RNA Expression of MMP12 Is Strongly Associated with Inflammatory Bowel Disease and Is Regulated by Metabolic Pathways in RAW 264.7 Macrophages
Abstract
:1. Introduction
2. Results
2.1. MMP12 Is Strongly Associated with IBD and the Biological Therapeutic Response
2.2. MMP12 Correlates with an AMPK/mTOR Transcriptional Signature in UC Patients
2.3. MMP12 Expression Is Regulated by AMPK and mTOR in RAW 264.7 Macrophages
2.4. Glycolysis Regulates MMP12 Expression in RAW 264.7 Cells
2.5. MMP12 Inhibition Reduces IL6 Expression in RAW 264.7 Macrophages
3. Discussion
4. Materials and Methods
4.1. Bioinformatics of Human Transcriptomic Datasets
4.2. Cell Culture and Treatments
4.3. RNA Isolation and Real-Time Reverse Transcription–Polymerase Chain Reaction (RT-qPCR)
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sartor, R.B. Mechanisms of Disease: Pathogenesis of Crohn’s Disease and Ulcerative Colitis. Nat. Clin. Pract. Gastroenterol. Hepatol. 2006, 3, 390–407. [Google Scholar] [CrossRef]
- Parks, W.C.; Wilson, C.L.; López-Boado, Y.S. Matrix Metalloproteinases as Modulators of Inflammation and Innate Immunity. Nat. Rev. Immunol. 2004, 4, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, L.; Kähäri, V.-M. Matrix Metalloproteinases in Inflammation. Biochim. Biophys. Acta 2014, 1840, 2571–2580. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, G.; Saermark, T.; Kirkegaard, T.; Brynskov, J. Spontaneous and Cytokine Induced Expression and Activity of Matrix Metalloproteinases in Human Colonic Epithelium. Clin. Exp. Immunol. 2009, 155, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Rath, T.; Roderfeld, M.; Graf, J.; Wagner, S.; Vehr, A.K.; Dietrich, C.; Geier, A.; Roeb, E. Enhanced Expression of MMP-7 and MMP-13 in Inflammatory Bowel Disease: A Precancerous Potential? Inflamm. Bowel Dis. 2006, 12, 1025–1035. [Google Scholar] [CrossRef]
- Koelink, P.J.; Overbeek, S.A.; Braber, S.; Morgan, M.E.; Henricks, P.A.J.; Abdul Roda, M.; Verspaget, H.W.; Wolfkamp, S.C.; te Velde, A.A.; Jones, C.W.; et al. Collagen Degradation and Neutrophilic Infiltration: A Vicious Circle in Inflammatory Bowel Disease. Gut 2014, 63, 578–587. [Google Scholar] [CrossRef]
- Dean, R.A.; Cox, J.H.; Bellac, C.L.; Doucet, A.; Starr, A.E.; Overall, C.M. Macrophage-Specific Metalloelastase (MMP-12) Truncates and Inactivates ELR + CXC Chemokines and Generates CCL2, -7, -8, and -13 Antagonists: Potential Role of the Macrophage in Terminating Polymorphonuclear Leukocyte Influx. Blood 2008, 112, 3455–3464. [Google Scholar] [CrossRef]
- McQuibban, G.A.; Gong, J.H.; Tam, E.M.; McCulloch, C.A.G.; Clark-Lewis, I.; Overall, C.M. Inflammation Dampened by Gelatinase a Cleavage of Monocyte Chemoattractant Protein-3. Science 2000, 289, 1202–1206. [Google Scholar] [CrossRef]
- Moelants, E.A.V.; Mortier, A.; Van Damme, J.; Proost, P. In Vivo Regulation of Chemokine Activity by Post-Translational Modification. Immunol. Cell Biol. 2013, 91, 402–407. [Google Scholar] [CrossRef]
- Brauer, R.; Tureckova, J.; Kanchev, I.; Khoylou, M.; Skarda, J.; Prochazka, J.; Spoutil, F.; Beck, I.M.; Zbodakova, O.; Kasparek, P.; et al. MMP-19 Deficiency Causes Aggravation of Colitis Due to Defects in Innate Immune Cell Function. Mucosal Immunol. 2016, 9, 974–985. [Google Scholar] [CrossRef] [PubMed]
- Koller, F.L.; Dozier, E.A.; Nam, K.T.; Swee, M.; Birkland, T.P.; Parks, W.C.; Fingleton, B. Lack of MMP10 Exacerbates Experimental Colitis and Promotes Development of Inflammation-Associated Colonic Dysplasia. Lab. Investig. 2012, 92, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- Gronski, T.J.J.; Martin, R.L.; Kobayashi, D.K.; Walsh, B.C.; Holman, M.C.; Huber, M.; Van Wart, H.E.; Shapiro, S.D. Hydrolysis of a Broad Spectrum of Extracellular Matrix Proteins by Human Macrophage Elastase. J. Biol. Chem. 1997, 272, 12189–12194. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-C.; Sala-Newby, G.B.; Susana, A.; Johnson, J.L.; Newby, A.C. Classical Macrophage Activation Up-Regulates Several Matrix Metalloproteinases through Mitogen Activated Protein Kinases and Nuclear Factor-ΚB. PLoS ONE 2012, 7, e42507. [Google Scholar] [CrossRef] [PubMed]
- Meguro, K.; Nakagomi, D.; Suzuki, K.; Hosokawa, J.; Fukuta, T.; Yokota, M.; Maezawa, Y.; Suto, A.; Nakajima, H. SOCS3 Expressed in M2 Macrophages Attenuates Contact Hypersensitivity by Suppressing MMP-12 Production. J. Investig. Dermatol. 2016, 136, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Xing, L.; Zeng, C.; Wu, T.; Gui, Y.; Li, W.; Lan, T.; Yang, Y.; Gu, Q.; Qi, C.; et al. Inactivation of PI3Kδ Induces Vascular Injury and Promotes Aneurysm Development by Upregulating the AP-1/MMP-12 Pathway in Macrophages. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 368–377. [Google Scholar] [CrossRef]
- Shipley, J.M.; Wesselschmidt, R.L.; Kobayashi, D.K.; Ley, T.J.; Shapiro, S.D. Metalloelastase Is Required for Macrophage-Mediated Proteolysis and Matrix Invasion in Mice. Proc. Natl. Acad. Sci. USA 1996, 93, 3942–3946. [Google Scholar] [CrossRef]
- Vaalamo, M.; Karjalainen-Lindsberg, M.L.; Puolakkainen, P.; Kere, J.; Saarialho-Kere, U. Distinct Expression Profiles of Stromelysin-2 (MMP-10), Collagenase-3 (MMP-13), Macrophage Metalloelastase (MMP-12), and Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) in Intestinal Ulcerations. Am. J. Pathol. 1998, 152, 1005–1014. [Google Scholar]
- Pender, S.L.F.; Li, C.K.F.; Di Sabatino, A.; MacDonald, T.T.; Buckley, M.G. Role of Macrophage Metalloelastase in Gut Inflammation. Ann. N. Y. Acad. Sci. 2006, 1072, 386–388. [Google Scholar] [CrossRef]
- Nighot, M.; Ganapathy, A.S.; Saha, K.; Suchanec, E.; Castillo, E.F.; Gregory, A.; Shapiro, S.; Ma, T.; Nighot, P. Matrix Metalloproteinase MMP-12 Promotes Macrophage Transmigration across Intestinal Epithelial Tight Junctions and Increases Severity of Experimental Colitis. J. Crohn’s Colitis 2021, 15, 1751–1765. [Google Scholar] [CrossRef]
- Kalla, R.; Adams, A.T.; Bergemalm, D.; Vatn, S.; Kennedy, N.A.; Ricanek, P.; Lindstrom, J.; Ocklind, A.; Hjelm, F.; Ventham, N.T.; et al. Serum Proteomic Profiling at Diagnosis Predicts Clinical Course, and Need for Intensification of Treatment in Inflammatory Bowel Disease. J. Crohns. Colitis 2021, 15, 699–708. [Google Scholar] [CrossRef]
- Soomro, S.; Venkateswaran, S.; Vanarsa, K.; Kharboutli, M.; Nidhi, M.; Susarla, R.; Zhang, T.; Sasidharan, P.; Lee, K.H.; Rosh, J.; et al. Predicting Disease Course in Ulcerative Colitis Using Stool Proteins Identified through an Aptamer-Based Screen. Nat. Commun. 2021, 12, 3989. [Google Scholar] [CrossRef]
- Heida, A.; Park, K.T.; van Rheenen, P.F. Clinical Utility of Fecal Calprotectin Monitoring in Asymptomatic Patients with Inflammatory Bowel Disease: A Systematic Review and Practical Guide. Inflamm. Bowel Dis. 2017, 23, 894–902. [Google Scholar] [CrossRef]
- Nakov, R.; Nakov, V.; Gerova, V.; Tankova, L. Fecal Calprotectin Correlates Well with Endoscopic Activity in Ulcerative Colitis Patients. J. Gastrointestin. Liver Dis. 2018, 27, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.G.; Wardle, R.; Thi, A.A.; Eldridge, J.; Samuel, S.; Moran, G.W. Does Fecal Calprotectin Equally and Accurately Measure Disease Activity in Small Bowel and Large Bowel Crohn’s Disease?: A Systematic Review. Intest. Res. 2019, 17, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Shaoul, R.; Sladek, M.; Turner, D.; Paeregaard, A.; Veres, G.; Wauters, G.V.; Escher, J.; Dias, J.A.; Lionetti, P.; Staino, A.; et al. Limitations of Fecal Calprotectin at Diagnosis in Untreated Pediatric Crohn’s Disease. Inflamm. Bowel Dis. 2012, 18, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zeng, L.; Wang, J. A Diagnostic Model Based on Gene Biomarkers for Crohn’s Disease. Gen. Physiol. Biophys. 2023, 42, 339–347. [Google Scholar] [CrossRef]
- Farkas, K.; Saródi, Z.; Bálint, A.; Földesi, I.; Tiszlavicz, L.; Szűcs, M.; Nyári, T.; Tajti, J.; Nagy, F.; Szepes, Z.; et al. The Diagnostic Value of a New Fecal Marker, Matrix Metalloprotease-9, in Different Types of Inflammatory Bowel Diseases. J. Crohns. Colitis 2015, 9, 231–237. [Google Scholar] [CrossRef]
- Luther, J.; Gala, M.; Patel, S.J.; Dave, M.; Borren, N.; Xavier, R.J.; Ananthakrishnan, A.N. Loss of Response to Anti-Tumor Necrosis Factor Alpha Therapy in Crohn’s Disease Is Not Associated with Emergence of Novel Inflammatory Pathways. Dig. Dis. Sci. 2018, 63, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Biancheri, P.; Brezski, R.J.; Di Sabatino, A.; Greenplate, A.R.; Soring, K.L.; Corazza, G.R.; Kok, K.B.; Rovedatti, L.; Vossenkämper, A.; Ahmad, N.; et al. Proteolytic Cleavage and Loss of Function of Biologic Agents That Neutralize Tumor Necrosis Factor in the Mucosa of Patients with Inflammatory Bowel Disease. Gastroenterology 2015, 149, 1564–1574.e3. [Google Scholar] [CrossRef]
- Molière, S.; Jaulin, A.; Tomasetto, C.-L.; Dali-Youcef, N. Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Metabolism: Insights into Health and Disease. Int. J. Mol. Sci. 2023, 24, 10649. [Google Scholar] [CrossRef]
- Markov, A.V.; Savin, I.A.; Zenkova, M.A.; Sen’kova, A. V Identification of Novel Core Genes Involved in Malignant Transformation of Inflamed Colon Tissue Using a Computational Biology Approach and Verification in Murine Models. Int. J. Mol. Sci. 2023, 24, 4311. [Google Scholar] [CrossRef]
- Doménech, E.; Maestre, C.; Esteban-Martínez, L.; Partida, D.; Pascual, R.; Fernández-Miranda, G.; Seco, E.; Campos-Olivas, R.; Pérez, M.; Megias, D.; et al. AMPK and PFKFB3 Mediate Glycolysis and Survival in Response to Mitophagy during Mitotic Arrest. Nat. Cell Biol. 2015, 17, 1304–1316. [Google Scholar] [CrossRef]
- Cuevas, B.D.; Lu, Y.; Mao, M.; Zhang, J.; LaPushin, R.; Siminovitch, K.; Mills, G.B. Tyrosine Phosphorylation of P85 Relieves Its Inhibitory Activity on Phosphatidylinositol 3-Kinase. J. Biol. Chem. 2001, 276, 27455–27461. [Google Scholar] [CrossRef]
- Bakshi, I.; Suryana, E.; Small, L.; Quek, L.-E.; Brandon, A.E.; Turner, N.; Cooney, G.J. Fructose Bisphosphatase 2 Overexpression Increases Glucose Uptake in Skeletal Muscle. J. Endocrinol. 2018, 237, 101–111. [Google Scholar] [CrossRef]
- Li, W.; Wong, C.C.; Zhang, X.; Kang, W.; Nakatsu, G.; Zhao, Q.; Chen, H.; Go, M.Y.Y.; Chiu, P.W.Y.; Wang, X.; et al. CAB39L Elicited an Anti-Warburg Effect via a LKB1-AMPK-PGC1α Axis to Inhibit Gastric Tumorigenesis. Oncogene 2018, 37, 6383–6398. [Google Scholar] [CrossRef]
- Covarrubias, A.J.; Aksoylar, H.I.; Horng, T. Control of Macrophage Metabolism and Activation by MTOR and Akt Signaling. Semin. Immunol. 2015, 27, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Byles, V.; Covarrubias, A.J.; Ben-Sahra, I.; Lamming, D.W.; Sabatini, D.M.; Manning, B.D.; Horng, T. The TSC-MTOR Pathway Regulates Macrophage Polarization. Nat. Commun. 2013, 4, 2834. [Google Scholar] [CrossRef]
- Pan, H.; O’Brien, T.F.; Zhang, P.; Zhong, X.-P. The Role of Tuberous Sclerosis Complex 1 in Regulating Innate Immunity. J. Immunol. 2012, 188, 3658–3666. [Google Scholar] [CrossRef] [PubMed]
- Ip, W.K.E.; Hoshi, N.; Shouval, D.S.; Snapper, S.; Medzhitov, R. Anti-Inflammatory Effect of IL-10 Mediated by Metabolic Reprogramming of Macrophages. Science 2017, 356, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Jiang, C.; Chen, H.; Chai, Y. Rapamycin Attenuates High Glucose-Induced Inflammation Through Modulation of MTOR/NF-ΚB Pathways in Macrophages. Front. Pharmacol. 2019, 10, 1292. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-S.; Hisata, S.; Park, M.-A.; DeNicola, G.M.; Ryter, S.W.; Nakahira, K.; Choi, A.M.K. MTORC1-Induced HK1-Dependent Glycolysis Regulates NLRP3 Inflammasome Activation. Cell Rep. 2015, 12, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.Y.-H.; Chang, K.-T.; Hung, C.-C.; Kuo, C.-H.; Hwang, S.-J.; Chen, H.-C.; Hung, C.-H.; Lin, S.-F. Effects of the MTOR Inhibitor Rapamycin on Monocyte-Secreted Chemokines. BMC Immunol. 2014, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Lie, L.; Liang, Y.; Xu, H.; Zhu, B.; Huang, Y.; Zhang, L.; Zhang, Z.; Li, Q.; Wang, Q.; et al. GSK-3α/β Activity Negatively Regulates MMP-1/9 Expression to Suppress Mycobacterium Tuberculosis Infection. Front. Immunol. 2021, 12, 752466. [Google Scholar] [CrossRef] [PubMed]
- DU, Y.; Huang, F.; Guan, L.; Zeng, M. Role of PI3K/Akt/MTOR Pathway-Mediated Macrophage Autophagy in Affecting the Phenotype Transformation of Lung Fibroblasts Induced by Silica Dust Exposure. Zhong Nan Da Xue Xue Bao. Yi Xue Ban = J. Cent. S. Univ. Med. Sci. 2023, 48, 1152–1162. [Google Scholar] [CrossRef]
- Sag, D.; Carling, D.; Stout, R.D.; Suttles, J. Adenosine 5’-Monophosphate-Activated Protein Kinase Promotes Macrophage Polarization to an Anti-Inflammatory Functional Phenotype. J. Immunol. 2008, 181, 8633–8641. [Google Scholar] [CrossRef]
- Galic, S.; Fullerton, M.D.; Schertzer, J.D.; Sikkema, S.; Marcinko, K.; Walkley, C.R.; Izon, D.; Honeyman, J.; Chen, Z.-P.; van Denderen, B.J.; et al. Hematopoietic AMPK Β1 Reduces Mouse Adipose Tissue Macrophage Inflammation and Insulin Resistance in Obesity. J. Clin. Investig. 2011, 121, 4903–4915. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Brown, J.R.; Sag, D.; Zhang, L.; Suttles, J. Adenosine 5’-Monophosphate-Activated Protein Kinase Regulates IL-10-Mediated Anti-Inflammatory Signaling Pathways in Macrophages. J. Immunol. 2015, 194, 584–594. [Google Scholar] [CrossRef]
- Banskota, S.; Wang, H.; Kwon, Y.H.; Gautam, J.; Gurung, P.; Haq, S.; Hassan, F.M.N.; Bowdish, D.M.; Kim, J.-A.; Carling, D.; et al. Salicylates Ameliorate Intestinal Inflammation by Activating Macrophage AMPK. Inflamm. Bowel Dis. 2021, 27, 914–926. [Google Scholar] [CrossRef]
- Phair, I.R.; Nisr, R.B.; Howden, A.J.M.; Sovakova, M.; Alqurashi, N.; Foretz, M.; Lamont, D.; Viollet, B.; Rena, G. AMPK Integrates Metabolite and Kinase-Based Immunometabolic Control in Macrophages. Mol. Metab. 2023, 68, 101661. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Han, Z.; Tian, L.; Chen, K.; Fan, Y.; Ye, B.; Huang, W.; Wang, C.; Huang, Z. Curcumin Inhibits EMMPRIN and MMP-9 Expression through AMPK-MAPK and PKC Signaling in PMA Induced Macrophages. J. Transl. Med. 2014, 12, 266. [Google Scholar] [CrossRef]
- Terabe, K.; Ohashi, Y.; Tsuchiya, S.; Ishizuka, S.; Knudson, C.B.; Knudson, W. Chondroprotective Effects of 4-Methylumbelliferone and Hyaluronan Synthase-2 Overexpression Involve Changes in Chondrocyte Energy Metabolism. J. Biol. Chem. 2019, 294, 17799–17817. [Google Scholar] [CrossRef]
- Irizarry-Caro, R.A.; McDaniel, M.M.; Overcast, G.R.; Jain, V.G.; Troutman, T.D.; Pasare, C. TLR Signaling Adapter BCAP Regulates Inflammatory to Reparatory Macrophage Transition by Promoting Histone Lactylation. Proc. Natl. Acad. Sci. USA 2020, 117, 30628–30638. [Google Scholar] [CrossRef]
- Guan, C.; Xiao, Y.; Li, K.; Wang, T.; Liang, Y.; Liao, G. MMP-12 Regulates Proliferation of Mouse Macrophages via the ERK/P38 MAPK Pathways during Inflammation. Exp. Cell Res. 2019, 378, 182–190. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, M.; He, S.; Li, Z.; Li, H.; Niu, T.; Xie, D.; Mei, Y.; He, X.; Wei, L.; et al. MMP12 Knockout Prevents Weight and Muscle Loss in Tumor-Bearing Mice. BMC Cancer 2021, 21, 1297. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Hall, M.N.; Lin, S.-C.; Hardie, D.G. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab. 2020, 31, 472–492. [Google Scholar] [CrossRef] [PubMed]
- Bolstad, B.M.; Irizarry, R.A.; Astrand, M.; Speed, T.P. A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Variance and Bias. Bioinformatics 2003, 19, 185–193. [Google Scholar] [CrossRef]
- Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. Biostatistics 2003, 4, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Reiner, A.; Yekutieli, D.; Benjamini, Y. Identifying Differentially Expressed Genes Using False Discovery Rate Controlling Procedures. Bioinformatics 2003, 19, 368–375. [Google Scholar] [CrossRef]
- Planell, N.; Lozano, J.J.; Mora-Buch, R.; Masamunt, M.C.; Jimeno, M.; Ordás, I.; Esteller, M.; Ricart, E.; Piqué, J.M.; Panés, J.; et al. Transcriptional Analysis of the Intestinal Mucosa of Patients with Ulcerative Colitis in Remission Reveals Lasting Epithelial Cell Alterations. Gut 2013, 62, 967–976. [Google Scholar] [CrossRef]
- Vanhove, W.; Peeters, P.M.; Staelens, D.; Schraenen, A.; Van der Goten, J.; Cleynen, I.; De Schepper, S.; Van Lommel, L.; Reynaert, N.L.; Schuit, F.; et al. Strong Upregulation of AIM2 and IFI16 Inflammasomes in the Mucosa of Patients with Active Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015, 21, 2673–2682. [Google Scholar] [CrossRef] [PubMed]
- Arijs, I.; Li, K.; Toedter, G.; Quintens, R.; Van Lommel, L.; Van Steen, K.; Leemans, P.; De Hertogh, G.; Lemaire, K.; Ferrante, M.; et al. Mucosal Gene Signatures to Predict Response to Infliximab in Patients with Ulcerative Colitis. Gut 2009, 58, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Arijs, I.; De Hertogh, G.; Lemmens, B.; Van Lommel, L.; de Bruyn, M.; Vanhove, W.; Cleynen, I.; Machiels, K.; Ferrante, M.; Schuit, F.; et al. Effect of Vedolizumab (Anti-A4β7-Integrin) Therapy on Histological Healing and Mucosal Gene Expression in Patients with UC. Gut 2018, 67, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Toedter, G.; Li, K.; Marano, C.; Ma, K.; Sague, S.; Huang, C.C.; Song, X.-Y.; Rutgeerts, P.; Baribaud, F. Gene Expression Profiling and Response Signatures Associated with Differential Responses to Infliximab Treatment in Ulcerative Colitis. Am. J. Gastroenterol. 2011, 106, 1272–1280. [Google Scholar] [CrossRef]
Gene | Forward | Reverse |
---|---|---|
Mmp12 | TTAAGGGAACTTGCAGTCGG | TCTTGACAAGTACCATTCAGCA |
Hk3 | TTTCGGTTAAGTGGCTACAGAGG | TTGCTGCAAGCATTCCAGTT |
Pdk2 | GCGCTGTTGAAGAATGCGT | CCTGCCGGAGGAAAGTGAAT |
Pfkp | GGGCAGACACAGCTCTGAAC | CACTCCTTTGCCCTCCTCTG |
β-actin | CAGCTTCTTTGCAGCTCCTTC | ACCCATTCCCACCATCACAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arosa, L.; Camba-Gómez, M.; Lorenzo-Martín, L.F.; Clavaín, L.; López, M.; Conde-Aranda, J. RNA Expression of MMP12 Is Strongly Associated with Inflammatory Bowel Disease and Is Regulated by Metabolic Pathways in RAW 264.7 Macrophages. Int. J. Mol. Sci. 2024, 25, 3167. https://doi.org/10.3390/ijms25063167
Arosa L, Camba-Gómez M, Lorenzo-Martín LF, Clavaín L, López M, Conde-Aranda J. RNA Expression of MMP12 Is Strongly Associated with Inflammatory Bowel Disease and Is Regulated by Metabolic Pathways in RAW 264.7 Macrophages. International Journal of Molecular Sciences. 2024; 25(6):3167. https://doi.org/10.3390/ijms25063167
Chicago/Turabian StyleArosa, Laura, Miguel Camba-Gómez, Luis Francisco Lorenzo-Martín, Laura Clavaín, Miguel López, and Javier Conde-Aranda. 2024. "RNA Expression of MMP12 Is Strongly Associated with Inflammatory Bowel Disease and Is Regulated by Metabolic Pathways in RAW 264.7 Macrophages" International Journal of Molecular Sciences 25, no. 6: 3167. https://doi.org/10.3390/ijms25063167
APA StyleArosa, L., Camba-Gómez, M., Lorenzo-Martín, L. F., Clavaín, L., López, M., & Conde-Aranda, J. (2024). RNA Expression of MMP12 Is Strongly Associated with Inflammatory Bowel Disease and Is Regulated by Metabolic Pathways in RAW 264.7 Macrophages. International Journal of Molecular Sciences, 25(6), 3167. https://doi.org/10.3390/ijms25063167