46 a | 0.29 c |
PABSM | 12.06 a | 66.41 ab | 0.46 a | 3.75 a | 0.26 b | 5.65 a | 38.25 a | 0.15 b | 58.33 a | 1.09 a | |
PABAD | 7.507 b | 61.27 b | 0.72 a | 9.25 a | 0.73 a | 7.33 a | 17.27 bc | 0.41 a | 54 a | 0.88 b | |
PABKH | 15.48 a | 61.57 b | 0.20 a | 2.54 a | 0.80 a | 7.81 a | 22.62 b | 0.32 ab | 57.67 a | 0.06 d | |
PATKH | 4.74 bc | 73.96 a | 0.44 a | 1.96 a | 1.18 a | 3.77 a | 12.58 c | 0.29 ab | 57.33 a | 0.94 a | |
90 | PABAY | 14.77 ab | 64.70 ab | 0.72 c | 4.45 c | 0.23 c | 8.33 a | 27.37 a | 0.30 a | 50 a | 0.56 b |
PABSM | 12.52 b | 67.20 a | 0.66 c | 7.42 bc | 0.31 b | 3.07 c | 28.50 a | 0.10 b | 40.33 a | 0.76 b | |
PABAD | 15.75 ab | 62.20 ab | 0.62 c | 11.05 b | 0.75 a | 2.89 c | 8.75 b | 0.33 a | 49.33 a | 0.48 c | |
PABKH | 17.42 a | 59.28 b | 1.69 b | 6.72 c | 1.88 a | 5.56 b | 18.70 a | 0.31 a | 52.33 a | 1.41 a | |
PATKH | 11.99 b | 62.61 ab | 5 a | 26.02 a | 0.46b | 2.26c | 20.96a | 0.11b | 41.67a | 0.22d | |
120 | PABAY | 4.13 c | 63.17 ab | 0.36 b | 18.64 b | 0.36 c | 3.93 bc | 14.75 a | 0.26 a | 38 c | 0.26 c |
PABSM | 23.19 ab | 67.21 a | 0.92 a | 22.22 a | 1.27 a | 4.09 bc | 16.11 a | 0.25 a | 36.67 c | 0.37 c | |
PABAD | 16.99 b | 62.26 ab | 0.98 a | 19.31 a | 0.85 ab | 3.34 c | 15.76 a | 0.21 a | 52 a | 0.72 a | |
PABKH | 28.38 a | 58.29 b | 0.90 a | 5.44 d | 0.95 a | 6.10 a | 20.62 a | 0.32 a | 42.33 bc | 0.11 d | |
PATKH | 5.60 c | 60.57 ab | 0.94 a | 12.75 c | 0.51 bc | 5.79 ab | 19.16 a | 0.36 a | 45.67 ab | 0.50 b | |
Salinity (mM) | Gen. | G-POX μmol min−1 mg−1 protein | Leaf Na mMgDW−1 | Leaf K mMgDW−1 | Leaf K/Na mMgDW−1 | Root Na mMgDW−1 | Root K mMgDW−1 | Root K/Na mMgDW−1 | |||
0 | PABAY | 0.019 d | 0.14 a | 0.25 b | 2.18 a | 0.38 a | 0.15 a | 0.39 a | |||
PABSM | 0.027 c | 0.12 a | 0.22 bc | 1.77 a | 0.41 a | 0.12 a | 0.39 a | ||||
PABAD | 0.056 b | 0.15 a | 0.32 a | 2.27 a | 0.26 a | 0.06 a | 0.22 a | ||||
PABKH | 0.025 c | 0.17 a | 0.17 c | 1.14 a | 0.51 a | 0.17 a | 0.32 a | ||||
PATKH | 0.070 a | 0.13 a | 0.19 c | 1.47 a | 0.56 a | 0.09 a | 0.15 a | ||||
60 | PABAY | 0.042 a | 0.43 ab | 0.19 a | 0.51 a | 0.76 a | 0.08 a | 0.10 a | |||
PABSM | 0.025 b | 0.42 ab | 0.23 a | 0.55 a | 0.63 a | 0.09 a | 0.14 a | ||||
PABAD | 0.030 b | 0.56 a | 0.11 b | 0.22 b | 0.65 a | 0.07 a | 0.13 a | ||||
PABKH | 0.015 c | 0.26 b | 0.16 ab | 0.63 a | 0.73 a | 0.08 a | 0.11 a | ||||
PATKH | 0.023 b | 0.35 ab | 0.18 ab | 0.53 a | 0.63 a | 0.10 a | 0.16 a | ||||
90 | PABAY | 0.15 a | 0.45 a | 0.21 a | 0.50 a | 0.77 a | 0.09 bc | 0.11 b | |||
PABSM | 0.14 a | 0.42 a | 0.16 a | 0.38 a | 0.82 a | 0.10 b | 0.12 b | ||||
PABAD | 0.08 b | 0.54 a | 0.11 a | 0.21 a | 0.56 a | 0.06 d | 0.10 b | ||||
PABKH | 0.10 b | 0.44 a | 0.16 a | 0.41 a | 0.80 a | 0.15 a | 0.19 a | ||||
PATKH | 0.03 c | 0.61 a | 0.18 a | 0.30 a | 0.65 a | 0.07 cd | 0.10 b | ||||
120 | PABAY | 0.02 d | 0.63 a | 0.23 a | 0.38 a | 0.74 b | 0.12 a | 0.16 a | |||
PABSM | 0.07 c | 0.70 a | 0.19 a | 0.29 a | 0.69 b | 0.08 bc | 0.12 b | ||||
PABAD | 0.24 a | 0.51 a | 0.11 a | 0.21 a | 1.07 a | 0.10 ab | 0.10 b | ||||
PABKH | 0.10 b | 0.44 a | 0.18 a | 0.44 a | 0.76 b | 0.06 c | 0.09 bc | ||||
PATKH | 0.09 b | 0.54 a | 0.21 a | 0.42 a | 1.16 a | 0.07 c | 0.06 c |
0 | 60 | 90 | 120 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound | RIexp | RIlit | PAtKH | PAbKH | PAbSM | PAbAD | PAbAY | PAtKH | PAbKH | PAbSM | PAbAD | PAbAY | PAtKH | PAbKH | PAbSM | PAbAD | PAbAY | PAtKH | PAbKH | PAbSM | PAbAD | PAbAY |
α Pinene | 939 | 937 | 3.48 | 6.94 | 3.35 | 4.28 | 4.66 | 4.53 | 7.01 | 4.73 | 4.89 | 5.76 | 4.62 | 6.47 | 3.79 | 3.51 | 6.22 | 4.42 | 11.76 | 5.85 | 3.82 | 5.81 |
Camphene | 954 | 951 | 2.71 | 4.12 | 3.36 | 3.67 | 2.93 | 3.10 | 2.68 | 4.35 | 3.42 | 3.48 | 3.40 | 2.93 | 3.25 | 2.68 | 3.46 | 3.11 | 3.14 | 3.84 | 2.85 | 3.50 |
Sabinene | 973 | 974 | 0.61 | 1.73 | 2.81 | 3.76 | 0.64 | 0.65 | 0.71 | 1.87 | 2.01 | 2.89 | 0.65 | 0.80 | 2.09 | 0.66 | 0.54 | 0.98 | 0.80 | 1.83 | 1.89 | 1.11 |
β-Pinene | 979 | 979 | 1.73 | 2.01 | 1.21 | 1.48 | 1.47 | 1.59 | 1.26 | 1.62 | 1.29 | 1.80 | 1.90 | 1.68 | 1.35 | 1.08 | 1.81 | 1.84 | 1.52 | 1.90 | 1.21 | 2.14 |
Δ3-Carene | 1011 | 1011 | 9.09 | 26.65 | 5.31 | 7.21 | 9.05 | 8.51 | 20.02 | 9.42 | 9.11 | 7.11 | 8.64 | 18.91 | 6.65 | 7.49 | 9.19 | 6.35 | 20.74 | 8.18 | 5.50 | 8.76 |
p-Cymene | 1025 | 1025 | 0.51 | 0.80 | 0 | 0.67 | 0 | 0.49 | 0.69 | 0.40 | 0.95 | 0.38 | 0.44 | 0.51 | - | 0.46 | 0 | 0.64 | 0.57 | 0.39 | 0 | 0.38 |
Limonene | 1029 | 1029 | 4.91 | 1.55 | 1.06 | 1.37 | 1.02 | 7.67 | 1.25 | 2.02 | 1.22 | 1.44 | 4.25 | 1.29 | 0.90 | 1.22 | 1.26 | 5.83 | 1.55 | 1.82 | 0.81 | 1.32 |
1,8 Cineole | 1031 | 1032 | 22.02 | 19.03 | 14.88 | 16.50 | 12.77 | 18.44 | 16.57 | 14.51 | 11.93 | 17.18 | 17.39 | 20.87 | 14.41 | 11.64 | 12.97 | 16.31 | 15.44 | 14.32 | 12.91 | 17.51 |
γ-Terpinene | 1060 | 1060 | 0.32 | 0.91 | 0 | 0.45 | 0 | 0.35 | 0.48 | 0 | 0.67 | 0 | 0.41 | 0.52 | 0 | 0.32 | 0.35 | 0.40 | 0.51 | 0 | 0 | 0.34 |
Terpinolene | 1087 | 1088 | 0.39 | 0 | 0 | 0 | 0 | 0.35 | 0 | 0 | 0 | 0 | 0.46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Linalool | 1097 | 1099 | 0.49 | 1.74 | 0 | 0 | 0 | 0.89 | 8.87 | 0.36 | 0.34 | 0 | 0.35 | 0.70 | 0 | 0 | 0.48 | 0.39 | 0.76 | 0.36 | 0 | 0.44 |
Camphor | 1146 | 1044 | 6.08 | 3.26 | 25.34 | 23.85 | 22.09 | 6.08 | 3.09 | 24.86 | 21.18 | 23.15 | 7.35 | 2.67 | 14.27 | 7.02 | 27.14 | 7.69 | 5.18 | 15.11 | 11.39 | 18.92 |
Borneol | 1171 | 1070 | 9.19 | 2.38 | 5.99 | 4.29 | 3.88 | 4.17 | 7.97 | 4.94 | 10.62 | 4.20 | 7.86 | 7.91 | 18.62 | 24.37 | 2.41 | 6.09 | 6.04 | 9.13 | 19.15 | 6.42 |
α-Terpineol | 1188 | 1190 | 0.69 | 0.85 | 0.67 | 0.53 | 0 | 0.61 | 1.66 | 0 | 0.43 | 0 | 0.60 | 1.88 | 0.63 | 0.67 | 0 | 0.58 | 1.60 | 0.56 | 0.56 | 0 |
Bornyl acetate | 1289 | 1293 | 10.39 | 2.12 | 3.71 | 3.43 | 4.95 | 7.69 | 3.57 | 4.89 | 4.33 | 5.22 | 9.10 | 3.64 | 9.68 | 7.55 | 4.54 | 11.07 | 2.84 | 7.07 | 7.23 | 8.04 |
α-Terpinyl acetate | 1367 | 1350 | 2.82 | 0.80 | 2.02 | 2.21 | 2.75 | 3.17 | 1.64 | 2.43 | 1.87 | 2.53 | 2.84 | 1.42 | 2.34 | 2.01 | 2.86 | 3.61 | 1.04 | 2.50 | 2.16 | 2.72 |
α-Copaene | 1376 | 1376 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.48 | 0 | 0.47 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
α-Gurjunene | 1408 | 1409 | 0.34 | 0 | 0.93 | 0.78 | 0.87 | 0.56 | 0.35 | 1.05 | 0.68 | 1.02 | 0.87 | 0 | 0.87 | 0.55 | 1.01 | 0.56 | 0 | 0.91 | 0.42 | 0.75 |
β-Caryophyllene | 1419 | 1419 | 5.46 | 3.24 | 3.92 | 5.72 | 6.88 | 7.45 | 4.68 | 4.13 | 6.40 | 5.64 | 6.46 | 7.44 | 3.45 | 5.79 | 7.34 | 7.25 | 7.58 | 5.08 | 5.19 | 4.91 |
α Humulene | 1454 | 1454 | 5.13 | 3.00 | 3.27 | 4.72 | 6.10 | 6.91 | 4.60 | 3.64 | 5.09 | 4.75 | 5.83 | 7.05 | 2.97 | 4.82 | 5.95 | 6.84 | 7.92 | 4.33 | 4.50 | 4.22 |
Aromadendrene | 1463 | 1440 | 2.57 | 0 | 0 | 0 | 0 | 4.72 | 0 | 0 | 0 | 0 | 3.83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
α-Guaiene | 1482 | 1439 | 0 | 0 | 0 | 0 | 0 | 0.48 | 0 | 0 | 0 | 0 | 0.48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
γ-Cadinene | 1515 | 1513 | 0.59 | 0 | 1.42 | 1.12 | 1.69 | 0.55 | 0.75 | 1.58 | 0.88 | 1.64 | 1.72 | 0 | 1.16 | 0.49 | 2.31 | 0.53 | 0.25 | 1.25 | 0.52 | 1.19 |
δ-Cadinene | 1526 | 1524 | 0 | 0 | 2.10 | 1.41 | 1.32 | 0.78 | 0.52 | 1.00 | 1.39 | 0.83 | 0.95 | 0 | 0.71 | 1.23 | 0.94 | 1.15 | 0.44 | 1.12 | 1.34 | 0.89 |
α-Calacorene | 1541 | 1542 | 0 | 0 | 0.49 | 0 | 0 | 0 | 0 | 0.37 | 0 | 0 | 0 | 0 | 0.53 | 0.32 | 0 | 0 | 0 | 0.40 | 0.29 | 0 |
Germacrene B | 1562 | 1557 | 0 | 0 | 0.70 | 0.50 | 0 | 0 | 0 | 0.52 | 0.35 | 0.51 | 0 | 0 | 0.38 | 0.52 | 0 | 0 | 0 | 0.49 | 0.53 | 0.44 |
Humulene epoxide | 1605 | 1604 | 1.84 | 0.33 | 0.96 | 1.20 | 1.58 | 1.67 | 0.93 | 0.89 | 0.99 | 1.05 | 1.39 | 1.04 | 0.86 | 1.29 | 0.93 | 1.65 | 0.89 | 0.89 | 1.46 | 1.21 |
β-Oplopenone | 1608 | 1606 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
γ-Eudesmol | 1631 | 1631 | 1.31 | 2.59 | 0.54 | 0.66 | 1.16 | 1.33 | 5.25 | 0 | 0 | 0 | 0.38 | 5.12 | 0.70 | 0.61 | 0 | 0.48 | 2.38 | 1.45 | 1.23 | 0.39 |
epi-α-Cadinol | 1652 | 1640 | 1.58 | 0.64 | 2.13 | 2.12 | 1.43 | 0 | 2.57 | 1.73 | 1.17 | 0 | 0.63 | 1.51 | 1.50 | 1.21 | 0 | 0.51 | 2.13 | 1.86 | 0 | 0 |
Total of compounds | - | - | 94.27 | 84.03 | 91.26 | 90.55 | 85.24 | 92.74 | 90.77 | 91.57 | 91.52 | 92.25 | 92.80 | 89.31 | 91.35 | 88.62 | 90.72 | 90.39 | 93.25 | 90.07 | 86.24 | 93.99 |
Monoterpene hydrocarbons | - | - | 23.75 | 44.70 | 17.09 | 22.87 | 19.78 | 27.24 | 34.10 | 24.41 | 23.54 | 22.68 | 24.76 | 33.10 | 18.03 | 17.42 | 22.83 | 23.57 | 40.58 | 23.81 | 16.07 | 23.36 |
Oxygenated monoterpenes | - | - | 51.69 | 30.17 | 52.61 | 50.80 | 46.43 | 41.04 | 43.36 | 51.98 | 50.69 | 52.27 | 45.49 | 39.08 | 59.94 | 53.25 | 50.40 | 45.75 | 32.91 | 49.05 | 53.40 | 54.05 |
Sesquiterpenes hydrocarbons | - | - | 14.09 | 6.23 | 12.81 | 14.24 | 16.85 | 21.46 | 10.90 | 12.76 | 14.78 | 14.84 | 20.14 | 14.49 | 10.07 | 13.73 | 17.55 | 16.33 | 16.19 | 13.57 | 12.79 | 12.39 |
Oxygenated sesquiterpenes | - | - | 4.73 | 3.55 | 3.62 | 3.97 | 4.17 | 2.99 | 8.74 | 2.62 | 2.15 | 1.05 | 2.40 | 7.66 | 4.07 | 3.10 | 0.92 | 2.63 | 5.39 | 4.20 | 2.69 | 1.60 |
Location | Accession Name | Herbarium Voucher Specimen No. |
---|---|---|
Abyaneh-Isfahan | PABAY * | 13356 |
Shahrud-Mehmandust-Semnan | PABSM | 13359 |
Abardeh-Khorasan Razavi | PABAD | 13364 |
Khash-Sistan and Baluchestan | PABKH | 13366 |
Khash-Sistan and Baluchestan | PATKH | 13367 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaffari, Z.; Rahimmalek, M.; Sabzalian, M.R.; Arzani, A.; Kiani, R.; Gharibi, S.; Wróblewska, K.; Szumny, A. Chemical Composition, Physiological and Morphological Variations in Salvia subg. Perovskia Populations in Response to Different Salinity Levels. Int. J. Mol. Sci. 2024, 25, 12566. https://doi.org/10.3390/ijms252312566
Ghaffari Z, Rahimmalek M, Sabzalian MR, Arzani A, Kiani R, Gharibi S, Wróblewska K, Szumny A. Chemical Composition, Physiological and Morphological Variations in Salvia subg. Perovskia Populations in Response to Different Salinity Levels. International Journal of Molecular Sciences. 2024; 25(23):12566. https://doi.org/10.3390/ijms252312566
Chicago/Turabian StyleGhaffari, Zahra, Mehdi Rahimmalek, Mohammad R. Sabzalian, Ahmad Arzani, Razieh Kiani, Shima Gharibi, Katarzyna Wróblewska, and Antoni Szumny. 2024. "Chemical Composition, Physiological and Morphological Variations in Salvia subg. Perovskia Populations in Response to Different Salinity Levels" International Journal of Molecular Sciences 25, no. 23: 12566. https://doi.org/10.3390/ijms252312566
APA StyleGhaffari, Z., Rahimmalek, M., Sabzalian, M. R., Arzani, A., Kiani, R., Gharibi, S., Wróblewska, K., & Szumny, A. (2024). Chemical Composition, Physiological and Morphological Variations in Salvia subg. Perovskia Populations in Response to Different Salinity Levels. International Journal of Molecular Sciences, 25(23), 12566. https://doi.org/10.3390/ijms252312566