6,8-Dibromo-11H-indeno[1,2-b]quinolin-11-one
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. X-Ray Crystal Structure
2.3. Molecular Docking Study of DNA Intercalation
3. Materials and Methods
3.1. General Information and Compound 3 Synthesis
3.2. X-Ray Crystal Structure Determination
3.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asao, T.; Okazaki, S.; Wakita, S.; Utsuki, T.; Yamada, Y. Preparation of Indenoquinoline Derivatives and Analogs as Antitumor Agents. JP Patent 09143166 A2, 1997. [Google Scholar]
- Utsugi, T.; Aoyagi, K.; Asao, T.; Okazaki, S.; Aoyagi, Y.; Sano, M.; Wierzba, K.; Yamada, Y. Antitumor activity of a novel quinoline derivative, TAS-103, with inhibitory effects on topoisomerases I and II. Jpn. J. Cancer Res. 1997, 88, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Aoyagi, Y.; Kobunai, T.; Utsugi, T.; Oh-hara, T.; Yamada, Y. In vitro antitumor activity of TAS-103, a novel quinoline derivative that targets topoisomerases I and II. Jpn. J. Cancer Res. 1999, 90, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K.; Asao, T. Self-association and unique DNA binding properties of the anti-cancer agent TAS-103, a dual inhibitor of topoisomerases I and II. Biochim. Biophys. Acta 2002, 1587, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.L.; Chen, Y.L.; Tzeng, C.C.; Chen, I.S. Synthesis and Cytotoxic Evaluation of Some 4-Anilinofuro [2,3-b]quinoline Derivatives. Helv. Chim. Acta 2002, 85, 2214–2221. [Google Scholar] [CrossRef]
- Tseng, C.H.; Tzeng, C.C.; Chung, K.Y.; Kao, C.L.; Hsu, C.Y.; Cheng, C.M.; Huang, K.S.; Chen, Y.L. Synthesis and antiproliferative evaluation of 6-aryl-11-iminoindeno [1,2-c]quinoline derivatives. Bioorg. Med. Chem. 2011, 19, 7653–7663. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Chen, Y.L.; Tzeng, C.C.; Chen, I.L.; Wang, T.C.; Han, C.H. Synthesis and Cytotoxic Evaluation of Certain 4-(Phenylamino)furo [2,3-b]quinoline and 2-(Furan-2-yl)-4-(phenylamino)quinoline Derivatives. Chem. Biodiver. 2005, 2, 205–214. [Google Scholar] [CrossRef]
- Chen, Y.L.; Chen, I.L.; Wang, T.C.; Han, C.H.; Tzeng, C.C. Synthesis and anticancer evaluation of certain 4-anilinofuro [2,3-b]quinoline and 4-anilinofuro [3,2-c]quinoline derivatives. Eur. J. Med. Chem. 2005, 40, 928–934. [Google Scholar] [CrossRef]
- Huang, Y.T.; Huang, D.M.; Guh, J.H.; Chen, I.L.; Tzeng, C.C.; Teng, C.M. CIL-102 Interacts with Microtubule Polymerization and Causes Mitotic Arrest Following Apoptosis in the Human Prostate Cancer PC-3 Cell Line. J. Biol. Chem. 2005, 280, 2771–2779. [Google Scholar] [CrossRef]
- Deady, L.W.; Desneves, J.; Kaye, A.J.; Finlay, G.J.; Baguley, B.C.; Denny, W.A. Synthesis and antitumor activity of some indeno [1,2-b]quinoline-based bis carboxamides. Bioorg. Med. Chem. 2000, 8, 977–984. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Croft, M.S.; Marko, M.G.; Moyna, G. Synthesis and evaluation as potential anticancer agents of novel tetracyclic indenoquinoline derivatives. Bioorg. Med. Chem. 2013, 21, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Liakhov, S.A.; Schepetkin, I.A.; Karpenko, O.S.; Duma, H.I.; Haidarzhy, N.M.; Kirpotina, L.N.; Kovrizhina, A.R.; Khlebnikov, A.I.; Bagryanskaya, I.Y.; Quinn, M.T. Novel c-Jun N-Terminal Kinase (JNK) Inhibitors with an 11H-Indeno [1,2-b]quinoxalin-11-one Scaffold. Molecules 2021, 26, 5688. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Khlebnikov, A.I.; Potapov, A.S.; Kovrizhina, A.R.; Matveevskaya, V.V.; Belyanin, M.L.; Atochin, D.N.; Zanoza, S.O.; Gaidarzhy, N.M.; Lyakhov, S.A.; et al. Synthesis, biological evaluation, and molecular modeling of 11H-indeno [1,2-b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime as c-Jun N-terminal kinase inhibitors. Eur. J. Med. Chem. 2019, 161, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Lankin, D.C. Further Exploratory Studies on the Rearrangements of Alpha-(2-Hydroxy- and 2-Aminobenzylidene)-Carbonyl Compounds. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 1972. [Google Scholar]
- Tominaga, Y.; Okuda, H.; Kohra, S.; Mazume, H. Reaction of Enaminones with Carbon Disulfide: Synthesis of Heterocycles Using Enamino Dithiocarboxylates. J. Heterocycl. Chem. 1991, 28, 1245. [Google Scholar] [CrossRef]
- Deady, L.W.; Desneves, J.; Kaye, A.J.; Finlay, G.J.; Baguley, B.C.; Denny, W.A. Positioning of the carboxamide side chain in 11-oxo-11H-indeno [1,2-b]quinolinecarboxamide anticancer agents: Effects on cytotoxicity. Bioorg. Med. Chem. 2001, 9, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Marquise, N.; Harford, P.J.; Chevallier, F.; Roisnel, T.; Dorcet, V.; Gagez, A.L.; Sablé, S.; Picot, L.; Thiéry, V.; Wheatley, A.; et al. Synthesis of azafluorenones and related compounds using deprotocupration–aroylation followed by intramolecular direct arylation. Tetrahedron 2013, 69, 10123–10133. [Google Scholar] [CrossRef]
- Patel, A.P.; Shaikh, M.M.; Gurjar, K.K.; Chikhalia, K.H. Synthesis of indenoquinolinone through aryne-mediated Pd(II)-catalysed remote C–H activation. Res. Chem. Intermed. 2021, 47, 2049–2061. [Google Scholar] [CrossRef]
- Rajawinslin, R.R.; Gawande, S.D.; Kavala, V.; Huang, Y.-H.; Kuo, C.W.; Kuo, T.S.; Chen, M.L.; He, C.H.; Yao, C.F. Iron/acetic acid mediated intermolecular tandem C–C and C–N bond formation: An easy access to acridinone and quinoline derivatives. RSC Adv. 2014, 4, 37806–37811. [Google Scholar] [CrossRef]
- Mishra, K.; Pandey, A.K.; Singh, J.B.; Singh, R.M. Metal free TBHP-promoted intramolecular carbonylation of arenes via radical cross-dehydrogenative coupling: Synthesis of indenoquinolinones, 4-azafluorenones and fluorenones. Org. Biomol. Chem. 2016, 14, 6328–6336. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, L.; Yu, J.; Liu, M.; Qiu, J.; Fang, L.; Guo, F.; Tang, J. Synthesis of quinolines via Friedländer reaction in water and under catalyst-free conditions. Synthesis 2012, 44, 389–392. [Google Scholar]
- Hang, X.; Zhang, Y.; Chen, Z.; Sun, Z.; Chen, S. Organic Photoelectric Functional Material, Method for Preparing the Same, Use of the Same, Organic Electronic Assembly, and Light Emitting Device. US Patent 20190237678 A1, 1 August 2019. [Google Scholar]
- Lipscomb, L.A.; Peek, M.E.; Zhou, F.X.; Bertrand, J.A.; VanDerveer, D.; Williams, L.D. Water ring structure at DNA interfaces: Hydration and dynamics of DNA-anthracycline complexes. Biochemistry 1994, 33, 3649–3659. [Google Scholar] [CrossRef] [PubMed]
- SADABS, version 2.11. Bruker Advanced X-Ray Solutions. Bruker AXS Inc.: Madison, WI, USA, 2012.
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Lyskov, S.; Chou, F.C.; Conchúir, S.Ó.; Der, B.S.; Drew, K.; Kuroda, D.; Xu, J.; Weitzner, B.D.; Renfrew, P.D.; Sripakdeevong, P.; et al. Serverification of molecular modeling applications: The Rosetta Online Server that Includes Everyone (ROSIE). PLoS ONE 2013, 8, e63906. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Empirical formula | C16H7NOBr2 |
Formula weight | 389.05 |
Temperature, K | 291 (2) |
Crystal system | monoclinic |
Space group | P21/n |
a, Å | 15.5188 (8) |
b, Å | 3.9524 (2) |
c, Å | 21.8263 (10) |
β, ° | 93.262 (4) |
Volume, Å3 | 1336.58 (11) |
Z | 4 |
ρcalc, g/cm3 | 1.933 |
μ, mm−1 | 6.057 |
F(000) | 752.0 |
Crystal size, mm3 | 0.25 × 0.10 × 0.03 |
2Θ range for data collection, ° | 5.258 to 58.558 |
Index ranges | −19 ≤ h ≤ 12, −5 ≤ k ≤ 5, −28 ≤ l ≤ 29 |
Reflections collected | 6164 |
Independent reflections | 2963 [Rint = 0.0537, Rsigma = 0.0561] |
Data/Restraints/Parameters | 2963/0/181 |
Goodness-of-fit on F2 | 1.077 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0475, wR2 = 0.1146 |
Final R indexes [all data] | R1 = 0.0640, wR2 = 0.1359 |
Largest diff. peak/hole, e·Å−3 | 0.61/−0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovrizhina, A.R.; Tolegen, D.; Pavlov, D.I.; Potapov, A.S.; Khlebnikov, A.I. 6,8-Dibromo-11H-indeno[1,2-b]quinolin-11-one. Molbank 2024, 2024, M1922. https://doi.org/10.3390/M1922
Kovrizhina AR, Tolegen D, Pavlov DI, Potapov AS, Khlebnikov AI. 6,8-Dibromo-11H-indeno[1,2-b]quinolin-11-one. Molbank. 2024; 2024(4):M1922. https://doi.org/10.3390/M1922
Chicago/Turabian StyleKovrizhina, Anastasia R., Dauren Tolegen, Dmitry I. Pavlov, Andrei S. Potapov, and Andrei I. Khlebnikov. 2024. "6,8-Dibromo-11H-indeno[1,2-b]quinolin-11-one" Molbank 2024, no. 4: M1922. https://doi.org/10.3390/M1922
APA StyleKovrizhina, A. R., Tolegen, D., Pavlov, D. I., Potapov, A. S., & Khlebnikov, A. I. (2024). 6,8-Dibromo-11H-indeno[1,2-b]quinolin-11-one. Molbank, 2024(4), M1922. https://doi.org/10.3390/M1922