Role of TRP Channels in Cancer-Induced Bone Pain
Abstract
:1. Introduction
2. The TRP Channel Family
3. TRP Ion Channels in the Pathogenesis of CIBP
TRP Channels and Neuro-Immune Modulation in Cancer-Induced Bone Pain
4. TRPV Channels
4.1. TRPV Modulation in Cancer-Induced Bone Pain
4.1.1. Resiniferatoxin (RTX)
4.1.2. JNJ-17203212
4.1.3. SB366791 [N-(3-Methoxyphenyl)-4-chlorocinnamide]
4.1.4. 5-Iodoresiniferatoxin
4.1.5. ABT-102
4.1.6. Capsazepine (CPZ)
4.1.7. QX-314
4.1.8. Quercetin
4.1.9. Acetaminophen
4.1.10. Xiaozheng Zhitong Paste (XZP)
4.1.11. Quetiapine
4.1.12. Arachidonyl-2-chloroethylamide
5. TRPA Channels
TRPA1 Modulation in Cancer-Induced Bone Pain
6. TRPM Channels
TRPM Modulation in Cancer-Induced Bone Pain
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2-AG | 2-arachidonylglycerol |
5-HT | Serotonin |
AA | Arachidonic acid |
AAV | Adeno-associated virus |
AGS | Gastric adenocarcinoma |
AITC | Allyl isothiocyanate |
AM404 | N-arachidonoylphenolamine |
AR | Androgen receptor |
ATP | Adenosine triphosphate |
BK | Bradykinin |
BMC | Bone mineral content |
BMD | Bone mineral density |
Ca2+ | Calcium |
[Ca2+]i | Intracellular calcium concentrations |
CaMKII | Ca2+/calmodulin-dependent protein kinase II |
CB1 | Cannabinoid receptor 1 |
CGRP | Calcitonin gene-related peptide |
CIBP | Cancer-induced bone pain |
CIPN | Chemotherapy induced peripheral neuropathy |
CNS | Central nervous system |
CPZ | Capsazepine |
CSC | Cancer stem cell |
CXCL1 | Chemokine (C-X-C motif) ligand 1 |
CXCR2 | C-X-C motif chemokine receptor 2 |
DAG | Diacylglycerol |
DRG | Dorsal root ganglion |
EGF | Epidermal growth factor |
G-CSF | Granulocyte colony-stimulating factor |
GM-CSF | Granulocyte–macrophage colony-stimulating factor |
GPCRs | G protein-coupled receptors |
H2O2 | Hydrogen peroxide |
HMGB1 | High-mobility-group box 1 |
IB4 | Isolectin B4 |
IGF-1 | Insulin-like growth factor-1 |
IGF-1R | Insulin-like growth factor-1 receptor |
IL-17 | Interleukin-17 |
IL-17A | Interleukin-17A |
IL-6 | Interleukin-6 |
IP3 | Inositol triphosphate |
I-RTX | 5-iodoresiniferatoxin |
ITGA4 | Integrin Subunit Alpha 4 |
ITGB7 | Integrin Subunit Beta 7 |
JAK | Janus kinase |
KD | KiloDalton |
KIF13B | Kinesin-13B |
KO | Knockout |
MAPK/ERK | Mitogen-activated protein kinase/extracellular signal regulated kinase |
Mg2+ | Magnesium |
MM | Multiple myeloma |
MMP-9 | Matrix metalloproteinase-9 |
MOR | Mu-opioid receptor |
MRMT-1 | Mammary rat metastasis tumour |
NADPH | Nicotinamide Adenine Dinucleotide Phosphate Hydrogen |
NAPQI | N-acetyl-4-benzoquinoneimine |
NF200 | Neurofilament 200 kD |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NGF | Nerve growth factor |
NK | Natural killer |
NO | Nitric oxide |
NSAIDs | Non-steroid anti-inflammatory drugs |
NSCLC | Non-small lung cancer |
OIC | Opioid-induced constipation |
OIH | Opioid-induced hyperalgesia |
PAG | Periaqueductal grey |
PAR2 | Protease-activated receptor-2 |
PD-L1 | Programmed death ligand 1 |
PGE2 | Prostaglandin E2 |
PGs | Prostaglandins |
PI3K/PKB | Phosphatidylinositol 3-kinase/protein kinase B |
PIP2 | Phosphatidylinositol-4,5-biphosphate |
PKA | Protein kinase A |
PKC | Protein kinase C |
PLC | Phospholipase C |
PM | Plasma membrane |
PPP | Picropodophyllotoxin |
PTHrP | Parathyroid hormone-related peptide |
RANK | Receptor Activator of Nuclear Factor κ B |
RANKL | Receptor Activator of Nuclear Factor κ B ligand |
RTX | Resiniferatoxin |
SCC | Squamous cell carcinoma |
siRNA | Short-interfering RNA |
SP | Substance P |
SREs | Skeletal-related events |
TG | Trigeminal ganglion |
TGF-β1 | Transforming growth factor-β1 |
TNF-α | Tumour necrosis factor-α |
TPPO | Triphenylphosphine oxide |
TrkA | Tyrosine receptor kinases A |
TRP | Transient Receptor Potential |
TRPA | Transient Receptor Potential Ankyrin |
TRPC | Transient Receptor Potential canonical |
TRPM | Transient Receptor Potential melastatins |
TRPML | Transient Receptor Potential mucolipins |
TRPN | Transient Receptor Potential no mechanoreceptor potential C channels |
TRPP | Transient Receptor Potential polycystins |
TRPV | Transient Receptor Potential vanilloids |
VEGF | Vascular endothelial growth factor |
VTA | Ventral tegmental area |
XZP | Xiaozheng Zhitong Paste |
References
- World Cancer Research Fund. Global Cancer Data by Country. Available online: https://www.wcrf.org/preventing-cancer/cancer-statistics/global-cancer-data-by-country (accessed on 30 December 2024).
- Knapp, B.J.; Cittolin-Santos, G.F.; Flanagan, M.E.; Grandhi, N.; Gao, F.; Samson, P.P.; Govindan, R.; Morgensztern, D. Incidence and risk factors for bone metastases at presentation in solid tumors. Front. Oncol. 2024, 14, 1392667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryan, C.; Stoltzfus, K.C.; Horn, S.; Chen, H.; Louie, A.V.; Lehrer, E.J.; Trifiletti, D.M.; Fox, E.J.; Abraham, J.A.; Zaorsky, N.G. Epidemiology of bone metastases. Bone 2022, 158, 115783. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.F.; Shen, J.; Li, X.; Rengan, R.; Silvestris, N.; Wang, M.; Derosa, L.; Zheng, X.; Belli, A.; Zhang, X.L.; et al. Incidence of patients with bone metastases at diagnosis of solid tumors in adults: A large population-based study. Ann. Transl. Med. 2020, 8, 482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Cai, D.; Hong, S. Prevalence and prognosis of bone metastases in common solid cancers at initial diagnosis: A population-based study. BMJ Open 2023, 13, e069908. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coluzzi, F.; Rolke, R.; Mercadante, S. Pain Management in Patients with Multiple Myeloma: An Update. Cancers 2019, 11, 2037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alvaro, D.; Coluzzi, F.; Gianni, W.; Lugoboni, F.; Marinangeli, F.; Massazza, G.; Pinto, C.; Varrassi, G. Opioid-Induced Constipation in Real-World Practice: A Physician Survey, 1 Year Later. Pain Ther. 2022, 11, 477–491. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coluzzi, F.; Scerpa, M.S.; Loffredo, C.; Borro, M.; Pergolizzi, J.V.; LeQuang, J.A.; Alessandri, E.; Simmaco, M.; Rocco, M. Opioid Use and Gut Dysbiosis in Cancer Pain Patients. Int. J. Mol. Sci. 2024, 25, 7999. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mercadante, S.; Arcuri, E.; Santoni, A. Opioid-Induced Tolerance and Hyperalgesia. CNS Drugs 2019, 33, 943–955. [Google Scholar] [CrossRef] [PubMed]
- Rullo, L.; Morosini, C.; Lacorte, A.; Cristani, M.; Coluzzi, F.; Candeletti, S.; Romualdi, P. Opioid system and related ligands: From the past to future perspectives. J. Anesth. Analg. Crit. Care 2024, 4, 70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coluzzi, F.; Billeci, D.; Maggi, M.; Corona, G. Testosterone deficiency in non-cancer opioid-treated patients. J. Endocrinol. Investig. 2018, 41, 1377–1388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coluzzi, F.; LeQuang, J.A.K.; Sciacchitano, S.; Scerpa, M.S.; Rocco, M.; Pergolizzi, J. A Closer Look at Opioid-Induced Adrenal Insufficiency: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 4575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coluzzi, F.; Pergolizzi, J.; Raffa, R.B.; Mattia, C. The unsolved case of “bone-impairing analgesics”: The endocrine effects of opioids on bone metabolism. Ther. Clin. Risk Manag. 2015, 11, 515–523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coluzzi, F.; Scerpa, M.S.; Centanni, M. The Effect of Opiates on Bone Formation and Bone Healing. Curr. Osteoporos. Rep. 2020, 18, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Kress, H.G.; Coluzzi, F. Tapentadol in the management of cancer pain: Current evidence and future perspectives. J. Pain Res. 2019, 12, 1553–1560. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coluzzi, F.; Rullo, L.; Scerpa, M.S.; Losapio, L.M.; Rocco, M.; Billeci, D.; Candeletti, S.; Romualdi, P. Current and Future Therapeutic Options in Pain Management: Multi-mechanistic Opioids Involving Both MOR and NOP Receptor Activation. CNS Drugs 2022, 36, 617–632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coluzzi, F.; Di Bussolo, E.; Mandatori, I.; Mattia, C. Bone metastatic disease: Taking aim at new therapeutic targets. Curr. Med. Chem. 2011, 18, 3093–3115. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.J.; Wu, X.B.; Wei, Q.Q. Ion channels in cancer-induced bone pain: From molecular mechanisms to clinical applications. Front. Mol. Neurosci. 2023, 16, 1239599. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stucky, C.L.; Dubin, A.E.; Jeske, N.A.; Malin, S.A.; McKemy, D.D.; Story, G.M. Roles of transient receptor potential channels in pain. Brain Res. Rev. 2009, 60, 2–23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, M.; Ma, Y.; Ye, X.; Zhang, N.; Pan, L.; Wang, B. TRP (transient receptor potential) ion channel family: Structures, biological functions and therapeutic interventions for diseases. Signal Transduct. Target. Ther. 2023, 8, 261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Almeida, A.S.; Bernardes, L.B.; Trevisan, G. TRP channels in cancer pain. Eur. J. Pharmacol. 2021, 904, 174185. [Google Scholar] [CrossRef] [PubMed]
- Duitama, M.; Moreno, Y.; Santander, S.P.; Casas, Z.; Sutachan, J.J.; Torres, Y.P.; Albarracín, S.L. TRP Channels as Molecular Targets to Relieve Cancer Pain. Biomolecules 2021, 12, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, H.; Blair, N.T.; Clapham, D.E. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J. Neurosci. 2005, 25, 8924–8937. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ishikawa, D.T.; Vizin, R.C.L.; Souza, C.O.; Carrettiero, D.C.; Romanovsky, A.A.; Almeida, M.C. Camphor, Applied Epidermally to the Back, Causes Snout- and Chest-Grooming in Rats: A Response Mediated by Cutaneous TRP Channels. Pharmaceuticals 2019, 12, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alpizar, Y.A.; Gees, M.; Sanchez, A.; Apetrei, A.; Voets, T.; Nilius, B.; Talavera, K. Bimodal effects of cinnamaldehyde and camphor on mouse TRPA1. Pflug. Arch. 2013, 465, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Selescu, T.; Ciobanu, A.C.; Dobre, C.; Reid, G.; Babes, A. Camphor activates and sensitizes transient receptor potential melastatin 8 (TRPM8) to cooling and icilin. Chem. Senses 2013, 38, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Frias, B.; Merighi, A. Capsaicin, Nociception and Pain. Molecules 2016, 21, 797. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bernal-Cepeda, L.J.; Velandia-Romero, M.L.; Castellanos, J.E. Capsazepine antagonizes TRPV1 activation induced by thermal and osmotic stimuli in human odontoblast-like cells. J. Oral. Biol. Craniofac. Res. 2023, 13, 71–77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, W.W.; Zhao, Y.; Liu, H.C.; Liu, J.; Chan, S.O.; Zhong, Y.F.; Zhang, T.Y.; Liu, Y.; Zhang, W.; Xia, Y.Q.; et al. Roles of Thermosensitive Transient Receptor Channels TRPV1 and TRPM8 in Paclitaxel-Induced Peripheral Neuropathic Pain. Int. J. Mol. Sci. 2024, 25, 5813. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xing, H.; Chen, M.; Ling, J.; Tan, W.; Gu, J.G. TRPM8 mechanism of cold allodynia after chronic nerve injury. J. Neurosci. 2007, 27, 13680–13690. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, Y.S.; Hong, C.S.; Lee, S.W.; Nam, J.H.; Kim, B.J. Effects of ginger and its pungent constituents on transient receptor potential channels. Int. J. Mol. Med. 2016, 38, 1905–1914. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, Y.; Kawamata, K. Allicin Induces Electrogenic Secretion of Chloride and Bicarbonate Ions in Rat Colon via the TRPA1 Receptor. J. Nutr. Sci. Vitaminol. 2019, 65, 258–263. [Google Scholar] [CrossRef] [PubMed]
- De Petrocellis, L.; Ligresti, A.; Moriello, A.S.; Allarà, M.; Bisogno, T.; Petrosino, S.; Stott, C.G.; Di Marzo, V. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 2011, 163, 1479–1494. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tominaga, M.; Kashio, M. Thermosensation and TRP Channels. Adv. Exp. Med. Biol. 2024, 1461, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Takahashi, N.; Mori, Y. TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Handb. Exp. Pharmacol. 2014, 223, 767–794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liang, J.; Liu, P.; Wang, Q.; Liu, L.; Zhao, H. The RANK/RANKL/OPG system and tumor bone metastasis: Potential mechanisms and therapeutic strategies. Front. Endocrinol. 2022, 13, 1063815. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jing, D.; Zhao, Q.; Zhao, Y.; Lu, X.; Feng, Y.; Zhao, B.; Zhao, X. Management of pain in patients with bone metastases. Front. Oncol. 2023, 13, 1156618. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, N.; Lu, W.; Dai, X.; Qu, X.; Zhu, C. The role of TRPV channels in osteoporosis. Mol. Biol. Rep. 2022, 49, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Mentrup, B.; Timmen, M.; Sherwood, J.; Lindemann, O.; Fobker, M.; Kronenberg, D.; Pap, T.; Raschke, M.J.; Stange, R. Modulation of Transient Receptor Potential Channels 3 and 6 Regulates Osteoclast Function with Impact on Trabecular Bone Loss. Calcif. Tissue Int. 2020, 106, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Perin, M.; Chinigò, G.; Genova, T.; Mussano, F.; Munaron, L. The Impact of Plasma Membrane Ion Channels on Bone Remodeling in Response to Mechanical Stress, Oxidative Imbalance, and Acidosis. Antioxidants 2023, 12, 689. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ardura, J.A.; Álvarez-Carrión, L.; Gutiérrez-Rojas, I.; Alonso, V. Role of Calcium Signaling in Prostate Cancer Progression: Effects on Cancer Hallmarks and Bone Metastatic Mechanisms. Cancers 2020, 12, 1071. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Omari, S.A.; Adams, M.J.; Geraghty, D.P. TRPV1 Channels in Immune Cells and Hematological Malignancies. Adv. Pharmacol. 2017, 79, 173–198. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Gu, G.; Bi, L. Transient receptor potential channels in multiple myeloma. Oncol. Lett. 2022, 23, 108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wakabayashi, H.; Wakisaka, S.; Hiraga, T.; Hata, K.; Nishimura, R.; Tominaga, M.; Yoneda, T. Decreased sensory nerve excitation and bone pain associated with mouse Lewis lung cancer in TRPV1-deficient mice. J. Bone Miner. Metab. 2018, 36, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, H.; Hao, X.; Liu, C. TRPV1 in dorsal root ganglion contributed to bone cancer pain. Front. Pain Res. 2022, 3, 1022022. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oostinga, D.; Steverink, J.G.; van Wijck, A.J.M.; Verlaan, J.J. An understanding of bone pain: A narrative review. Bone 2020, 134, 115272. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, T.; Hiasa, M.; Okui, T.; Hata, K. Cancer-nerve interplay in cancer progression and cancer-induced bone pain. J. Bone Miner. Metab. 2023, 41, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Han, D.F.; Wang, S.S.; Lv, B.; Wang, X.; Ma, C. Roles of tumor necrosis factor-α and interleukin-6 in regulating bone cancer pain via TRPA1 signal pathway and beneficial effects of inhibition of neuro-inflammation and TRPA1. Mol. Pain 2019, 15, 1744806919857981. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holzer, P. Acid-sensitive ion channels and receptors. In Sensory Nerves: Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2009; Volume 194, pp. 283–332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, M.; Xia, F.; Wei, Y.; Wei, X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res. 2020, 8, 30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hiasa, M.; Okui, T.; Allette, Y.M.; Ripsch, M.S.; Sun-Wada, G.H.; Wakabayashi, H.; Roodman, G.D.; White, F.A.; Yoneda, T. Bone Pain Induced by Multiple Myeloma Is Reduced by Targeting V-ATPase and ASIC3. Cancer Res. 2017, 77, 1283–1295. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hansen, R.B.; Sayilekshmy, M.; Sørensen, M.S.; Jørgensen, A.H.; Kanneworff, I.B.; Bengtsson, E.K.E.; Grum-Schwensen, T.A.; Petersen, M.M.; Ejersted, C.; Andersen, T.L.; et al. Neuronal Sprouting and Reorganization in Bone Tissue Infiltrated by Human Breast Cancer Cells. Front. Pain Res. 2022, 3, 887747. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, Q.; Fang, D.; Cai, J.; Wan, Y.; Han, J.S.; Xing, G.G. Enhanced excitability of small dorsal root ganglion neurons in rats with bone cancer pain. Mol. Pain 2012, 8, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, Y.; Liu, X.; Zhang, H.; Xu, L. Targeted therapy: P2X3 receptor silencing in bone cancer pain relief. J. Biochem. Mol. Toxicol. 2024, 38, e70026. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wu, X.; Zhou, G.; Wang, Y.; Liu, X.; Lv, R.; Liu, Y.; Wen, Q. P2X7 Receptor-Induced Bone Cancer Pain by Regulating Microglial Activity via NLRP3/IL-1beta Signaling. Pain Physician 2022, 25, E1199–E1210. [Google Scholar] [PubMed]
- Yanagisawa, Y.; Furue, H.; Kawamata, T.; Uta, D.; Yamamoto, J.; Furuse, S.; Katafuchi, T.; Imoto, K.; Iwamoto, Y.; Yoshimura, M. Bone cancer induces a unique central sensitization through synaptic changes in a wide area of the spinal cord. Mol. Pain 2010, 6, 38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ge, M.M.; Chen, S.P.; Zhou, Y.Q.; Li, Z.; Tian, X.B.; Gao, F.; Manyande, A.; Tian, Y.K.; Yang, H. The therapeutic potential of GABA in neuron-glia interactions of cancer-induced bone pain. Eur. J. Pharmacol. 2019, 858, 172475. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, T.; Yamada, T.; Ishimura, T.; Zuo, D.; Moffett, J.R.; Neale, J.H.; Yamamoto, T. A role for the locus coeruleus in the analgesic efficacy of N-acetylaspartylglutamate peptidase (GCPII) inhibitors ZJ43 and 2-PMPA. Mol. Pain 2017, 13, 1744806917697008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slosky, L.M.; BassiriRad, N.M.; Symons, A.M.; Thompson, M.; Doyle, T.; Forte, B.L.; Staatz, W.D.; Bui, L.; Neumann, W.L.; Mantyh, P.W.; et al. The cystine/glutamate antiporter system xc- drives breast tumor cell glutamate release and cancer-induced bone pain. Pain 2016, 157, 2605–2616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, D.; Zhou, X.; Tan, Y.; Yu, H.; Cao, Y.; Tian, L.; Yang, L.; Wang, S.; Liu, S.; Chen, J.; et al. Altered brain functional activity and connectivity in bone metastasis pain of lung cancer patients: A preliminary restingstate fMRI study. Front. Neurol. 2022, 13, 936012. [Google Scholar] [CrossRef]
- Chiou, C.; Chen, C.; Tsai, T.; Huang, C.; Chou, D.; Hsu, K. Alleviating bone cancerinduced mechanical hypersensitivity by inhibiting neuronal activity in the anterior cingulate cortex. Anesthesiology 2016, 125, 779–792. [Google Scholar] [CrossRef]
- Morales, M.; Margolis, E.B. Ventral tegmental area: Cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 2017, 18, 73–85. [Google Scholar] [CrossRef]
- Imam, M.Z.; Kuo, A.; Nicholson, J.R.; Corradini, L.; Smith, M.T. Assessment of the anti-allodynic efficacy of a glycine transporter 2 inhibitor relative to pregabalin and duloxetine in a rat model of prostate cancer-induced bone pain. Pharmacol. Rep. 2020, 72, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Falk, S.; Patel, R.; Heegaard, A.; Mercadante, S.; Dickenson, A.H. Spinal neuronal correlates of tapentadol analgesia in cancer pain: A back-translational approach. Eur. J. Pain 2015, 19, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Sliepen, S.H.J.; Korioth, J.; Christoph, T.; Tzschentke, T.M.; Diaz-delCastillo, M.; Heegaard, A.M.; Rutten, K. The nociceptin/orphanin FQ receptor system as a target to alleviate cancer-induced bone pain in rats: Model validation and pharmacological evaluation. Br. J. Pharmacol. 2021, 178, 1995–2007. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gough, P.; Myles, I.A. Tumor Necrosis Factor Receptors: Pleiotropic Signaling Complexes and Their Differential Effects. Front. Immunol. 2020, 11, 585880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, H.; Lee, H.; Noh, K.; Lee, S.J. IKK/NF-κB-dependent satellite glia activation induces spinal cord microglia activation and neuropathic pain after nerve injury. Pain 2017, 158, 1666–1677. [Google Scholar] [CrossRef] [PubMed]
- Huo, W.; Liu, Y.; Lei, Y.; Zhang, Y.; Huang, Y.; Mao, Y.; Wang, C.; Sun, Y.; Zhang, W.; Ma, Z.; et al. Imbalanced spinal infiltration of Th17/Treg cells contributes to bone cancer pain via promoting microglial activation. Brain Behav. Immun. 2019, 79, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, Y.; Tomura, H.; Okajima, F. Ovarian cancer G-protein-coupled receptor 1 induces the expression of the pain mediator prostaglandin E2 in response to an acidic extracellular environment in human osteoblast-like cells. Int. J. Biochem. Cell Biol. 2012, 44, 1937–1941. [Google Scholar] [CrossRef] [PubMed]
- Nicol, L.S.C.; Thornton, P.; Hatcher, J.P.; Glover, C.P.; Webster, C.I.; Burrell, M.; Hammett, K.; Jones, C.A.; Sleeman, M.A.; Billinton, A.; et al. Central inhibition of granulocyte-macrophage colony-stimulating factor is analgesic in experimental neuropathic pain. Pain 2018, 159, 550–559. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ni, H.; Xu, M.; Xie, K.; Fei, Y.; Deng, H.; He, Q.; Wang, T.; Liu, S.; Zhu, J.; Xu, L.; et al. Liquiritin Alleviates Pain Through Inhibiting CXCL1/CXCR2 Signaling Pathway in Bone Cancer Pain Rat. Front. Pharmacol. 2020, 11, 436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schumacher, M.A. Peripheral Neuroinflammation and Pain: How Acute Pain Becomes Chronic. Curr. Neuropharmacol. 2024, 22, 6–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lozano-Ondoua, A.N.; Symons-Liguori, A.M.; Vanderah, T.W. Cancer-induced bone pain: Mechanisms and models. Neurosci. Lett. 2013, 557 Pt A, 52–59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fallon, M.; Sopata, M.; Dragon, E.; Brown, M.T.; Viktrup, L.; West, C.R.; Bao, W.; Agyemang, A. A Randomized Placebo-Controlled Trial of the Anti-Nerve Growth Factor Antibody Tanezumab in Subjects With Cancer Pain Due to Bone Metastasis. Oncologist 2023, 28, e1268–e1278. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yaniv, D.; Mattson, B.; Talbot, S.; Gleber-Netto, F.O.; Amit, M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat. Rev. Drug Discov. 2024, 23, 780–796. [Google Scholar] [CrossRef] [PubMed]
- Aloe, L.; Rocco, M.L.; Balzamino, B.O.; Micera, A. Nerve growth factor: Role in growth, differentiation and controlling cancer cell development. J. Exp. Clin. Cancer Res. 2016, 35, 116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bruno, F.; Arcuri, D.; Vozzo, F.; Malvaso, A.; Montesanto, A.; Maletta, R. Expression and Signaling Pathways of Nerve Growth Factor (NGF) and Pro-NGF in Breast Cancer: A Systematic Review. Curr. Oncol. 2022, 29, 8103–8120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kamiya, A.; Hiyama, T.; Fujimura, A.; Yoshikawa, S. Sympathetic and parasympathetic innervation in cancer: Therapeutic implications. Clin. Auton. Res. 2021, 31, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Dang, D.; Zhang, J.; Viet, C.T.; Lam, D.K.; Dolan, J.C.; Gibbs, J.L.; Schmidt, B.L. Nerve growth factor links oral cancer progression, pain, and cachexia. Mol. Cancer Ther. 2011, 10, 1667–1676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Erin, N.; Szallasi, A. Carcinogenesis and Metastasis: Focus on TRPV1-Positive Neurons and Immune Cells. Biomolecules 2023, 13, 983. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mardelle, U.; Bretaud, N.; Daher, C.; Feuillet, V. From pain to tumor immunity: Influence of peripheral sensory neurons in cancer. Front. Immunol. 2024, 15, 1335387. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Z.; Dong, J.; Tian, W.; Qiao, S.; Wang, H. Role of TRPV1 ion channel in cervical squamous cell carcinoma genesis. Front. Mol. Biosci. 2022, 9, 980262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, L.; Dou, X.; Song, H.; Gao, R.; Tang, X. TRPV1 acts as a Tumor Suppressor and is associated with Immune Cell Infiltration in Clear Cell Renal Cell Carcinoma: Evidence from integrated analysis. J. Cancer 2020, 11, 5678–5688. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nie, R.; Liu, Q.; Wang, X. TRPV1 Is a Potential Tumor Suppressor for Its Negative Association with Tumor Proliferation and Positive Association with Antitumor Immune Responses in Pan-Cancer. J. Oncol. 2022, 2022, 6964550. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dhabhar, F.S. Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation 2009, 16, 300–317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shurin, M.R.; Shurin, G.V.; Zlotnikov, S.B.; Bunimovich, Y.L. The Neuroimmune Axis in the Tumor Microenvironment. J. Immunol. 2020, 204, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tian, S.; Ning, B.; Huang, T.; Li, Y.; Wei, Y. Stress and cancer: The mechanisms of immune dysregulation and management. Front. Immunol. 2022, 13, 1032294. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, J.; Chen, W.; Shen, L.; Chen, Z.; Huang, J. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188828. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, H.; Sugimoto, T. The co-expression of VR1 and VRL-1 in the rat vagal sensory ganglia. Brain Res. 2003, 980, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Erin, N.; Duymuş, O.; Oztürk, S.; Demir, N. Activation of vagus nerve by semapimod alters substance P levels and decreases breast cancer metastasis. Regul. Pept. 2012, 179, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Erin, N.; Akman, M.; Aliyev, E.; Tanrıöver, G.; Korcum, A.F. Olvanil activates sensory nerve fibers, increases T cell response and decreases metastasis of breast carcinoma. Life Sci. 2022, 291, 120305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yu, Q.; Zhang, X.; Wang, X.; Su, Y.; He, W.; Li, J.; Wan, H.; Jing, X. Electroacupuncture regulates inflammatory cytokines by activating the vagus nerve to enhance antitumor immunity in mice with breast tumors. Life Sci. 2021, 272, 119259, Erratum in Life Sci. 2022, 291, 119539. [Google Scholar] [CrossRef] [PubMed]
- Croitoru, K.; Ernst, P.B.; Bienenstock, J.; Padol, I.; Stanisz, A.M. Selective modulation of the natural killer activity of murine intestinal intraepithelial leucocytes by the neuropeptide substance, P. Immunology 1990, 71, 196–201. [Google Scholar] [PubMed] [PubMed Central]
- Kim, H.S.; Kwon, H.J.; Kim, G.E.; Cho, M.H.; Yoon, S.Y.; Davies, A.J.; Oh, S.B.; Lee, H.; Cho, Y.K.; Joo, C.H.; et al. Attenuation of natural killer cell functions by capsaicin through a direct and TRPV1-independent mechanism. Carcinogenesis 2014, 35, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- Balood, M.; Ahmadi, M.; Eichwald, T.; Ahmadi, A.; Majdoubi, A.; Roversi, K.; Roversi, K.; Lucido, C.T.; Restaino, A.C.; Huang, S.; et al. Nociceptor neurons affect cancer immunosurveillance. Nature 2022, 611, 405–412. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tanaka, K.; Kondo, T.; Narita, M.; Muta, T.; Yoshida, S.; Sato, D.; Suda, Y.; Hamada, Y.; Tezuka, H.; Kuzumaki, N.; et al. Repeated activation of Trpv1-positive sensory neurons facilitates tumor growth associated with changes in tumor-infiltrating immune cells. Biochem. Biophys. Res. Commun. 2023, 648, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, B.A. Structure-function analysis of TRPV channels. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2005, 371, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Haustrate, A.; Prevarskaya, N.; Lehen’kyi, V. Role of the TRPV Channels in the Endoplasmic Reticulum Calcium Homeostasis. Cells 2020, 9, 317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stratiievska, A.; Nelson, S.; Senning, E.N.; Lautz, J.D.; Smith, S.E.; Gordon, S.E. Reciprocal regulation among TRPV1 channels and phosphoinositide 3-kinase in response to nerve growth factor. Elife 2018, 7, e38869. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Q.; Ji, C.; Ali, A.; Ding, I.; Wang, Y.; McCulloch, C.A. TRPV4 mediates IL-1-induced Ca2+ signaling, ERK activation and MMP expression. FASEB J. 2024, 38, e23731. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Shen, Z.; Yang, Q.; Sui, F.; Pu, J.; Ma, J.; Ma, S.; Yao, D.; Ji, M.; Hou, P. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics 2019, 9, 4461–4473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ren, X.; Feng, C.; Wang, Y.; Chen, P.; Wang, S.; Wang, J.; Cao, H.; Li, Y.; Ji, M.; Hou, P. SLC39A10 promotes malignant phenotypes of gastric cancer cells by activating the CK2-mediated MAPK/ERK and PI3K/AKT pathways. Exp. Mol. Med. 2023, 55, 1757–1769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loureiro, G.; Bahia, D.M.; Lee, M.L.M.; de Souza, M.P.; Kimura, E.Y.S.; Rezende, D.C.; Silva, M.C.A.; Chauffaille, M.L.L.F.; Yamamoto, M. MAPK/ERK and PI3K/AKT signaling pathways are activated in adolescent and adult acute lymphoblastic leukemia. Cancer Rep. 2023, 6, e1912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bourinet, E.; Altier, C.; Hildebrand, M.E.; Trang, T.; Salter, M.W.; Zamponi, G.W. Calcium-permeable ion channels in pain signaling. Physiol. Rev. 2014, 94, 81–140, Erratum in Physiol. Rev. 2014, 94, 987. [Google Scholar] [CrossRef] [PubMed]
- Shantanu, P.A.; Sharma, D.; Sharma, M.; Vaidya, S.; Sharma, K.; Kalia, K.; Tao, Y.X.; Shard, A.; Tiwari, V. Kinesins: Motor Proteins as Novel Target for the Treatment of Chronic Pain. Mol. Neurobiol. 2019, 56, 3854–3864, Erratum in Mol. Neurobiol. 2021, 58, 450. [Google Scholar] [CrossRef] [PubMed]
- Niiyama, Y.; Kawamata, T.; Yamamoto, J.; Omote, K.; Namiki, A. Bone cancer increases transient receptor potential vanilloid subfamily 1 expression within distinct subpopulations of dorsal root ganglion neurons. Neuroscience 2007, 148, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.G. TRPV1 in the central nervous system: Synaptic plasticity, function, and pharmacological implications. Prog. Drug Res. 2014, 68, 77–104. [Google Scholar] [CrossRef] [PubMed]
- An, S.B.; Cho, Y.S.; Park, S.K.; Kim, Y.S.; Bae, Y.C. Synaptic connectivity of the TRPV1-positive trigeminal afferents in the rat lateral parabrachial nucleus. Front. Cell Neurosci. 2023, 17, 1162874. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bagood, M.D.; Isseroff, R.R. TRPV1, Role in Skin and Skin Diseases and Potential Target for Improving Wound Healing. Int. J. Mol. Sci. 2021, 22, 6135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, Y.; Zhao, Y.; Gao, B. Role of TRPV1 in High Temperature-Induced Mitochondrial Biogenesis in Skeletal Muscle: A Mini Review. Front. Cell Dev. Biol. 2022, 10, 882578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Birder, L.A. TRPs in bladder diseases. Biochim. Biophys. Acta 2007, 1772, 879–884. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Munjuluri, S.; Wilkerson, D.A.; Sooch, G.; Chen, X.; White, F.A.; Obukhov, A.G. Capsaicin and TRPV1 Channels in the Cardiovascular System: The Role of Inflammation. Cells 2021, 11, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qu, Y.; Fu, Y.; Liu, Y.; Liu, C.; Xu, B.; Zhang, Q.; Jiang, P. The role of TRPV1 in RA pathogenesis: Worthy of attention. Front. Immunol. 2023, 14, 1232013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, L.H.; Liu, M.; He, Y.; Xiao, E.; Zhao, L.; Zhang, T.; Yang, H.Q.; Zhang, Y. TRPV1 deletion impaired fracture healing and inhibited osteoclast and osteoblast differentiation. Sci. Rep. 2017, 7, 42385. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yoneda, T.; Hiasa, M.; Nagata, Y.; Okui, T.; White, F. Contribution of acidic extracellular microenvironment of cancer-colonized bone to bone pain. Biochim. Biophys. Acta 2015, 1848, 2677–2684. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dhaka, A.; Uzzell, V.; Dubin, A.E.; Mathur, J.; Petrus, M.; Bandell, M.; Patapoutian, A. TRPV1 is activated by both acidic and basic pH. J. Neurosci. 2009, 29, 153–158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daniluk, J.; Voets, T. pH-dependent modulation of TRPV1 by modality-selective antagonists. Br. J. Pharmacol. 2023, 180, 2750–2761. [Google Scholar] [CrossRef] [PubMed]
- Nagae, M.; Hiraga, T.; Yoneda, T. Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization. J. Bone Miner. Metab. 2007, 25, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Van Der Stelt, M.; Di Marzo, V. Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur. J. Biochem. 2004, 271, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- Loyd, D.R.; Weiss, G.; Henry, M.A.; Hargreaves, K.M. Serotonin increases the functional activity of capsaicin-sensitive rat trigeminal nociceptors via peripheral serotonin receptors. Pain 2011, 152, 2267–2276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shim, W.S.; Tak, M.H.; Lee, M.H.; Kim, M.; Kim, M.; Koo, J.Y.; Lee, C.H.; Kim, M.; Oh, U. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J. Neurosci. 2007, 27, 2331–2337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tong, Z.; Luo, W.; Wang, Y.; Yang, F.; Han, Y.; Li, H.; Luo, H.; Duan, B.; Xu, T.; Maoying, Q.; et al. Tumor tissue-derived formaldehyde and acidic microenvironment synergistically induce bone cancer pain. PLoS ONE 2010, 5, e10234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, Y.; Li, Y.; Xiao, X.; Liu, J.; Meng, X.L.; Liu, F.Y.; Xing, G.G.; Wan, Y. Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain. Neurosci. Bull. 2012, 28, 165–172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pan, H.L.; Zhang, Y.Q.; Zhao, Z.Q. Involvement of lysophosphatidic acid in bone cancer pain by potentiation of TRPV1 via PKCε pathway in dorsal root ganglion neurons. Mol. Pain 2010, 6, 85. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moriyama, T.; Higashi, T.; Togashi, K.; Iida, T.; Segi, E.; Sugimoto, Y.; Tominaga, T.; Narumiya, S.; Tominaga, M. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain 2005, 1, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mathivanan, S.; Devesa, I.; Changeux, J.P.; Ferrer-Montiel, A. Bradykinin Induces TRPV1 Exocytotic Recruitment in Peptidergic Nociceptors. Front. Pharmacol. 2016, 7, 178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shimizu, T.; Yanase, N.; Fujii, T.; Sakakibara, H.; Sakai, H. Regulation of TRPV1 channel activities by intracellular ATP in the absence of capsaicin. Biochim. Biophys. Acta Biomembr. 2022, 1864, 183782. [Google Scholar] [CrossRef] [PubMed]
- Constantin, C.E.; Mair, N.; Sailer, C.A.; Andratsch, M.; Xu, Z.Z.; Blumer, M.J.; Scherbakov, N.; Davis, J.B.; Bluethmann, H.; Ji, R.R.; et al. Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model. J. Neurosci. 2008, 28, 5072–5081. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, E.; Lee, S.; Yi, M.H.; Nan, Y.; Xu, Y.; Shin, N.; Ko, Y.; Lee, Y.H.; Lee, W.; Kim, D.W. Expression of granulocyte colony-stimulating factor 3 receptor in the spinal dorsal horn following spinal nerve ligation-induced neuropathic pain. Mol. Med. Rep. 2017, 16, 2009–2015. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nakamura, T.; Okui, T.; Hasegawa, K.; Ryumon, S.; Ibaragi, S.; Ono, K.; Kunisada, Y.; Obata, K.; Masui, M.; Shimo, T.; et al. High mobility group box 1 induces bone pain associated with bone invasion in a mouse model of advanced head and neck cancer. Oncol. Rep. 2020, 44, 2547–2558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shepherd, A.J.; Mickle, A.D.; Kadunganattil, S.; Hu, H.; Mohapatra, D.P. Parathyroid Hormone-Related Peptide Elicits Peripheral TRPV1-dependent Mechanical Hypersensitivity. Front. Cell Neurosci. 2018, 12, 38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, Q.; Zhang, X.M.; Duan, K.Z.; Gu, X.Y.; Han, M.; Liu, B.L.; Zhao, Z.Q.; Zhang, Y.Q. Peripheral TGF-β1 signaling is a critical event in bone cancer-induced hyperalgesia in rodents. J. Neurosci. 2013, 33, 19099–19111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sevcik, M.A.; Ghilardi, J.R.; Peters, C.M.; Lindsay, T.H.; Halvorson, K.G.; Jonas, B.M.; Kubota, K.; Kuskowski, M.A.; Boustany, L.; Shelton, D.L.; et al. Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain 2005, 115, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, R.; Dong, C.; Jiao, L.; Xu, L.; Liu, J.; Wang, Z.; Lao, L. Transient Receptor Potential Channel and Interleukin-17A Involvement in LTTL Gel Inhibition of Bone Cancer Pain in a Rat Model. Integr. Cancer Ther. 2015, 14, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Kong, L.Y.; Cai, J.; Li, S.; Liu, X.D.; Han, J.S.; Xing, G.G. Interleukin-6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: Roles in the development of bone cancer pain in a rat model. Pain 2015, 156, 1124–1144. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cai, J.; Han, Y.; Xiao, X.; Meng, X.L.; Su, L.; Liu, F.Y.; Xing, G.G.; Wan, Y. Enhanced function of TRPV1 via up-regulation by insulin-like growth factor-1 in a rat model of bone cancer pain. Eur. J. Pain 2014, 18, 774–784. [Google Scholar] [CrossRef] [PubMed]
- Vahidi Ferdowsi, P.; Ahuja, K.D.K.; Beckett, J.M.; Myers, S. TRPV1 Activation by Capsaicin Mediates Glucose Oxidation and ATP Production Independent of Insulin Signalling in Mouse Skeletal Muscle Cells. Cells 2021, 10, 1560. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qian, H.Y.; Zhou, F.; Wu, R.; Cao, X.J.; Zhu, T.; Yuan, H.D.; Chen, Y.N.; Zhang, P.A. Metformin Attenuates Bone Cancer Pain by Reducing TRPV1 and ASIC3 Expression. Front. Pharmacol. 2021, 12, 713944. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeske, N.A.; Diogenes, A.; Ruparel, N.B.; Fehrenbacher, J.C.; Henry, M.; Akopian, A.N.; Hargreaves, K.M. A-kinase anchoring protein mediates TRPV1 thermal hyperalgesia through PKA phosphorylation of TRPV1. Pain 2008, 138, 604–616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frey, E.; Karney-Grobe, S.; Krolak, T.; Milbrandt, J.; DiAntonio, A. TRPV1 Agonist, Capsaicin, Induces Axon Outgrowth after Injury via Ca2+/PKA Signaling. eNeuro 2018, 5, ENEURO.0095-18.2018. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hsu, C.C.; Chien, K.H.; Yarmishyn, A.A.; Buddhakosai, W.; Wu, W.J.; Lin, T.C.; Chiou, S.H.; Chen, J.T.; Peng, C.H.; Hwang, D.K.; et al. Modulation of osmotic stress-induced TRPV1 expression rescues human iPSC-derived retinal ganglion cells through, P.K.A. Stem Cell Res. Ther. 2019, 10, 284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, S.H.; Lin, J.P.; Huang, L.E.; Yang, Y.; Chen, C.Q.; Li, N.N.; Su, M.Y.; Zhao, X.; Zhu, S.M.; Yao, Y.X. Silencing of spinal Trpv1 attenuates neuropathic pain in rats by inhibiting CAMKII expression and ERK2 phosphorylation. Sci. Rep. 2019, 9, 2769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bao, Y.; Gao, Y.; Hou, W.; Yang, L.; Kong, X.; Zheng, H.; Li, C.; Hua, B. Engagement of signaling pathways of protease-activated receptor 2 and μ-opioid receptor in bone cancer pain and morphine tolerance. Int. J. Cancer 2015, 137, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Niiyama, Y.; Kawamata, T.; Yamamoto, J.; Furuse, S.; Namiki, A. SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain. Br. J. Anaesth. 2009, 102, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, J.; Kawamata, T.; Niiyama, Y.; Omote, K.; Namiki, A. Down-regulation of mu opioid receptor expression within distinct subpopulations of dorsal root ganglion neurons in a murine model of bone cancer pain. Neuroscience 2008, 151, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Swanson, D.M.; Dubin, A.E.; Shah, C.; Nasser, N.; Chang, L.; Dax, S.L.; Jetter, M.; Breitenbucher, J.G.; Liu, C.; Mazur, C.; et al. Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J. Med. Chem. 2005, 48, 1857–1872. [Google Scholar] [CrossRef] [PubMed]
- Gui, Q.; Xu, C.; Zhuang, L.; Xia, S.; Chen, Y.; Peng, P.; Yu, S. A new rat model of bone cancer pain produced by rat breast cancer cells implantation of the shaft of femur at the third trochanter level. Cancer Biol. Ther. 2013, 14, 193–199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shimosato, G.; Amaya, F.; Ueda, M.; Tanaka, Y.; Decosterd, I.; Tanaka, M. Peripheral inflammation induces up-regulation of TRPV2 expression in rat, DRG. Pain 2005, 119, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.H.; Niu, Z.; Liu, Y.; Liu, P.L.; Lin, X.L.; Zhang, L.; Chen, L.; Song, Y.; Sun, R.; Zhang, H.L. TET1-TRPV4 Signaling Contributes to Bone Cancer Pain in Rats. Brain Sci. 2023, 13, 644. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Zhang, J.; Wang, K. Inhibition of intracellular proton-sensitive Ca2+-permeable TRPV3 channels protects against ischemic brain injury. Acta Pharm. Sin. B. 2022, 12, 2330–2347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mandadi, S.; Sokabe, T.; Shibasaki, K.; Katanosaka, K.; Mizuno, A.; Moqrich, A.; Patapoutian, A.; Fukumi-Tominaga, T.; Mizumura, K.; Tominaga, M. TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflug. Arch. 2009, 458, 1093–1102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, Z.; Chen, X.; Zhao, Q.; Stanic, V.; Lin, Z.; Yang, S.; Chen, T.; Chen, J.; Yang, Y. Hair Loss Caused by Gain-of-Function Mutant TRPV3 Is Associated with Premature Differentiation of Follicular Keratinocytes. J. Investig. Dermatol. 2021, 141, 1964–1974. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aijima, R.; Wang, B.; Takao, T.; Mihara, H.; Kashio, M.; Ohsaki, Y.; Zhang, J.Q.; Mizuno, A.; Suzuki, M.; Yamashita, Y.; et al. The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia. FASEB J. 2015, 29, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Earley, S.; Pauyo, T.; Drapp, R.; Tavares, M.J.; Liedtke, W.; Brayden, J.E. TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H1096–H1102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, W.J.; Shim, W.S. Cutaneous Neuroimmune Interactions of TSLP and TRPV4 Play Pivotal Roles in Dry Skin-Induced Pruritus. Front. Immunol. 2021, 12, 772941. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Das, R.; Goswami, C. Role of TRPV4 in skeletal function and its mutant-mediated skeletal disorders. Curr. Top. Membr. 2022, 89, 221–246. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.M.; Romac, J.M.; Shahid, R.A.; Pandol, S.J.; Liedtke, W.; Vigna, S.R.; Liddle, R.A. TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation. J. Clin. Investig. 2020, 130, 2527–2541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naert, R.; López-Requena, A.; Voets, T.; Talavera, K.; Alpizar, Y.A. Expression and Functional Role of TRPV4 in Bone Marrow-Derived CD11c+ Cells. Int. J. Mol. Sci. 2019, 20, 3378. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, K.; Sun, H.; Gui, B.; Sui, C. TRPV4 functions in flow shear stress induced early osteogenic differentiation of human bone marrow mesenchymal stem cells. Biomed. Pharmacother. 2017, 91, 841–848. [Google Scholar] [CrossRef] [PubMed]
- van der Wijst, J.; van Goor, M.K.; Schreuder, M.F.; Hoenderop, J.G. TRPV5 in renal tubular calcium handling and its potential relevance for nephrolithiasis. Kidney Int. 2019, 96, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Burren, C.P.; Caswell, R.; Castle, B.; Welch, C.R.; Hilliard, T.N.; Smithson, S.F.; Ellard, S. TRPV6 compound heterozygous variants result in impaired placental calcium transport and severe undermineralization and dysplasia of the fetal skeleton. Am. J. Med. Genet. A 2018, 176, 1950–1955. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rossi, F.; Bellini, G.; Tortora, C.; Bernardo, M.E.; Luongo, L.; Conforti, A.; Starc, N.; Manzo, I.; Nobili, B.; Locatelli, F.; et al. CB(2) and TRPV(1) receptors oppositely modulate in vitro human osteoblast activity. Pharmacol. Res. 2015, 99, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Liu, K.; Wang, F.; Su, Y. Role of mechanically-sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction. Hum. Cell. 2024, 37, 394–407. [Google Scholar] [CrossRef] [PubMed]
- Zhai, K.; Liskova, A.; Kubatka, P.; Büsselberg, D. Calcium Entry through TRPV1, A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int. J. Mol. Sci. 2020, 21, 4177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghilardi, J.R.; Röhrich, H.; Lindsay, T.H.; Sevcik, M.A.; Schwei, M.J.; Kubota, K.; Halvorson, K.G.; Poblete, J.; Chaplan, S.R.; Dubin, A.E.; et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J. Neurosci. 2005, 25, 3126–3131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, S.; Zhao, J.; Meng, Q. AAV-mediated siRNA against TRPV1 reduces nociception in a rat model of bone cancer pain. Neurol. Res. 2019, 41, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Benitez-Del-Castillo, J.M.; Moreno-Montañés, J.; Jiménez-Alfaro, I.; Muñoz-Negrete, F.J.; Turman, K.; Palumaa, K.; Sádaba, B.; González, M.V.; Ruz, V.; Vargas, B.; et al. Safety and Efficacy Clinical Trials for SYL1001, a Novel Short Interfering RNA for the Treatment of Dry Eye Disease. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6447–6454. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Rannou, F.; Ivanavicius, S.; Conaghan, P.G. Targeting the TRPV1 pain pathway in osteoarthritis of the knee. Expert Opin. Ther. Targets 2024, 28, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.C.; Agnello, K.; Iadarola, M.J. Intrathecal resiniferatoxin in a dog model: Efficacy in bone cancer pain. Pain 2015, 156, 1018–1024. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Menéndez, L.; Juárez, L.; García, E.; García-Suárez, O.; Hidalgo, A.; Baamonde, A. Analgesic effects of capsazepine and resiniferatoxin on bone cancer pain in mice. Neurosci. Lett. 2006, 393, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Iadarola, M.J.; Mannes, A.J. The vanilloid agonist resiniferatoxin for interventional-based pain control. Curr. Top. Med. Chem. 2011, 11, 2171–2179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Szallasi, A. Targeting TRPV1 for Cancer Pain Relief: Can It Work? Cancers 2024, 16, 648. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heiss, J.; Iadarola, M.J.; Cantor, F.; Oughourli, R.; Smith, R.; Mannes, A. A Phase I study of the intrathecal administration of resiniferatoxin for treating severe refractory pain associated with advanced cancer. J. Pain 2014, 15, S65. [Google Scholar] [CrossRef]
- Wahl, P.; Foged, C.; Tullin, S.; Thomsen, C. Iodo-resiniferatoxin, a new potent vanilloid receptor antagonist. Mol. Pharmacol. 2001, 59, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Honore, P.; Chandran, P.; Hernandez, G.; Gauvin, D.M.; Mikusa, J.P.; Zhong, C.; Joshi, S.K.; Ghilardi, J.R.; Sevcik, M.A.; Fryer, R.M.; et al. Repeated dosing of ABT-102, a potent and selective TRPV1 antagonist, enhances TRPV1-mediated analgesic activity in rodents, but attenuates antagonist-induced hyperthermia. Pain 2009, 142, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Asai, H.; Ozaki, N.; Shinoda, M.; Nagamine, K.; Tohnai, I.; Ueda, M.; Sugiura, Y. Heat and mechanical hyperalgesia in mice model of cancer pain. Pain 2005, 117, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, M.; Ogino, A.; Ozaki, N.; Urano, H.; Hironaka, K.; Yasui, M.; Sugiura, Y. Involvement of TRPV1 in nociceptive behavior in a rat model of cancer pain. J. Pain 2008, 9, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Fazzari, J.; Balenko, M.D.; Zacal, N.; Singh, G. Identification of capsazepine as a novel inhibitor of system xc- and cancer-induced bone pain. J. Pain Res. 2017, 10, 915–925. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rivera-Acevedo, R.E.; Pless, S.A.; Ahern, C.A.; Schwarz, S.K. The quaternary lidocaine derivative, QX-314, exerts biphasic effects on transient receptor potential vanilloid subtype 1 channels in vitro. Anesthesiology 2011, 114, 1425–1434, Erratum in Anesthesiology 2015, 123, 492. [Google Scholar] [CrossRef] [PubMed]
- Stueber, T.; Eberhardt, M.J.; Hadamitzky, C.; Jangra, A.; Schenk, S.; Dick, F.; Stoetzer, C.; Kistner, K.; Reeh, P.W.; Binshtok, A.M.; et al. Quaternary Lidocaine Derivative QX-314 Activates and Permeates Human TRPV1 and TRPA1 to Produce Inhibition of Sodium Channels and Cytotoxicity. Anesthesiology 2016, 124, 1153–1165. [Google Scholar] [CrossRef] [PubMed]
- Fuseya, S.; Yamamoto, K.; Minemura, H.; Yamaori, S.; Kawamata, T.; Kawamata, M. Systemic QX-314 Reduces Bone Cancer Pain through Selective Inhibition of Transient Receptor Potential Vanilloid Subfamily 1-expressing Primary Afferents in Mice. Anesthesiology 2016, 125, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, J.; Ren, X.; Liu, Q.; Yang, X. The mechanism of quercetin in regulating osteoclast activation and the PAR2/TRPV1 signaling pathway in the treatment of bone cancer pain. Int. J. Clin. Exp. Pathol. 2018, 11, 5149–5156. [Google Scholar] [PubMed] [PubMed Central]
- Hoshijima, H.; Hunt, M.; Nagasaka, H.; Yaksh, T. Systematic Review of Systemic and Neuraxial Effects of Acetaminophen in Preclinical Models of Nociceptive Processing. J. Pain Res. 2021, 14, 3521–3552. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bao, Y.; Wang, G.; Gao, Y.; Du, M.; Yang, L.; Kong, X.; Zheng, H.; Hou, W.; Hua, B. Topical treatment with Xiaozheng Zhitong Paste alleviates bone cancer pain by inhibiting proteinase-activated receptor 2 signaling pathway. Oncol. Rep. 2015, 34, 1449–1459. [Google Scholar] [CrossRef] [PubMed]
- Heo, M.H.; Kim, J.Y.; Hwang, I.; Ha, E.; Park, K.U. Analgesic effect of quetiapine in a mouse model of cancer-induced bone pain. Korean J. Intern. Med. 2017, 32, 1069–1074. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kawamata, T.; Niiyama, Y.; Yamamoto, J.; Furuse, S. Reduction of bone cancer pain by CB1 activation and TRPV1 inhibition. J. Anesth. 2010, 24, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Meents, J.E.; Ciotu, C.I.; Fischer, M.J.M. TRPA1: A molecular view. J. Neurophysiol. 2019, 121, 427–443. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.T.; Woo, J.; Luna-Figueroa, E.; Maleki, E.; Harmanci, A.S.; Deneen, B. Social deprivation induces astrocytic TRPA1-GABA suppression of hippocampal circuits. Neuron 2023, 111, 1301–1315.e5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iannone, L.F.; Nassini, R.; Patacchini, R.; Geppetti, P.; De Logu, F. Neuronal and non-neuronal TRPA1 as therapeutic targets for pain and headache relief. Temperature 2022, 10, 50–66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, H.J.; Callaghan, B.; Bron, R.; Bravo, D.M.; Furness, J.B. Identification of enteroendocrine cells that express TRPA1 channels in the mouse intestine. Cell Tissue Res. 2014, 356, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Luostarinen, S.; Hämäläinen, M.; Hatano, N.; Muraki, K.; Moilanen, E. The inflammatory regulation of TRPA1 expression in human A549 lung epithelial cells. Pulm. Pharmacol. Ther. 2021, 70, 102059. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ding, N.; Wang, H.; Zu, S.; Liu, H.; Wen, J.; Liu, J.; Ge, N.; Wang, W.; Zhang, X. Activation of TRPA1 in Bladder Suburothelial Myofibroblasts Counteracts TGF-β1-Induced Fibrotic Changes. Int. J. Mol. Sci. 2023, 24, 9501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vélez-Ortega, A.C.; Stepanyan, R.; Edelmann, S.E.; Torres-Gallego, S.; Park, C.; Marinkova, D.A.; Nowacki, J.S.; Sinha, G.P.; Frolenkov, G.I. TRPA1 activation in non-sensory supporting cells contributes to regulation of cochlear sensitivity after acoustic trauma. Nat. Commun. 2023, 14, 3871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Z.; Ye, D.; Ye, J.; Wang, M.; Liu, J.; Jiang, H.; Xu, Y.; Zhang, J.; Chen, J.; Wan, J. The TRPA1 Channel in the Cardiovascular System: Promising Features and Challenges. Front. Pharmacol. 2019, 10, 1253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kudsi, S.Q.; de David Antoniazzi, C.T.; Camponogara, C.; Meira, G.M.; de Amorim Ferreira, M.; da Silva, A.M.; Dalenogare, D.P.; Zaccaron, R.; Dos Santos Stein, C.; Silveira, P.C.L.; et al. Topical application of a TRPA1 antagonist reduced nociception and inflammation in a model of traumatic muscle injury in rats. Inflammopharmacology 2023, 31, 3153–3166. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Sase, T.; Higashikawa, A.; Sato, M.; Sato, T.; Tazaki, M.; Shibukawa, Y. High pH-Sensitive TRPA1 Activation in Odontoblasts Regulates Mineralization. J. Dent. Res. 2016, 95, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Kiss, F.; Kormos, V.; Szőke, É.; Kecskés, A.; Tóth, N.; Steib, A.; Szállási, Á.; Scheich, B.; Gaszner, B.; Kun, J.; et al. Functional Transient Receptor Potential Ankyrin 1 and Vanilloid 1 Ion Channels Are Overexpressed in Human Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2022, 23, 1921. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Y.T.; Yen, S.L.; Li, C.F.; Chan, T.C.; Chen, T.J.; Lee, S.W.; He, H.L.; Chang, I.W.; Hsing, C.H.; Shiue, Y.L. Overexpression of Transient Receptor Protein Cation Channel Subfamily A Member 1, Confers an Independent Prognostic Indicator in Nasopharyngeal Carcinoma. J. Cancer 2016, 7, 1181–1188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Almeida, A.S.; Rigo, F.K.; De Prá, S.D.; Milioli, A.M.; Pereira, G.C.; Lückemeyer, D.D.; Antoniazzi, C.T.; Kudsi, S.Q.; Araújo, D.M.P.A.; Oliveira, S.M.; et al. Role of transient receptor potential ankyrin 1 (TRPA1) on nociception caused by a murine model of breast carcinoma. Pharmacol. Res. 2020, 152, 104576. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, F.; Şelescu, T.; Domocoş, D.; Măruţescu, L.; Chiritoiu, G.; Chelaru, N.R.; Dima, S.; Mihăilescu, D.; Babes, A.; Cucu, D. Functional expression of the transient receptor potential ankyrin type 1 channel in pancreatic adenocarcinoma cells. Sci. Rep. 2021, 11, 2018, Erratum in Sci. Rep. 2021, 11, 8853. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faris, P.; Rumolo, A.; Pellavio, G.; Tanzi, M.; Vismara, M.; Berra-Romani, R.; Gerbino, A.; Corallo, S.; Pedrazzoli, P.; Laforenza, U.; et al. Transient receptor potential ankyrin 1 (TRPA1) mediates reactive oxygen species-induced Ca2+ entry, mitochondrial dysfunction, and caspase-3/7 activation in primary cultures of metastatic colorectal carcinoma cells. Cell Death Discov. 2023, 9, 213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vancauwenberghe, E.; Noyer, L.; Derouiche, S.; Lemonnier, L.; Gosset, P.; Sadofsky, L.R.; Mariot, P.; Warnier, M.; Bokhobza, A.; Slomianny, C.; et al. Activation of mutated TRPA1 ion channel by resveratrol in human prostate cancer associated fibroblasts (CAF). Mol. Carcinog. 2017, 56, 1851–1867. [Google Scholar] [CrossRef] [PubMed]
- Hudhud, L.; Rozmer, K.; Kecskés, A.; Pohóczky, K.; Bencze, N.; Buzás, K.; Szőke, É.; Helyes, Z. Transient Receptor Potential Ankyrin 1 Ion Channel Is Expressed in Osteosarcoma and Its Activation Reduces Viability. Int. J. Mol. Sci. 2024, 25, 3760. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laursen, W.J.; Anderson, E.O.; Hoffstaetter, L.J.; Bagriantsev, S.N.; Gracheva, E.O. Species-specific temperature sensitivity of TRPA1. Temperature 2015, 2, 214–226. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laursen, W.J.; Bagriantsev, S.N.; Gracheva, E.O. TRPA1 channels: Chemical and temperature sensitivity. Curr. Top. Membr. 2014, 74, 89–112. [Google Scholar] [CrossRef] [PubMed]
- So, K.; Tei, Y.; Zhao, M.; Miyake, T.; Hiyama, H.; Shirakawa, H.; Imai, S.; Mori, Y.; Nakagawa, T.; Matsubara, K.; et al. Hypoxia-induced sensitisation of TRPA1 in painful dysesthesia evoked by transient hindlimb ischemia/reperfusion in mice. Sci. Rep. 2016, 6, 23261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weng, Y.; Batista-Schepman, P.A.; Barabas, M.E.; Harris, E.Q.; Dinsmore, T.B.; Kossyreva, E.A.; Foshage, A.M.; Wang, M.H.; Schwab, M.J.; Wang, V.M.; et al. Prostaglandin metabolite induces inhibition of TRPA1 and channel-dependent nociception. Mol. Pain 2012, 8, 75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gouin, O.; L’Herondelle, K.; Lebonvallet, N.; Le Gall-Ianotto, C.; Sakka, M.; Buhé, V.; Plée-Gautier, E.; Carré, J.L.; Lefeuvre, L.; Misery, L.; et al. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: Pro-inflammatory response induced by their activation and their sensitization. Protein Cell. 2017, 8, 644–661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schwartz, E.S.; Christianson, J.A.; Chen, X.; La, J.H.; Davis, B.M.; Albers, K.M.; Gebhart, G.F. Synergistic role of TRPV1 and TRPA1 in pancreatic pain and inflammation. Gastroenterology 2011, 140, 1283–1291.e1–e2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, P.; Tao, H.; Chen, K.; Chu, M.; Wang, Q.; Yang, X.; Zhou, J.; Yang, H.; Geng, D. TRPA1 aggravates osteoclastogenesis and osteoporosis through activating endoplasmic reticulum stress mediated by SRXN1. Cell Death Dis. 2024, 15, 624. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Francesconi, O.; Corzana, F.; Kontogianni, G.I.; Pesciullesi, G.; Gualdani, R.; Supuran, C.T.; Angeli, A.; Kavasi, R.M.; Chatzinikolaidou, M.; Nativi, C. Lipoyl-Based Antagonists of Transient Receptor Potential Cation A (TRPA1) Downregulate Osteosarcoma Cell Migration and Expression of Pro-Inflammatory Cytokines. ACS Pharmacol. Transl. Sci. 2022, 5, 1119–1127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Q.; Feng, L.; Han, X.; Zhang, W.; Zhang, H.; Xu, L. The TRPA1 Channel Mediates Mechanical Allodynia and Thermal Hyperalgesia in a Rat Bone Cancer Pain Model. Front. Pain Res. 2021, 2, 638620. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forni, M.F.; Domínguez-Amorocho, O.A.; de Assis, L.V.M.; Kinker, G.S.; Moraes, M.N.; Castrucci, A.M.L.; Câmara, N.O.S. An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice. Front. Oncol. 2021, 11, 667715. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Antoniazzi, C.T.D.; Nassini, R.; Rigo, F.K.; Milioli, A.M.; Bellinaso, F.; Camponogara, C.; Silva, C.R.; de Almeida, A.S.; Rossato, M.F.; De Logu, F.; et al. Transient receptor potential ankyrin 1 (TRPA1) plays a critical role in a mouse model of cancer pain. Int. J. Cancer 2019, 144, 355–365. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Almeida, A.S.; Pereira, G.C.; Brum, E.D.S.; Silva, C.R.; Antoniazzi, C.T.D.; Ardisson-Araújo, D.; Oliveira, S.M.; Trevisan, G. Role of TRPA1 expressed in bone tissue and the antinociceptive effect of the TRPA1 antagonist repeated administration in a breast cancer pain model. Life Sci. 2021, 276, 119469. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Fliegert, R.; Guse, A.H.; Lü, W.; Du, J. A structural overview of the ion channels of the TRPM family. Cell Calcium 2020, 85, 102111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kashio, M.; Tominaga, M. TRP channels in thermosensation. Curr. Opin. Neurobiol. 2022, 75, 102591. [Google Scholar] [CrossRef] [PubMed]
- Vangeel, L.; Benoit, M.; Miron, Y.; Miller, P.E.; De Clercq, K.; Chaltin, P.; Verfaillie, C.; Vriens, J.; Voets, T. Functional expression and pharmacological modulation of TRPM3 in human sensory neurons. Br. J. Pharmacol. 2020, 177, 2683–2695. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gandini, M.A.; Zamponi, G.W. Navigating the Controversies: Role of TRPM Channels in Pain States. Int. J. Mol. Sci. 2024, 25, 10284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Almasi, S.; Long, C.Y.; Sterea, A.; Clements, D.R.; Gujar, S.; El Hiani, Y. TRPM2 silencing causes G2/M arrest and apoptosis in lung cancer cells via increasing intracellular ROS and RNS levels and activating the JNK pathway. Cell. Physiol. Biochem. 2019, 52, 742–757. [Google Scholar] [CrossRef]
- Maeda, T.; Suzuki, A.; Koga, K.; Miyamoto, C.; Maehata, Y.; Ozawa, S.; Hata, R.I.; Nagashima, Y.; Nabeshima, K.; Miyazaki, K.; et al. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells. Oncotarget 2017, 8, 78312–78326. [Google Scholar] [CrossRef]
- Liu, K.; Xu, S.H.; Chen, Z.; Zeng, Q.X.; Li, Z.J.; Chen, Z.M. TRPM7 overexpression enhances the cancer stem cell-like and metastatic phenotypes of lung cancer through modulation of the Hsp90a/uPA/MMP2 signaling pathway. BMC Cancer 2018, 18, 1167. [Google Scholar] [CrossRef]
- Samart, P.; Luanpitpong, S.; Rojanasakul, Y.; Issaragrisil, S. O- GlcNAcylation homeostasis controlled by calcium influx channels regulates multiple myeloma dissemination. J. Exp. Clin. Cancer Res. 2021, 40, 100. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Mikrani, R.; He, Y.; Faran Ashraf Baig, M.M.; Abbas, M.; Naveed, M.; Tang, M.; Zhang, Q.; Li, C.; Zhou, X. TRPM8 channels: A review of distribution and clinical role. Eur. J. Pharmacol. 2020, 882, 173312. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, S.V.; Casas, Z.; Albarracín, S.L.; Sutachan, J.J.; Torres, Y.P. Therapeutic potential of TRPM8 channels in cancer treatment. Front. Pharmacol. 2023, 14, 1098448. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Leng, A.; Li, L.; Yang, B.; Shen, S.; Chen, H.; Zhu, E.; Xu, Q.; Ma, X.; Shi, P.; et al. AMTB, a TRPM8 antagonist, suppresses growth and metastasis of osteosarcoma through repressing the TGFb signalling pathway. Cell Death Dis. 2022, 13, 288. [Google Scholar] [CrossRef]
- Okamoto, Y.; Ohkubo, T.; Ikebe, T.; Yamazaki, J. Blockade of TRPM8 activity reduces the invasion potential of oral squamous carcinoma cell lines. Int. J. Oncol. 2012, 40, 1431–1440. [Google Scholar] [CrossRef]
- Di Sarno, V.; Giovannelli, P.; Medina-Peris, A.; Ciaglia, T.; Di Donato, M.; Musella, S.; Lauro, G.; Vestuto, V.; Smaldone, G.; Di Matteo, F.; et al. New TRPM8 blockers exert anticancer activity over castration-resistant prostate cancer models. Eur. J. Med. Chem. 2022, 238, 114435. [Google Scholar] [CrossRef]
- Liu, T.; Liao, Y.; Tao, H.; Zeng, J.; Wang, G.; Yang, Z.; Wang, Y.; Xiao, Y.; Zhou, J.; Wang, X. RNA interference-mediated depletion of TRPM8 enhances the efficacy of epirubicin chemotherapy in prostate cancer LNCaP and PC3 cells. Oncol. Lett. 2018, 15, 4129–4136, Erratum in Oncol. Lett. 2022, 23, 91. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slominski, A. Cooling skin cancer: Menthol inhibits melanoma growth. Focus on “TRPM8 activation suppresses cellular viability in human melanoma”. Am. J. Physiol. Cell. Physiol. 2008, 295, C293–C295. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shin, M.; Mori, S.; Mizoguchi, T.; Arai, A.; Kajiya, H.; Okamoto, F.; Bartlett, J.D.; Matsushita, M.; Udagawa, N.; Okabe, K. Mesenchymal cell TRPM7 expression is required for bone formation via the regulation of chondrogenesis. Bone 2023, 166, 116579. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, M.; Matta, J.; Honjol, Y.; Schupbach, D.; Mwale, F.; Harvey, E.; Merle, G. Decoding Cold Therapy Mechanisms of Enhanced Bone Repair through Sensory Receptors and Molecular Pathways. Biomedicines 2024, 12, 2045. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qiao, W.; Wong, K.H.M.; Shen, J.; Wang, W.; Wu, J.; Li, J.; Lin, Z.; Chen, Z.; Matinlinna, J.P.; Zheng, Y.; et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nat. Commun. 2021, 12, 2885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yao, H.; Zhang, L.; Yan, S.; He, Y.; Zhu, H.; Li, Y.; Wang, D.; Yang, K. Low-intensity pulsed ultrasound/nanomechanical force generators enhance osteogenesis of BMSCs through microfilaments and TRPM7. J. Nanobiotechnol. 2022, 20, 378. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Acharya, T.K.; Kumar, S.; Tiwari, N.; Ghosh, A.; Tiwari, A.; Pal, S.; Majhi, R.K.; Kumar, A.; Das, R.; Singh, A.; et al. TRPM8 channel inhibitor-encapsulated hydrogel as a tunable surface for bone tissue engineering. Sci. Rep. 2021, 11, 3730. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Son, A.; Kang, N.; Kang, J.Y.; Kim, K.W.; Yang, Y.M.; Shin, D.M. TRPM3/TRPV4 regulates Ca2+-mediated RANKL/NFATc1 expression in osteoblasts. J. Mol. Endocrinol. 2018, 61, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Fozzato, S.; Baranzini, N.; Bossi, E.; Cinquetti, R.; Grimaldi, A.; Campomenosi, P.; Surace, M.F. TRPV4 and TRPM8 as putative targets for chronic low back pain alleviation. Pflug. Arch. 2021, 473, 151–165. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, D.; Treede, R.D.; Köhr, G. Electrophysiological evidence that TRPM3 is a candidate in latent spinal sensitization of chronic low back pain. Neurosci. Lett. 2023, 816, 137509. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coluzzi, F.; Scerpa, M.S.; Alessandri, E.; Romualdi, P.; Rocco, M. Role of TRP Channels in Cancer-Induced Bone Pain. Int. J. Mol. Sci. 2025, 26, 1229. https://doi.org/10.3390/ijms26031229
Coluzzi F, Scerpa MS, Alessandri E, Romualdi P, Rocco M. Role of TRP Channels in Cancer-Induced Bone Pain. International Journal of Molecular Sciences. 2025; 26(3):1229. https://doi.org/10.3390/ijms26031229
Chicago/Turabian StyleColuzzi, Flaminia, Maria Sole Scerpa, Elisa Alessandri, Patrizia Romualdi, and Monica Rocco. 2025. "Role of TRP Channels in Cancer-Induced Bone Pain" International Journal of Molecular Sciences 26, no. 3: 1229. https://doi.org/10.3390/ijms26031229
APA StyleColuzzi, F., Scerpa, M. S., Alessandri, E., Romualdi, P., & Rocco, M. (2025). Role of TRP Channels in Cancer-Induced Bone Pain. International Journal of Molecular Sciences, 26(3), 1229. https://doi.org/10.3390/ijms26031229