Detection and Control of Invasive Freshwater Crayfish: From Traditional to Innovative Methods
Abstract
:1. Introduction
2. Monitoring the Situation
2.1. Models
2.2. eDNA
2.3. Citizen Science, Involving Stakeholders and the Public
3. Traditional Techniques for Controlling Invasive Crayfish Species
3.1. Physical Controls
3.2. Barriers and Drainage Interventions
3.3. Biological Control
3.4. Biocidal Control
4. Emerging Techniques for Controlling Invasive Crayfish and Protecting Endangered Native Species
4.1. Sexual Attractants
4.2. Monosex Populations
4.3. Silencing of Key Hormones through RNA Interference (RNAi)
4.4. Sterile Male Release Technique (SMRT)
4.5. Oral Delivery
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Richman, N.I.; Böhm, M.; Adams, S.B.; Alvarez, F.; Bergey, E.A.; Bunn, J.J.; Burnham, Q.; Cordeiro, J.; Coughran, J.; Crandall, K.A.; et al. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140060. [Google Scholar] [CrossRef] [PubMed]
- Hansen, G.J.A.; Hein, C.L.; Roth, B.M.; Vander Zanden, M.J.; Gaeta, J.W.; Latzka, A.W.; Carpenter, S.R. Food web consequences of long-term invasive crayfish control. Can. J. Fish. Aquat. Sci. 2013, 70, 1109–1122. [Google Scholar] [CrossRef]
- Deidun, A.; Sciberras, A.; Formosa, j.; Zava, B.; Insacco, G.; Corsini-Foka, M.; Crandall, K.A. Invasion by non-indigenous freshwater decapods of Malta and Sicily, central Mediterranean Sea. J. Crustacean Biol. 2018, 38, 1–6. [Google Scholar] [CrossRef]
- Manfrin, C.; Souty-Grosset, C.; Anastácio, P.; Reynolds, J.; Giulianini, P.G. The Apparently Relentless Spread of the Major Decapod Alien Species in the Mediterranean Basin and European Inland Waters. In Histories of Bioinvasions in the Mediterranean; Queiroz, A., Pooley, S., Eds.; Springer Nature: Cham, Switzerland, 2018; Volume 8, pp. 51–86. [Google Scholar]
- MWO (Mediterranean Wetlands Outlook). First Mediterranean Wetlands Observatory Report; MWO: Tour du Valat, France, 2012; p. 128. [Google Scholar]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibanez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Souty-Grosset, C.; Anastácio, P.M.; Aquiloni, L.; Banha, F.; Choquer, J.; Chucholl, C.; Tricarico, E. The red swamp crayfish Procambarus clarkii in Europe: Impacts on aquatic ecosystems and human wellbeing. Limnologica 2016, 58, 78–93. [Google Scholar] [CrossRef]
- Souty-Grosset, C.; Anastacio, P.; Reynolds, J.; Tricarico, E. Invasive freshwater invertebrates and fishes: Impacts on human health. In Invasive Species and Human Health; Mazza, G., Tricarico, E., Eds.; CABI: Oxfordshire, UK, 2018. [Google Scholar]
- Mazza, G.; Tricarico, E.; Genovesi, P.; Gherardi, F. Biological invaders are threats to human health: An overview. Ethol. Ecol. Evol. 2014, 26, 112–129. [Google Scholar] [CrossRef]
- Shackleton, R.T.; Larson, B.M.H.; Novoa, A.; Richardson, D.M.; Kull, C.A. The human and social dimensions of invasion science and management. J. Environ. Manag. 2019, 229, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lodge, D.M.; Taylor, C.A.; Holdich, D.M.; Skurdal, J. Nonindigenous Crayfishes Threaten North American Freshwater Biodiversity: Lessons from Europe. Fisheries 2000, 25, 7–20. [Google Scholar] [CrossRef]
- Aquiloni, L.; Martin, M.P.; Gherardi, F.; Diéguez-Uribeondo, J. The North American crayfish Procambarus clarkii is the carrier of the oomycete Aphanomyces astaci in Italy. Biol. Invasions 2011, 13, 359–367. [Google Scholar] [CrossRef]
- Vogt, G. Diseases of European freshwater crayfish, with particular emphasis on interspecific transmission of pathogens. In Crayfish in Europe as Alien Species. How to Make the Best of a Bad Situation? Gherardi, F., Holdich, D., Eds.; A.A. Balkema: Rotterdam, The Netherlands, 1999; pp. 87–102. [Google Scholar]
- Unestam, T. Significance of diseases in freshwater crayfish. Freshw. Crayfish 1973, 2, 136–150. [Google Scholar]
- Gherardi, F. Crayfish invading Europe: The case study of Procambarus clarkii. Mar. Freshw. Behav. Physiol. 2006, 39, 175–191. [Google Scholar] [CrossRef]
- Faulkes, Z. The global trade in crayfish as pets. Crustacean Res. 2015, 44, 75–92. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.; Souty-Grosset, C. Management of Freshwater Biodiversity: Crayfish as Bioindicators; Cambridge University Press: Cambridge, UK, 2012; p. 384. [Google Scholar]
- Lodge, D.M.; Deines, A.; Gherardi, F.; Yeo, D.C.Y.; Arcella, T.; Baldridge, A.K.; Barnes, M.A.; Chadderton, W.L.; Feder, J.L.; Gantz, C.A.; et al. Global Introductions of Crayfishes: Evaluating the Impact of Species Invasions on Ecosystem Services. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 449–472. [Google Scholar] [CrossRef]
- Gherardi, F.; Acquistapace, P. Invasive crayfish in Europe: The impact of Procambarus clarkii on the littoral community of a Mediterranean lake. Freshw. Biol. 2007, 52, 1249–1259. [Google Scholar] [CrossRef]
- Peruzza, L.; Piazza, F.; Manfrin, C.; Bonzi, L.C.; Battistella, S.; Giulianini, P.G. Reproductive plasticity of a Procambarus clarkii population living 10 °C below its thermal optimum. Aquat. Invasions 2015, 10, 199–208. [Google Scholar] [CrossRef]
- Berné, L.B. Primera cita de Cherax destructor (Crustacea: Decapoda: Parastacidae) em España. Bol. SEA 1996, 14, 49–51. [Google Scholar]
- Scalici, M.; Chiesa, S.; Gherardi, F.; Ruffini, M.; Gibertini, G.; Nonnis Marzano, F. The new threat to Italian inland waters from the alien crayfish “gang”: The Australian Cherax destructor Clark, 1936. Hydrobiologia 2009, 632, 341–345. [Google Scholar] [CrossRef]
- Beatty, S.; Morgan, D.; Gill, H. Role of life history strategy in the colonisation of Western Australian aquatic systems by the introduced crayfish Cherax destructor Clark, 1936. Hydrobiologia 2005, 549, 219–237. [Google Scholar] [CrossRef]
- Capinha, C.; Leung, B.; Anastácio, P. Predicting worldwide invasiveness for four major problematic decapods: An evaluation of using different calibration sets. Ecography 2011, 34, 448–459. [Google Scholar] [CrossRef]
- Gutekunst, J.; Andriantsoa, R.; Falckenhayn, C.; Hanna, K.; Stein, W.; Rasamy, J.; Lyko, F. Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nat. Ecol. Evol. 2018, 2, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Ma, Z.; Yang, C.; Wang, L.; Wang, W.; Zhao, G.; Geng, Y.; Yu, D.W. Using eDNA to detect the distribution and density of invasive crayfish in the HongheHani rice terrace World Heritage site. PLoS ONE 2017, 12, e0177724. [Google Scholar] [CrossRef] [PubMed]
- Harper, K.J.; Anucha, N.P.; Turnbull, J.F.; Bean, C.W.; Leaver, M.J. Searching for a signal: Environmental DNA (eDNA) for the detection of invasive signal crayfish, Pacifastacus leniusculus (Dana, 1852). Manag. Biol. Invasions 2018, 9. in press. [Google Scholar] [CrossRef]
- Riascos, L.; Geerts, A.N.; Oña, T.; Goethals, P.; Cevallos-Cevallos, J.; Vanden Berghe, W.; Volckaert, F.A.M.; Bonilla, J.; Muylaert, K.; Velarde, E.; et al. DNA-based monitoring of the alien invasive North American crayfish Procambarus clarkii in Andean lakes (Ecuador). Limnologica 2018, 70, 20–25. [Google Scholar] [CrossRef]
- Pereira Almerão, M.; Delaunay, C.; Coignet, A.; Peiró, D.F.; Pinet, F.; Souty-Grosset, C. Genetic diversity of the invasive crayfish Procambarus clarkii in France. Limnologica 2018, 69, 135–141. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, L. Population genetic structure and molecular diversity of the red swamp crayfish in China based on mtDNA COI gene sequences. Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2017, 28, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Semenchenko, V.; Lipinskaya, T.; Vilizzi, L. Risk screening of non-native macroinvertebrates in the major rivers and associated basins of Belarus using the Aquatic Species Invasiveness Screening Kit. Manag. Biol. Invasions 2018, 9, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Mijošek, T.; Jelić, M.; Mijošek, V.; Maguire, I. Molecular and morphometric characterisation of the invasive signal crayfish populations in Croatia. Limnologica 2017, 63, 107–118. [Google Scholar] [CrossRef]
- Lodge, D.M.; Simonin, P.W.; Burgiel, S.W.; Keller, R.P.; Bossenbroek, J.M.; Jerde, C.L.; Kramer, A.M.; Rutherford, E.S.; Barnes, M.A.; Wittmann, M.E.; et al. Risk Analysis and Bioeconomics of Invasive Species to Inform Policy and Management. Ann. Rev. Environ. Resour. 2016, 41, 453–488. [Google Scholar] [CrossRef]
- Filipe, A.F.; Quaglietta, L.; Ferreira, M.; Magalhães, M.F.; Beja, P. Geostatistical distribution modelling of two invasive crayfish across dendritic stream networks. Biol. Invasions 2017, 19, 2899–2912. [Google Scholar] [CrossRef]
- Ghia, D.; Fea, G.; Sacchi, R.; Di Renzo, G.; Garozzo, P.; Marrone, M.; Piccoli, F.; Porfirio, S.; Santillo, D.; Salvatore, B.; et al. Modelling environmental niche for the endangered crayfish Austropotamobius pallipes complex in northern and central Italy. Freshw. Crayfish 2013, 19, 189–195. [Google Scholar]
- Moreira, F.; Ascensão, F.; Capinha, C.; Rodrigues, D.; Segurado, P.; Santos-Reis, M.; Rebelo, R. Modelling the risk of invasion by the red-swamp crayfish (Procambarus clarkii): Incorporating local variables to better inform management decisions. Biol. Invasions 2014, 17, 1–13. [Google Scholar] [CrossRef]
- Usio, N.; Nakajima, H.; Kamiyama, R.; Wakana, I.; Hiruta, S.; Takamura, N. Predicting the distribution of invasive crayfish (Pacifastacus leniusculus) in a Kusiro Moor marsh (Japan) using classification and regression trees. Ecol. Res. 2006, 21, 271–277. [Google Scholar] [CrossRef]
- Capinha, C.; Anastácio, P.; Tenedório, J.A. Predicting the impact of climate change on the invasive decapods of the Iberian inland waters: An assessment of reliability. Biol. Invasions 2012, 14, 1737–1751. [Google Scholar] [CrossRef]
- Capinha, C.; Anastácio, P. Assessing the environmental requirements of invaders using ensembles of distribution models. Divers. Distrib. 2011, 17, 13–24. [Google Scholar] [CrossRef]
- Capinha, C.; Larson, E.R.; Tricarico, E.; Olden, J.D.; Gherardi, F. Effects of Climate Change, Invasive Species, and Disease on the Distribution of Native European Crayfishes. Conserv. Biol. 2013, 27, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Feria, T.P.; Faulkes, Z. Forecasting the distribution of Marmorkrebs, a parthenogenetic crayfish with high invasive potential, in Madagascar, Europe, and North America. Aquat. Invasions 2011, 6, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Larson, E.R.; Olden, J.D. Using avatar species to model the potential distribution of emerging invaders. Glob. Ecol. Biogeogr. 2012, 21, 1114–1125. [Google Scholar] [CrossRef]
- Nieto-Lugilde, D.; Maguire, K.C.; Blois, J.L.; Williams, J.W.; Fitzpatrick, M.C. Multiresponse algorithms for community-level modelling: Review of theory, applications, and comparison to species distribution models. Methods Ecol. Evol. 2018, 9, 834–848. [Google Scholar] [CrossRef]
- Dunning, J.B.; Stewart, D.J.; Danielson, B.J.; Noon, B.R.; Root, T.L.; Lamberson, R.H.; Stevens, E.E. Spatially explicit population models: Current forms and future uses. Ecol. Appl. 1995, 5, 3–11. [Google Scholar] [CrossRef]
- Rubenson, E.S.; Olden, J.D. Dynamism in the upstream invasion edge of a freshwater fish exposes range boundary constraints. Oecologia 2017, 184, 453–467. [Google Scholar] [CrossRef]
- Acosta, C.A.; Perry, S.A. Spatially explicit population responses of crayfish Procambarus alleni to potential shifts in vegetation distribution in the marl marshes of Everglades National Park, USA. Hydrobiologia 2002, 477, 221–230. [Google Scholar] [CrossRef]
- Hansen, G.J.A.; Tunney, T.D.; Winslow, L.A.; Wander Zanden, M.J. Whole-lake invasive crayfish removal and qualitative modeling reveal habitat-specific food web topology. Ecosphere 2017, 8, e01647. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, V.; Gherardi, F.; Rebelo, R. Modelling the predation effects of invasive crayfish, Procambarus clarkii (Girard, 1852), on invasive zebra mussel, Dreissena polymorpha (Pallas, 1771), under laboratory conditions. Ital. J. Zool. 2016, 83, 59–67. [Google Scholar] [CrossRef]
- Yarra, A.N.; Magoulick, D.D. Modelling effects of invasive species and drought on crayfish extinction risk and population dynamics. Aquat. Conserv. under press. [CrossRef]
- Sánchez, I.A.; Angeler, D.A. A conceptual model of exotic crayfish (Procambarus clarkii) effects on charophyte propagule banks in wetlands. Rev. Latinoame. Recur. Nat. 2006, 2, 17–23. [Google Scholar]
- Messager, M.L.; Olden, J.D. Individual-based models forecast the spread and inform the management of an emerging riverine invader. Biodivers. Res. 2018, 24, 1816–1829. [Google Scholar] [CrossRef]
- Todd, C.R.; Whiterod, N.; Raymond, S.M.C.; Zukowski, S.; Asmus, M.; Todd, M.J. Integrating fishing and conservation in a risk framework: A stochastic population model to guide the proactive management of a threatened freshwater crayfish. Aquat. Conserv. Mar. Freshw. Ecosyst. 2018, 28, 954–968. [Google Scholar] [CrossRef]
- Martelloni, G.; Bagnoli, F.; Libelli, S.M. A dynamical population modeling of invasive species with reference to the crayfish Procambarus clarkii. Theor. Biol. Forum 2012, 105, 47–69. [Google Scholar] [PubMed]
- Almeida, P.M. Evaluation of the Exploitation Potential of Red Swamp Crayfish (Procambarus clarkii) in Portugal; Universidade Nova de Lisboa: Lisbon, Portugal, 2013. [Google Scholar]
- Anastácio, P.M.; Frias, A.F.; Marques, J.C. CRISP-crayfish rice integrated system of production. 1. Modelling rice (Oryza sativa) growth and production. Ecol. Model. 1999, 123, 17–28. [Google Scholar] [CrossRef]
- Anastácio, P.M.; Nielsen, S.N.; Marques, J.C. CRISP-crayfish rice integrated system of production. 2. Modelling crayfish (Procambarus clarkii) population dynamics. Ecol. Model. 1999, 123, 5–16. [Google Scholar] [CrossRef]
- Anastácio, P.M.; Nielsen, S.N.; Marques, J.C.; Jørgensen, S.E. Integrated production of crayfish and rice: A management model. Ecol. Eng. 1995, 4, 199–210. [Google Scholar] [CrossRef]
- Franklin, T.W.; McKelvey, K.S.; Golding, J.D.; Mason, D.H.; Dysthe, J.C.; Pilgrim, K.L.; Squires, J.R.; Aubry, K.B.; Long, R.A.; Greaves, S.E.; et al. Using environmental DNA methods to improve winter surveys for rare carnivores: DNA from snow and improved noninvasive techniques. Biol. Conserv. 2019, 229, 50–58. [Google Scholar] [CrossRef]
- Schnell, I.B.; Bohmann, K.; Schultze, S.E.; Richter, S.R.; Murray, D.C.; Sinding, M.H.S.; Bass, D.; Cadle, J.E.; Campbell, M.J.; Dolch, R.; et al. Debugging diversity—A pan-continental exploration of the potential of terrestrial blood-feeding leeches as a vertebrate monitoring tool. Mol. Ecol. Resour. 2018, 18, 1282–1298. [Google Scholar] [CrossRef]
- Bergman, P.S.; Schumer, G.; Blankenship, S.; Campbell, E. Detection of Adult Green Sturgeon Using Environmental DNA Analysis. PLoS ONE 2016, 11, e0153500. [Google Scholar] [CrossRef]
- Laramie, M.B.; Pilliod, D.S.; Goldberg, C.S. Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biol. Conserv. 2015, 183, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Doi, H.; Katano, I.; Sakata, Y.; Souma, R.; Kosuge, T.; Nagano, M.; Ikeda, K.; Yano, K.; Tojo, K. Detection of an endangered aquatic heteropteran using environmental DNA in a wetland ecosystem R. Soc. Open sci. 2017, 4, 170568. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Nukazawa, K.; Hamasuna, Y.; Suzuki, Y. Simulating the Advection and Degradation of the Environmental DNA of Common Carp along a River. Environ. Sci. Technol. 2018, 52, 10562–10570. [Google Scholar] [CrossRef]
- Deiner, K.; Altermatt, F. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 2014, 9, e88786. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Kielgast, J.; Ivesen, L.L.; Wiuf, C.; Rasmussen, M.; Golbert, M.T.P.; Orlando, L.; Willerslev, E. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 2012, 21, 2565–2573. [Google Scholar] [CrossRef]
- Dunn, N.; Priestley, V.; Herraiz, A.; Arnold, R.; Savolainen, V. Behavior and season affect crayfish detection and density inference using environmental DNA. Ecol. Evol. 2017, 7, 7777–7785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigsgaard, E.E.; Carl, H.; Møller, P.R.; Thomsen, P.F. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol. Conserv. 2014, 183, 46–52. [Google Scholar] [CrossRef]
- Smart, A.S.; Weeks, A.R.; van Rooyen, A.R.; Moore, A.; McCarthy, M.A.; Tingley, R. Assessing the cost-efficiency of environmental DNA sampling. Methods Ecol. Evol. 2016, 7, 1291–1298. [Google Scholar] [CrossRef]
- Ikeda, K.; Doi, H.; Tanaka, K.; Kawai, T.; Negishi, J.N. Using environmental DNA to detect an endangered crayfish Cambaroides japonicus in streams. Conserv. Genet. Resour. 2016, 8, 231–234. [Google Scholar] [CrossRef]
- Agersnap, S.; Larsen, W.B.; Knudsen, S.W.; Strand, D.; Thomsen, P.F.; Hesselsøe, M.; Mortensen, P.B.; Vrålstad, T.; Møller, P.R. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples. PLoS ONE 2017, 12, e0179261. [Google Scholar] [CrossRef]
- Cowart, D.A.; Breedveld, K.G.H.; Ellis, M.J.; Hull, J.M.; Larson, E.R. Environmental DNA (eDNA) applications for the conservation of imperiled crayfish (Decapoda: Astacidea) through monitoring of invasive species barriers and relocated populations. J. Crustacean Biol. 2018, 38, 257–266. [Google Scholar] [CrossRef]
- Larson, E.R.; Renshaw, M.A.; Gantz, C.A.; Umek, J.; Chandra, S.; Lodge, D.M.; Egan, S.P. Environmental DNA (eDNA) detects the invasive crayfishes Orconectes rusticus and Pacifastacus leniusculus in large lakes of North America. Hydrobiologia 2017, 800, 173–185. [Google Scholar] [CrossRef]
- Geerts, A.N.; Boets, P.; Van den Heedea, S.; Goethals, P.; Van der heydena, C. A search for standardized protocols to detect alien invasive crayfish based on environmental DNA (eDNA): A lab and field evaluation. Ecol. Indic. 2018, 84, 564–572. [Google Scholar] [CrossRef]
- Tréguier, A.; Paillisson, J.; Dejean, T.; Valentini, A.; Schlaepfer, M.A.; Roussel, J. Environmental DNA surveillance for invertebrate species: Advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. J. Appl. Ecol. 2014, 51, 871–879. [Google Scholar] [CrossRef]
- Mauvisseau, Q.; Coignet, A.; Delaunay, C.; Pinet, F.; Bouchon, D.; Souty-Grosset, C. Environmental DNA as an efficient tool for detecting invasive crayfishes in freshwater ponds. Hydrobiologia 2018, 805, 163–175. [Google Scholar] [CrossRef]
- Dickie, I.A.; Boyer, S.; Buckley, H.L.; Duncan, R.P.; Gardner, P.P.; Hogg, I.D.; Holdaway, R.J.; Lear, G.; Makiola, A.; Morales, S.E.; et al. Towards robust and repeatable sampling methods in eDNA-based studies. Mol. Ecol. Resour. 2018, 18, 940–952. [Google Scholar] [CrossRef]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; de Vere, N.; et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef] [Green Version]
- Robinson, C.V.; Webster, T.M.U.; Cable, J.; James, J.; Consuegra, S. Simultaneous detection of invasive signal crayfish, endangered white-clawed crayfish and the crayfish plague pathogen using environmental DNA. Biol. Conserv. 2018, 222, 241–252. [Google Scholar] [CrossRef]
- Wittwer, C.; Nowak, C.; Strand, D.A.; Vrålstad, T.; Thines, M.; Stoll, S. Comparison of two water sampling approaches for eDNA-based crayfish plague detection. Limnologica 2018, 70, 1–9. [Google Scholar] [CrossRef]
- Bálint, M.; Nowak, C.; Márton, O.; Pauls, S.U.; Wittwer, C.; Aramayo, J.L.; Schulze, A.; Chambert, T.; Cocchiararo, B.; Jansen, M. Accuracy, limitations and cost efficiency of eDNA-based community survey in tropical frogs. Mol. Ecol. Resour. 2018, 18, 1415–1426. [Google Scholar] [CrossRef]
- Crall, A.W.; Newman, G.J.; Jarnevich, C.S.; Stohlgren, T.J.; Waller, D.M.; Graham, J. Improving and integrating data on invasive species collected by citizen scientists. Biol. Invasions 2010, 12, 3419–3428. [Google Scholar] [CrossRef]
- Delaney, D.G.; Sperling, C.D.; Adams, C.S.; Leung, B. Marine invasive species: Validation of citizen science and implications for national monitoring networks. Biol. Invasions 2008, 10, 117–128. [Google Scholar] [CrossRef]
- Crocetta, F.; Agius, D.; Balistreri, P.; Bariche, M.; Bayhan, Y.K.; Çakir, M.; Ciriaco, S.; Corsini-Foka, M.; Deidun, A.; El Zrelli, R.; et al. New Mediterranean Biodiversity Records (October 2015). Mediterr. Mar. Sci. 2015, 16, 682–702. [Google Scholar] [CrossRef]
- Zenetos, A.; Koutsogiannopoulos, D.; Ovalis, P.; Poursanidis, D. The role played by citizen scientists in monitoring marine alien species in Greece. Cah. Biol. Mar. 2013, 54, 419–426. [Google Scholar]
- Hein, C.L.; Roth, B.M.; Ives, A.R.; Vander Zanden, M.J. Fish predation and trapping for rusty crayfish (Orconectes rusticus) control: A whole-lake experiment. Can. J. Fish. Aquat. Sci. 2006, 63, 383–393. [Google Scholar] [CrossRef]
- Green, N.; Bentley, M.G.; Stebbing, P.; Andreou, D.; Britton, R. Trapping for invasive crayfish: Comparisons of efficacy and selectivity of baited traps versus novel artificial refuge traps. Knowl. Manag. Aquat. Ecosyst. 2018, 2018, 9. [Google Scholar] [CrossRef]
- Nunes, A.L.; Hoffman, A.C.; Zengeya, T.A.; Measey, G.J.; Weyl, O.L.F. Red swamp crayfish, Procambarus clarkii, found in South Africa 22 years after attempted eradication. Aquat. Conserv. Mar. Freshw. Ecosyst. 2017, 27, 1334–1340. [Google Scholar] [CrossRef]
- Rudnick, D.A.; Hieb, K.; Grimmer, K.F.; Resh, V.H. Patterns and processes of biological invasion: The Chinese mitten crab in San Francisco Bay. Basic Appl. Ecol. 2003, 4, 249–262. [Google Scholar] [CrossRef]
- Gherardi, F.; Aquiloni, L.; Diéguez-Uribeondo, J.; Tricarico, E. Managing invasive crayfish: is there a hope? Aquat. Sci. 2011, 73, 185–200. [Google Scholar] [CrossRef]
- Thiel, M.; Breithaupt, T. Chemical communication in crustaceans: Research challenges for the twenty-first century. In Chemical Communication in Crustaceans; Breithaupt, T., Thiel, M., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Holdich, D.M.; Pöckl, M. Invasive crustaceans in European inland waters. In Biological Invaders in Inland Waters: Profiles, Distribution, and Threats; Gherardi, F., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 29–75. [Google Scholar]
- Sibley, P. Signal crayfish management in the River Wreake catchment. In Proceedings of the Crayfish conference, Leeds, UK, 26–27 April 2000; pp. 95–108. [Google Scholar]
- Peters, J.; Kreps, T.; Lodge, D.M. Assessing the Impacts of Rusty Crayfish (Orconectes rusticus) on Submergent Macrophytes in a North-Temperate U.S. Lake Using Electric Fences. Am. Midl. Nat. 2008, 159, 287–297. [Google Scholar] [CrossRef]
- Peay, S.; Dunn, A.M.; Kunin, W.E.; McKimm, R.; Harrod, C. A method test of the use of electric shock treatment to control invasive signal crayfish in streams. Aquat. Conserv. Mar. Freshw. Ecosyst. 2015, 25, 874–880. [Google Scholar] [CrossRef]
- Frings, R.M.; Vaeßen, S.C.K.; Groß, H.; Roger, S.; Schüttrumpf, H.; Hollert, H. A fish-passable barrier to stop the invasion of non-indigenous crayfish. Biol. Conserv. 2013, 159, 521–529. [Google Scholar] [CrossRef]
- Dana, E.D.; García-de-Lomas, J.; González, R.; Ortega, F. Effectiveness of dam contruction to contain the invasive crayfish Procambarus clarkii in a mediterranean mountain strem. Ecol. Eng. 2011, 37, 1607–1613. [Google Scholar] [CrossRef]
- Kerby, J.L.; Riley, S.P.D.; Kats, L.B.; Wilson, P. Barriers and flow as limiting factors in the spread of an invasive crayfish (Procambarus clarkii) in southern California streams. Biol. Conserv. 2005, 126, 402–409. [Google Scholar] [CrossRef]
- Elvira, B.; Nicola, G.C.; Almodovar, A. Pike and red swamp crayfish: A new case of predator-prey relationship between aliens in central Spain. J. Fish Biol. 1996, 48, 437–446. [Google Scholar]
- Aquiloni, L.; Brusconi, S.; Cecchinelli, E.; Tricarico, E.; Mazza, G.; Paglianti, A.; Gherardi, F. Biological control of invasive populations of crayfish: The European eel (Anguilla anguilla) as a predator of Procambarus clarkii. Biol. Invasions 2010, 12, 3817–3824. [Google Scholar] [CrossRef]
- Hein, C.L.; Vander Zanden, M.J.; Magnuson, J.J. Intensive trapping and increased fish predation cause massive population decline of an invasive crayfish. Freshw. Biol. 2007, 52, 1134–1146. [Google Scholar] [CrossRef]
- Stebbing, P.; Longshaw, M.; Scott, A. Review of methods for the management of non-indigenous crayfish, with particular reference to Great Britain. Ethol. Ecol. Evol. 2014, 26, 204–231. [Google Scholar] [CrossRef]
- Longshaw, M.; Bateman, K.S.; Stebbing, P.; Stentiford, G.D.; Hockley, F.A. Disease risks associated with the importation and release of non-native crayfish species in mainland Britain. Aquat. Biol. 2012, 16, 1–15. [Google Scholar] [CrossRef]
- Stebbing, P.D.; Longshaw, M.; Taylor, N.; Norman, R.; Lintott, R.; Pearce, F.; Scott, A. Review of Methods for the Control of Invasive Crayfish in Great Britain; Taylor & Francis: London, UK, 2012; p. 105. [Google Scholar]
- Freeman, M.A.; Tumbull, J.F.; Yeomans, W.E.; Bean, C.W. Prospects for management strategies of invasive crayfish populations with an emphasis on biological control. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 211–223. [Google Scholar] [CrossRef]
- Recsetar, M.S.; Bonar, S.A. Effectiveness of Two Commercial Rotenone Formulations in the Eradication of Virile Crayfish Orconectes virilis. Fish. Manag. 2015, 35, 616–620. [Google Scholar] [CrossRef]
- Holdich, D.M.; Gydemo, R.; Rogers, W.D. A review of possible methods for controlling nuisance alien crayfish populations. In Crayfish in Europe as Alien Species. How to Make the Best of a Bad Situation? Gherardi, F., Holdich, D.M., Eds.; A.A. Balkema: Rotterdam, The Netherlands, 1999; p. 301. [Google Scholar]
- Dalu, T.; Wasserman, R.J.; Jordaan, M.; Froneman, W.P.; Weyl, O.L.F. An Assessment of the Effect of Rotenone on Selected Non-Target Aquatic Fauna. PLoS ONE 2015, 10, e0142140. [Google Scholar] [CrossRef] [PubMed]
- Finlayson, B.J.; Somer, W.L.; Vinson, M.R. Rotenone toxicity to rainbow trout and several mountain stream insects. N. Am. J. Fish. Manag. 2010, 30, 102–111. [Google Scholar] [CrossRef]
- Billman, H.G.; Kruse, C.G.; St-Hilaire, S.; Koel, T.M.; Arnold, J.L.; Peterson, C.R. Effects of rotenone on Columbia spotted frogs Rana luteiventris during field applications in lentic habitats of south western Montana. N. Am. J. Fish. Manag. 2012, 32, 781–789. [Google Scholar] [CrossRef]
- Mangum, F.A.; Madrigal, J.L. Rotenone effect on aquatic macroinvertebrates of the Strawberry River, Utah: A five-year summary. J. Freshw. Ecol. 1999, 14, 125–135. [Google Scholar] [CrossRef]
- Melaas, C.L.; Zimmer, K.D.; Butler, M.G.; Hanson, M.A. Effects of rotenone on aquatic invertebrate communities in prairie wetlands. Hydrobiologia 2001, 459, 177–186. [Google Scholar] [CrossRef]
- Vinson, M.R.; Dinger, E.C.; Vinson, D.K. Piscicides and invertebrates: After 70 years, does anyone really know? Fisheries 2010, 35, 61–71. [Google Scholar] [CrossRef]
- Kjærstad, G.; Arnekleiv, J.V. Effects of rotenone treatment on lotic invertebrates. Int. Rev. Hydrobiol. 2011, 96, 58–71. [Google Scholar] [CrossRef]
- Peay, S.; Hiley, P.D.; Collen, P.; Martin, I. Biocide treatment of ponds in Scotland to eradicate signal crayfish. Bull. Fr. Pèche Piscic. 2006, 380–381, 1363–1379. [Google Scholar] [CrossRef]
- Bills, T.D.; Marking, L.L. Control of nuisance populations of crayfish with traps and toxicants. N. Am. J. Aquic. 1988, 50, 103–106. [Google Scholar] [CrossRef]
- Cecchinelli, E.; Aquiloni, L.; Maltagliati, G.; Orioli, G.; Tricarico, E.; Gherardi, F. Use of natural pyrethrum to control the red swamp crayfish Procambarus clarkii in a rural district of Italy. Pest Manag. Sci. 2012, 68, 839–844. [Google Scholar] [CrossRef]
- Cook, M.E.; Moore, P.A. The effects of the herbicide metolachlor on agonistic behavior in the crayfish, Orconectes rusticus. Arch. Environ. Contam. Toxicol. 2008, 55, 94–102. [Google Scholar] [CrossRef]
- Peay, S.; Dunn, A.M. The behavioural response of the invasive signal crayfish Pacifastacus leniusculus to experimental dewatering of burrows and its implications for eradication treatment and management of ponds with crayfish. Ethol. Ecol. Evol. 2014, 26, 277–298. [Google Scholar] [CrossRef]
- Gherardi, F.; Angiolini, C. Eradication and control of invasive species. In Biodiversity Conservation and Habitat Management, Encyclopedia of Life Support Systems (EOLSS); Gherardi, F., Gualtieri, M., Corti, C., Eds.; Eolss: Oxford, UK, 2004; pp. 271–299. [Google Scholar]
- Gherardi, F.; Holdich, D.M.E. Crayfish in Europe as Alien Species. How to Make the Best of a Bad Situation? A.A. Balkema: Rotterdam, The Netherlands, 1999. [Google Scholar]
- Corkum, L.D.; Belanger, R.M. Use of chemical communication in the management of freshwater aquatic species that are vectors of human diseases or are invasive. Gen. Comp. Endocrinol. 2007, 153, 401–417. [Google Scholar] [CrossRef]
- Stebbing, P.D.; Watson, G.J.; Bentley, M.G.; Fraser, D.; Jennings, R.; Rushton, S.P.; Sibley, P.J. Reducing the threat: The potential use of pheromones to control invasive signal crayfish. Bull. Fr. Peche Piscic. 2003, 370–371, 219–224. [Google Scholar] [CrossRef]
- Aquiloni, L.; Gherardi, F. The use of sex pheromones for the control of invasive populations of the crayfish Procambarus clarkii: A field study. Hydrobiologia 2010, 649, 249–254. [Google Scholar] [CrossRef]
- Stebbing, P.D.; Watson, G.J.; Bentley, M.G.; Fraser, D.; Jennings, R.; Rushton, S.P.; Sibley, P.J. Evaluation of the Capacity of Pheromones for Control of Invasive Non-Native Crayfish; Natural England: Peterborough, UK, 2004. [Google Scholar]
- Stebbing, P.D.; Watson, G.J.; Bentley, M.G.; Fraser, D.; Jennings, R.; Rushton, S.P.; Sibley, P.J. Evaluation of the Capacity of Pheromones for Control of Invasive Non-Native Crayfish; Natural England: Peterborough, UK, 2005. [Google Scholar]
- Ventura, T.; Sagi, A. The insulin-like androgenic gland hormone in crustaceans: From a single gene silencing to a wide array of sexual manipulation-based biotechnologies. Biotechnol. Adv. 2012, 30, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- Rosen, O.; Manor, R.; Weil, S.; Aflalo, E.D.; Bakhrat, A.; Abdu, U.; Sagi, A. An Androgenic Gland Membrane-Anchored Gene Associated with the Crustacean Insulin-Like Androgenic Gland Hormone. J. Exp. Biol. 2013, 216, 2122–2128. [Google Scholar] [CrossRef] [PubMed]
- Sagi, A.; Manor, R.; Ventura, T. Gene silencing in crustaceans: From basic research to biotechnologies. Genes 2013, 4, 620–645. [Google Scholar] [CrossRef] [PubMed]
- Manfrin, C.; Peruzza, L.; Bonzi, L.C.; Pallavicini, A.; Giulianini, P.G. Silencing two main isoforms of crustacean hyperglycemic hormone (CHH) induces compensatory expression of two CHH-like transcripts in the red swamp crayfish Procambarus clarkii. Invertebr. Surviv. J. 2015, 12, 29–37. [Google Scholar]
- Manfrin, C.; Piazza, F.; Cocchietto, M.; Antcheva, N.; Masiello, D.; Franceschin, A.; Peruzza, L.; Bonzi, L.C.; Mosco, A.; Guarnaccia, C.; et al. Can peptides be orally-delivered in crustaceans? The case study of the Crustacean Hyperglycaemic Hormone in Procambarus clarkii. Aquaculture 2016, 463, 209–216. [Google Scholar] [CrossRef]
- Lodge, D.M.; Williams, S.; Maclsaac, H.J.; Hayes, K.R.; Leung, B.; Reichard, S.; Mack, R.N.; Moyle, P.B.; Smith, M.; Andow, D.A.; et al. Biological invasions: Recommendations for U.S. policy and management. Ecol. Appl. 2006, 16, 2035–2054. [Google Scholar] [CrossRef]
- Piazza, F.; Aquiloni, L.; Peruzza, L.; Manfrin, C.; Simi, S.; Marson, L.; Edomi, P.; Giulianini, P.G. Managing of Procambarus clarkii by X-ray sterilisation of males: Cytological damage to gonads. Micron 2015, 77, 32–40. [Google Scholar] [CrossRef]
- Giglio, A.; Manfrin, C.; Zanetti, M.; Aquiloni, L.; Simeon, E.; Bravin, M.K.; Battistella, S.; Giulianini, P.G. Effects of X-ray irradiation on haemocytes of Procambarus clarkii (Arthropoda: Decapoda) males. Eur. Zool. J. 2018, 85, 26–35. [Google Scholar] [CrossRef]
- Aquiloni, L.; Zanetti, M. Integrated Intensive Trapping ANS SMRT Approach for the Control of Procambarus Clarkii: The Casette Case Study; European Commission: Luxembourg, 2014; pp. 113–116. [Google Scholar]
- Gliglio, A. Personal communication. Unpublished work.
- Johovicć, I.; Verrucchi, C.; Inghilesi, A.F.; Scapini, F.; Tricarico, E. Manual removal of males’ gonopods and reproductive potential in the Red Swamp Crayfish, Procambarus clarkii. In Proceedings of the 10th International Conference on Biological Invasions, Dun Laoghaire, Ireland, 3 September 2018. [Google Scholar]
- Aquiloni, L.; Becciolini, A.; Berti, R.; Porciani, S.; Trunfio, C.; Gherardi, F. Managing invasive crayfish: Use of X-ray sterilisation of males. Freshw. Biol. 2009, 54, 1510–1519. [Google Scholar] [CrossRef]
- Holdich, D.M.; Reynolds, J.D.; Souty-Grosset, C.; Sibley, P.J. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst. 2009, 11, 394–395. [Google Scholar] [CrossRef]
- Hudina, S.; Kutleša, P.; Trgovčić, K.; Duplić, A. Dynamics of range expansion of the signal crayfish (Pacifastacus leniusculus) in a recently invaded region in Croatia Aquat. Invasions 2017, 12, 67–75. [Google Scholar] [CrossRef]
Method | Innovation | Field Application | Applicability | Species-Specificity | Impact | Cost | Efficacy |
---|---|---|---|---|---|---|---|
Physical control | |||||||
Trap | + | +++ | +++ | + | + | +++ | ++ |
Electroshock | + | +++ | ++ | + | + | +++ | ++ |
Drainage | + | ++ | + | + | +++ | +++ | ++ |
Barriers and dams | + | ++ | ++ | ++ | ++ | +++ | ++ |
Biological control | |||||||
Natural predators | ++ | ++ | ++ | ++ | + | ++ | ++ |
Pathogens | +++ | - | ++ | +++ | ? | + | +++ |
Biocidal control | |||||||
Chemicals | + | ++ | + | + | +++ | + | +++ |
Natural substances | ++ | ++ | ++ | + | +++ | + | +++ |
Autocidal control | |||||||
Pheromones | ++ | + | +++ | +++ | + | ++ | + |
Monosex populations | +++ | - | ++ | +++ | ? | ++ | ++ |
RNA interference | +++ | - | +++ | ++ | ? | + | ? |
SMRT | +++ | + | +++ | +++ | + | +++ | +++ |
Oral delivery | +++ | - | ++ | ? | ++ | ++ | ? |
Gonopods removal | +++ | ++ | ++ | +++ | ? | +++ | ? |
Monitoring | |||||||
Species-distribution modelling | +++ | ++ | +++ | ++ | - | + | ++ |
eDNA | +++ | ++ | +++ | +++ | + | ++ | +++ |
Citizen science | ++ | ++ | +++ | +++ | + | + | ++ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manfrin, C.; Souty-Grosset, C.; Anastácio, P.M.; Reynolds, J.; Giulianini, P.G. Detection and Control of Invasive Freshwater Crayfish: From Traditional to Innovative Methods. Diversity 2019, 11, 5. https://doi.org/10.3390/d11010005
Manfrin C, Souty-Grosset C, Anastácio PM, Reynolds J, Giulianini PG. Detection and Control of Invasive Freshwater Crayfish: From Traditional to Innovative Methods. Diversity. 2019; 11(1):5. https://doi.org/10.3390/d11010005
Chicago/Turabian StyleManfrin, Chiara, Catherine Souty-Grosset, Pedro M. Anastácio, Julian Reynolds, and Piero G. Giulianini. 2019. "Detection and Control of Invasive Freshwater Crayfish: From Traditional to Innovative Methods" Diversity 11, no. 1: 5. https://doi.org/10.3390/d11010005
APA StyleManfrin, C., Souty-Grosset, C., Anastácio, P. M., Reynolds, J., & Giulianini, P. G. (2019). Detection and Control of Invasive Freshwater Crayfish: From Traditional to Innovative Methods. Diversity, 11(1), 5. https://doi.org/10.3390/d11010005