Climate Change, Bioclimatic Models and the Risk to Lichen Diversity
Abstract
:1. Introduction
2. Bioclimatic Analysis of Lichens
2.1. Challenge 1: The Assumption of Climatic Control
2.2. Challenge 2: Projection to Climate Change Scenarios
2.3. Challenge 3: Nonanalogue Climates and Functional Bioclimatic Models
3. Bioclimatic Models and Species Vulnerability
3.1. Migration
3.2. Adaptation
3.3. Acclimation
3.4. Habitat Quality
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Urban, M.C. Accelerating extinction risk from climate change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Maclean, I.M.D.; Wilson, R.J. Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl. Acad. Sci. USA 2011, 108, 12337–12342. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.U.; Adair, E.C.; Cardinale, B.J.; Byrnes, J.E.K.; Hungate, B.A.; Matulich, K.L.; Gonzalez, A.; Duffy, J.E.; Gamfeldt, L.; O’Connor, M.I. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 2012, 486, 105–108. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blamchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caballero, R.; Lynch, P. Climate modelling and deep-time climate change. In Climate Change, Ecology and Systematics; Hodkinson, T.R., Jones, M.B., Waldren, S., Parnell, J.A.N., Eds.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Mayhew, P.J. Global climate and extinction: evidence from the fossil record. In Climate Change, Ecology and Systematics; Hodkinson, T.R., Jones, M.B., Waldren, S., Parnell, J.A.N., Eds.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Mayhew, P.J.; Jenkins, G.B.; Benton, T.G. A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proc. R. Soc. B 2008, 275, 47–53. [Google Scholar] [CrossRef]
- Yuan, X.; Xiao, S.; Taylor, T.N. Lichen-like symbiosis 600 million years ago. Science 2005, 308, 1017–1020. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Field, C.B. Changes in ecologically critical terrestrial climate conditions. Science 2013, 341, 486–492. [Google Scholar] [CrossRef]
- Moritz, C.; Agudo, R. The future of species under climate change: Resilience or decline? Science 2013, 341, 504–508. [Google Scholar] [CrossRef]
- Travis, J.M.J. Climate change and habitat destruction: A deadly anthropogenic cocktail. Proc. R. Soc. B 2003, 270, 467–473. [Google Scholar] [CrossRef]
- Schwartz, M.W. Modelling the effects of habitat fragmentation on the ability of trees to respond to climatic warming. Biodivers. Conserv. 1992, 2, 51–61. [Google Scholar] [CrossRef]
- Mantyka-Pringle, C.S.; Visconti, P.; MDi Marco, M.; Martin, T.G.; Rondinini, C.; Rhodes, J.R. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 2015, 187, 103–111. [Google Scholar] [CrossRef]
- De Chazal, J.; Rounsevell, M.D.A. Land-use and climate change within assessments of biodiversity change: A review. Glob. Environ. Chang. 2009, 19, 306–315. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well Being. Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Cafaro, P. Three ways to think about the sixth mass extinction. Biol. Conserv. 2015, 192, 387–393. [Google Scholar] [CrossRef]
- Díaz, S.; Fargione, J.; Chapin, F.S.; Tilman, D. Biodiversity loss threatens human well-being. PLOS Biol. 2006, 4, e277. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Lutzoni, F.; Pagel, M.; Reeb, V. Major fungal lineages are derived from lichen symbiotic ancestors. Nature 2001, 411, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Gargas, A.; DePriest, P.T.; Grube, M.; Tehler, A. Multiple origins of lichen symbiosis in fungi suggested by SSU rDNA phylogeny. Science 1995, 268, 1492–1495. [Google Scholar] [CrossRef] [PubMed]
- Gueidan, C.; Villaseñor, C.R.; de Hoog, G.S.; Gorbushina, A.A.; Untereiner, W.A.; Lutzoni, F. A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud. Mycol. 2008, 61, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbert, W.; Weber, B.; Burrows, S.; Steinkamp, J.; Büdel, B.; Andreae, M.A.; Pöschl, U. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 2012, 5, 459–462. [Google Scholar] [CrossRef]
- Porada, P.; Weber, B.; Elbert, W.; Pöschl, U.; Kleidon, A. Estmating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochem. Cycles 2014, 28, 71–85. [Google Scholar] [CrossRef]
- Asplund, J.; Wardle, D.A. How lichens impact on terrestrial community and ecosystem properties. Biol. Rev. 2017, 92, 1720–1738. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Heikkinen, R.K.; Luoto, M.; Araújo, M.B.; Virkkala, R.; Thuiller, W.; Sykes, M.T. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 2006, 30, 751–777. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Franklin, J. Mapping Species Distributions; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Guisan, A.; Thuiller, W.; Zimmerman, N.E. Habitat Suitability and Distribution Models; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martinez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions; Princeton University Press: Princeton, NJ, USA, 2011; Vol. Monographs in Population Biology 49. [Google Scholar]
- McCune, B.; Schoch, C.L.; Root, H.T.; Kageyama, S.A.; Miadlikowska, J. Geographic, climatic, and chemical differentiation in the Hypogymnia imshaugii species complex (Lecanoromycetes, Parmeliaceae) in North America. Bryologist 2011, 114, 526–544. [Google Scholar] [CrossRef]
- Martellos, S.; Attorre, F.; Farcomeni, A.; Francesconi, F.; Pittao, E.; Tretiach, M. Species distribution models backing taxa delimitation: The case of the lichen Squamarina cartilaginea in Italy. Flora 2014, 209, 698–703. [Google Scholar] [CrossRef]
- Smith, B.E.; Johnston, M.K.; Lücking, R. From GenBank to GBIF: Phylogeny-based predictive niche modeling tests accuracy of taxonomic identifications in large occurrence data repositories. PLoS ONE 2016, 11, e0151232. [Google Scholar] [CrossRef]
- Szczepańska, K.; Pruchniewicz, D.; Kossowska, M. Modeling the potential distribution of three lichens of the Xanthoparmelia pulla group (Parmeliaceae, Ascomycota) in Central Europe. Acta Soc. Bot. Pol. 2015, 84, 431–438. [Google Scholar] [CrossRef]
- McCune, B.; Printzen, C. Distribution and climatic niches of the Lecanora varia group in western U.S.A. Bibl. Lichenol. 2011, 106, 225–234. [Google Scholar]
- Haughland, D.L.; Hillman, A.; Azeria, E.T. Tackling rarity and sample bias with large-scale biodiversity monitoring: A case study examining the status, distribution and ecology of the lichen Cladonia rei in Alberta, Canada. Lichenologist 2018, 50, 211–230. [Google Scholar] [CrossRef]
- Cameron, R.P.; Neily, T.; Clayden, S.R. Distribution prediction model for Erioderma mollissimum in Atlantic Canada. Bryologist 2011, 114, 231–238. [Google Scholar] [CrossRef]
- Wiersma, Y.F.; Skinner, R. Predictive distribution model for the boreal felt lichen Erioderma pedicellatum in Newfoundland, Canada. Endanger. Species Res. 2011, 15, 115–127. [Google Scholar] [CrossRef]
- Pearson, K.; Cameron, R.P.; McMullin, R.T. Habitat associations and distribution model for Fuscopannaria leucosticta in Nova Scotia, Canada. Lichenologist 2018, 50, 487–497. [Google Scholar] [CrossRef]
- Cardós, J.L.H.; Aragón, G.; Martínez, I. A species on a tightrope: Establishment limitations of an engangered lichen in a fragmented Mediterranean landscape. Am. J. Bot. 2017, 104, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Glavich, D.A.; Geiser, L.H.; Mikulin, A.G. Rare epiphytic coastal lichen habitats, modeling, and management in the Pacific northwest. Bryologist 2005, 108, 377–390. [Google Scholar] [CrossRef]
- Allen, J.L.; Lendemer, J.C. Quantifying the impacts of sea-level rise on coastal biodiversity: A case study on lichens in the mid-Atlantic Coast of eastern North America. Biol. Conserv. 2016, 202, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.L.; McKenzie, S.K.; Sleith, R.S.; Alter, S.E. First genome-wide analysis of the endangered, endemic lichen Cetradonia linearis reveals isolation by distance and strong population structure. Am. J. Bot. 2018, 105, 1556–1567. [Google Scholar] [CrossRef]
- Haughian, S.R.; Clayden, S.R.; Cameron, R. On the distribution and habitat of Fuscopannaria leucosticta in New Brunswick, Canada. Écoscience 2019, 26, 99–112. [Google Scholar] [CrossRef]
- Martínez, I.; Carreño, F.; Escudero, A.; Rubio, A. Are threatened lichen species well-protected in Spain? Effectiveness of a protected area network. Biol. Conserv. 2006, 133, 500–511. [Google Scholar] [CrossRef]
- Rubio-Salcedo, M.; Martínez, I.; Carreño, F.; Escudero, A. Poor effectiveness of the Natura 2000 network protecting Mediterranean lichen species. J. Nat. Conserv. 2013, 21, 1–9. [Google Scholar] [CrossRef]
- Shrestha, G.; Petersen, S.L.; St. Clair, L.L. Predicting the distribution of the air pollution sensitive lichen species Usnea hirta. Lichenologist 2012, 44, 511–521. [Google Scholar] [CrossRef]
- Seed, L.; Wolseley, P.; Gosling, L.; Davies, L.; Power, S.A. Modelling relationships between lichen indicators, air quality and climate on a national scale: Results from the UK OPAL survey. Environ. Pollut. 2013, 182, 437–447. [Google Scholar] [CrossRef]
- Root, H.T.; McCune, B.; Jovan, S. Lichen communities and species indicate climate thresholds in southeast and south-central Alaska, USA. Bryologist 2014, 117, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Giordani, P.; Incerti, G. The influence of climate on the distribution of lichens: A case study in a borderline area (Liguria, NW Italy). Plant Ecol. 2008, 195, 257–272. [Google Scholar] [CrossRef]
- Edwards, T.C.; Cutler, D.R.; Zimmermann, N.E.; Geiser, L.H.; Alegria, J. Model-based stratifications for enhancing the detection of rare ecological events. Ecology 2005, 86, 1081–1090. [Google Scholar] [CrossRef]
- Bolliger, J.; Bergamini, A.; Stofer, S.; Kienast, F.; Scheidegger, C. Predicting the potential spatial distribution of epiphytic lichen species at the landscape scale. Lichenologist 2007, 39, 279–291. [Google Scholar] [CrossRef]
- Dymytrova, L.; Stofer, S.; Ginzler, C.; Breiner, F.T.; Scheidegger, C. Forest-structure data improve distribution models of threatened habitat specialists: Implications for conservation of epiphytic lichens in forest landscapes. Biol. Conserv. 2016, 196, 31–38. [Google Scholar] [CrossRef]
- Seaward, M.R.D. Time-space analysis of the British lichen flora, with particular reference to air quality surveys. Folia Cryptogam. Est. 1998, 32, 85–96. [Google Scholar]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Bean, W.T.; Stafford, R.; Brashares, J.S. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 2012, 35, 250–258. [Google Scholar] [CrossRef]
- Wisz, M.S.; Guisan, A. Do pseudo-absence selection strategies influence species distrbution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecol. 2009, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuilller, W. Selecting pseudo-absences for species distributon models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Gauslaa, Y. Rain, dew, and humid air as drivers of morphology, function and spatial distribution in epiphytic lichens. Lichenologist 2014, 46, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Chapman, D.S. Weak climatic associations among British plant distributions. Glob. Ecol. Biogeogr. 2010, 19, 831–841. [Google Scholar] [CrossRef]
- Beale, C.M.; Lennon, J.J.; Gimona, A. Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc. Natl. Acad. Sci. USA 2008, 105, 14908–14912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, T.E.; Bagchi, R.; Aiello-Lammens, M.; Schlichting, C.D. Spatial autocorrelation inflates niche breadth-range size relationships. Glob. Ecol. Biogeogr. 2018, 27, 1426–1436. [Google Scholar] [CrossRef]
- Bahn, V.; McGill, B.J. Can niche-based distribution models outperform spatial interpolation? Glob. Ecol. Biogeogr. 2007, 16, 733–742. [Google Scholar] [CrossRef]
- Boucher-Lalonde, V.; Currie, D.J. Spatial autocorrelation can generate stronger correlations between range size and climatic niche than the biological signal—A demonstration using bird and mammal range maps. PLoS ONE 2016, 11, e0166243. [Google Scholar] [CrossRef] [PubMed]
- Van Herk, C.M.; Mathijssen-Spiekman, E.A.M.; De Zwart, D. Long distance nitrogen air pollution effects on lichens in Europe. Lichenologist 2003, 35, 347–359. [Google Scholar] [CrossRef]
- Van Dobben, H.F.; Ter Braak, C.J.F. Ranking of epiphytic lichen sensitivity to air pollution using survey data: A comparison of indicator scales. Lichenologist 1999, 31, 27–39. [Google Scholar]
- Stofer, S.; Bergamini, A.; Aragón, G.; Carvalho, P.; Coppins, B.J.; Davey, S.; Dietrich, M.; Farkas, E.; Kärkkäinen, K.; Keller, C.; et al. Species richness of lichen funtional groups in relation to land use intensity. Lichenologist 2006, 38, 331–353. [Google Scholar] [CrossRef]
- Wolseley, P.A.; Stofer, S.; Mitchell, R.; Truscott, A.-M.; Vanbergen, A.; Chimonides, J.; Scheidegger, C. Variation of lichen communities with landuse in Aberdeenshire, UK. Lichenologist 2006, 38, 307–322. [Google Scholar] [CrossRef]
- Lewis, M.A.; Pacala, S. Modeling and analysis of stochastic invasion processes. J. Math. Biol. 2000, 41, 387–429. [Google Scholar] [CrossRef] [PubMed]
- Hawksworth, D.L.; Rose, F. Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature 1970, 227, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, O.L. A biological scale for the estimation of sulphur dioxide pollution. New Phytol. 1970, 69, 629–634. [Google Scholar] [CrossRef]
- Hill, D.J. Experimental study of the effect of sulphite in lichens with reference to atmospheric pollution. New Phytol. 1971, 70, 831–836. [Google Scholar] [CrossRef]
- Baddeley, M.S.; Ferry, B.W.; Finegan, E.J. The effects of sulphur dioxide on lichen respiration. Lichenologist 1972, 5, 283–291. [Google Scholar] [CrossRef]
- Beale, C.M.; Brewer, M.; Lennon, J.J. A new statistical framework for the quantification of covariate associations with species distributions. Methods Ecol. Evol. 2014, 5, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Leach, K.; Montgomery, W.I.; Reid, N. Modelling the influence of biotic factors on species distribution patterns. Ecol. Model. 2016, 337, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Coppins, B.J. Distribution patterns shown by epiphytic lichens in the British Isles. In Lichenology: Progress and Problems; Brown, D.H., Hawksworth, D.L., Bailey, R.H., Eds.; Academic Press: London, UK, 1976; pp. 249–278. [Google Scholar]
- Zedda, L.; Gröngröft, A.; Schultz, M.; Petersen, A.; Mills, A.; Rambold, G. Distribution patterns of soil lichens across the principal biomes of southern Africa. J. Arid Environ. 2011, 75, 215–220. [Google Scholar] [CrossRef]
- Brandt, L.A.; Benscoter, A.M.; Harvey, R.; Speroterra, C.; Bucklin, D.; Romañach, S.S.; Watling, J.I.; Mazzotti, F.J. Comparison of climate envelope models developed using expert-selected variables versus statistical selection. Ecol. Model. 2017, 345, 10–20. [Google Scholar] [CrossRef]
- Braidwood, D.W.; Ellis, C.J. Bioclimatic equilibrium for lichen distributions on disjunct continental landmasses. Botany 2012, 90, 1316–1325. [Google Scholar] [CrossRef]
- Ellis, C.J.; Yahr, R.; Belinchón, R.; Coppins, B.J. Archaeobotanical evidence for climate as a driver of ecological community change across the anthropocene boundary. Glob. Chang. Biol. 2014, 20, 2211–2220. [Google Scholar] [CrossRef]
- Eaton, S.; Ellis, C.J. Local experimental growth rates respond to macroclimate for the lichen epiphyte Lobaria pulmonaria. Plant Ecol. Divers. 2012, 5, 365–372. [Google Scholar] [CrossRef]
- Ellis, C.J.; Geddes, H.; McCheyne, N.; Stansfield, A. Lichen epiphyte response to non-analogue monthly climates: A critique of bioclimatic models. Perspect. Plant Ecol. Syst. 2017, 25, 45–58. [Google Scholar] [CrossRef]
- Green, T.G.A.; Nash, T.H.; Lange, O.L. Physiological ecology of carbon dioxide exchange. In Lichen Biology; Nash, T.H., Ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 154–183. [Google Scholar]
- Palmqvist, K.; Dahlman, L.; Jonsson, A.; Nash, T.H. The carbon economy of lichens. In Lichen Biology; Nash, T.H., Ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 184–217. [Google Scholar]
- Fačkovcová, Z.; Senko, D.; Svitok, M.; Guttová, A. Ecological niche conservatism shapes the distributions of lichens: Geographical segregation does not reflect ecological differentiation. Presalia 2017, 89, 63–85. [Google Scholar] [CrossRef]
- Allen, J.L.; Lendemer, J.C. Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodivers. Conserv. 2016, 25, 555–568. [Google Scholar] [CrossRef]
- Nascimbene, J.; Casazza, G.; Benesperi, R.; Catalano, I.; Cataldo, D.; Grillo, M.; Isocrono, D.; Matteucci, E.; Ongaro, S.; Potenza, G.; et al. Climate change fosters the decline of epiphytic Lobaria species in Italy. Biol. Conserv. 2016, 201, 377–384. [Google Scholar] [CrossRef]
- Kukwa, M.; Kolanowska, M. Glacial refugia and the prediction of future habitat coverage of the South American lichen species Ochrolechia austroamericana. Sci. Rep. 2016, 6, 38779. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Salcedo, M.; Psomas, A.; Prieto, M.; Zimmermann, N.E.; Martínez, I. Case study of the implications of climate change for lichen diversity and distributions. Biodivers. Conserv. 2017, 26, 1121–1141. [Google Scholar] [CrossRef]
- Binder, M.D.; Ellis, C.J. Conservation of the rare British lichen Vulpicida pinastri: Changing climate, habitat loss and strategies for mitigation. Lichenologist 2008, 40, 63–79. [Google Scholar] [CrossRef]
- Ellis, C.J.; Yahr, R.; Coppins, B.J. Local extent of old-growth woodland modifies epiphyte response to climate change. J. Biogeogr. 2009, 36, 302–313. [Google Scholar] [CrossRef]
- Ellis, C.J.; Coppins, B.J.; Dawson, T.P. Predicted response of the lichen epiphyte Lecanora populicola to climate change scenarios in a clean-air region of northern Britain. Biol. Conserv. 2007, 135, 396–404. [Google Scholar] [CrossRef]
- Ellis, C.J.; Eaton, S.; Theodoropoulos, M.; Coppins, B.J.; Seaward, M.R.D.; Simkin, J. Response of epiphytic lichens to 21st Century climate change and tree disease scenarios. Biol. Conserv. 2014, 180, 153–164. [Google Scholar] [CrossRef]
- Ellis, C.J.; Eaton, S.; Theodoropoulos, M.; Coppins, B.J.; Seaward, M.R.D.; Simkin, J. Lichen Epiphyte Scenarios. A Toolkit of Climate and Woodland Change for the 21st Century; Royal Botanic Garden Edinburgh: Edinburgh, UK, 2015. [Google Scholar]
- Ellis, C.J.; Coppins, B.J.; Dawson, T.P.; Seaward, M.R.D. Response of British lichens to climate change scenarios: Trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol. Conserv. 2007, 140, 217–235. [Google Scholar] [CrossRef]
- Nakićenović, N.; Swart, R. Special Report on Emissions Scenarios; Intergovernmental Panel on Climate Change 3rd Assessment Report: The Hague, The Netherlands, 2000. [Google Scholar]
- Van Vuuren, D.P.; Carter, T.R. Climate and socio-economic scenarios for climate change research and assessment: Reconciling the new with the old. Clim. Chang. 2014, 122, 415–429. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Bidussi, M.; Solhaug, K.A.; Gauslaa, Y. Increased snow accumulation reduces survival and growth in dominant mat-forming arctic-alpine lichens. Lichenologist 2016, 48, 237–247. [Google Scholar] [CrossRef]
- Scott, P.A.; Rouse, W.R. Impacts of increased winter snow cover on upland tundra vegetation: A case example. Clim. Res. 1995, 5, 25–30. [Google Scholar] [CrossRef]
- Wahren, C.-H.A.; Walker, M.D.; Bret-Harte, M.S. Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob. Chang. Biol. 2005, 11, 537–552. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Callaghan, T.V.; Alatalo, J.M.; Michelsen, A.; Graglia, E.; Hartley, A.E.; Hik, D.S.; Hobbie, S.E.; Press, M.C.; Robinson, C.H.; et al. Global change and arctic ecosystems: Is lichen decline a function of increases in vascular plant biomass? J. Ecol. 2001, 89, 984–994. [Google Scholar] [CrossRef]
- Walker, M.D.; Wahren, C.H.; Hollister, R.D.; Henry, G.H.R.; Ahlquist, L.E.; Alatalo, J.M.; Bret-Harte, M.S.; Calef, M.P.; Callaghan, T.V.; Carroll, A.B.; et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. USA 2006, 103, 1342–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alatalo, J.M.; Jägerbrand, A.K.; Chen, S.; Molau, U. Responses of lichen communities to 18 yrs of natural and experimental warming. Ann. Bot. 2017, 120, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Niittynen, P.; Luoto, M. The importance of snow in species distribution models of arctic vegetation. Ecography 2018, 41, 1024–1037. [Google Scholar] [CrossRef]
- Mod, H.K.; Heikkinen, R.K.; le Roux, P.C.; Väre, H.; Luoto, M. Contrasting effects of biotic interactions on richness and distribution of vascular plants, bryophytes and lichens in an arctic-alpine landscape. Polar Biol. 2016, 39, 649–657. [Google Scholar] [CrossRef]
- Mod, H.K.; Le Roux, P.C.; Guisan, A.; Luoto, M. Biotic interactions boost spatial models of species richness. Ecography 2015, 38, 913–921. [Google Scholar] [CrossRef] [Green Version]
- Leckebusch, G.C.; Ulbrich, U. On the relationship between cyclones and extreme windstorm events over Europe under climate change. Glob. Planet. Chang. 2004, 44, 181–193. [Google Scholar] [CrossRef]
- Schwierz, C.; Köllner-Heck, P.; Mutter, E.Z.; Bresch, D.N.; Vidale, P.-L.; Schär, C. Modelling European winter wind strom losses in current and future climate. Clim. Chang. 2010, 101, 485–514. [Google Scholar] [CrossRef]
- Crabtree, D.; Ellis, C.J. Species interaction and response to wind speed alter the impact of projected temperature change in a montane ecosystem. J. Veg. Sci. 2010, 21, 744–760. [Google Scholar] [CrossRef]
- Williams, J.W.; Jackson, S.T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 2007, 5, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, M.C.; Hargrove, W.W. The projection of species distribution models and the problem of non-analog climate. Biodivers. Conserv. 2009, 18, 2255–2261. [Google Scholar] [CrossRef]
- Ellis, C.J.; Eaton, S. Future non-analogue climates for Scotland’s temperate rainforest. Scott. Geogr. J. 2016, 132, 257–268. [Google Scholar] [CrossRef]
- Ellis, C.J. Oceanic and temperate rainforest climates and their epiphyte indicators in Britain. Ecol. Indic. 2016, 70, 125–133. [Google Scholar] [CrossRef]
- Austin, M. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 2007, 200, 1–19. [Google Scholar] [CrossRef]
- Austin, M.P. Spatial prediction of species distributions: An interface between ecological theory and statistical modelling. Ecol. Model. 2002, 157, 101–118. [Google Scholar] [CrossRef]
- Higgins, S.I.; O’Hara, R.B.; Römermann, C. A niche for biology in species distribution models. J. Biogeogr. 2012, 39, 2091–2095. [Google Scholar] [CrossRef]
- Palmqvist, K.; Sundberg, B. Light use efficiency of dry matter gain in five macro-lichens: Relative impact of microclimate conditions and species-specific traits. Plant Cell Environ. 2000, 23, 1–14. [Google Scholar] [CrossRef]
- Sundberg, B.; Ekbald, A.; Näsholm, T.; Palmqvist, K. Lichen respiration in relation to active time, temperature, nitrogen and ergosterol concentrations. Funct. Ecol. 1999, 13, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Sundberg, B.; Palmqvist, K.; Esseen, P.-A.; Renhorn, K.-E. Growth and vitality of epiphytic lichens II. Modelling of carbon gain using field and laboratory data. Oecologia 1997, 109, 10–18. [Google Scholar] [CrossRef]
- Crichton, D. The Risk Triangle. In Natural Disaster Management; Ingleton, J., Ed.; Tudor Rose: London, UK, 1999; pp. 102–103. [Google Scholar]
- Cardona, O.D.; van Aalst, M.K.; Birkmann, J.; Fordham, M.; McGregor, G.; Perez, R.; Pulwarty, R.S.; Schipper, E.L.F.; Sinh, B.T. Determinants of risk: Exposure and vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Ellis, C.J. A risk-based model of climate change threat: Hazard, exposure, and vulnerability in the ecology of lichen epiphytes. Botany 2013, 91, 1–11. [Google Scholar] [CrossRef]
- Armstrong, R.A. Dispersal in a population of the lichen Hypogymnia physodes. Environ. Exp. Bot. 1987, 27, 357–363. [Google Scholar] [CrossRef]
- Armstrong, R.A. Soredial dispersal from individual soralia in the lichen Hypogymnia physodes (L.) Nyl. Environ. Exp. Bot. 1992, 32, 55–63. [Google Scholar] [CrossRef]
- Walser, J.-C.; Zoller, S.; Büchler, U.; Scheidegger, C. Species-specific detection of Lobaria pulmonaria (lichenized ascomycete) diaspores in litter samples trapped in snow cover. Mol. Ecol. 2001, 10, 2129–2138. [Google Scholar] [CrossRef]
- Werth, S.; Wagner, H.H.; Gugerli, F.; Holderegger, R.; Csencsics, D.; Kalwij, J.M.; Scheidegger, C. Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 2006, 87, 2037–2046. [Google Scholar] [CrossRef]
- Wagner, H.H.; Werth, S.; Kalwij, J.M.; Bolli, J.C.; Scheidegger, C. Modelling forest recolonization by an epiphytic lichen using a landscape genetic approach. Landsc. Ecol. 2006, 21, 849–865. [Google Scholar] [CrossRef]
- Williams, L.; Ellis, C.J. Ecological constraints to ‘old-growth’ lichen indicators: Niche specialism or dispersal limitation? Fungal Ecol. 2018, 34, 20–27. [Google Scholar] [CrossRef]
- Öckinger, E.; Niklasson, M.; Nilsson, S.G. Is local distribution of the epiphytic lichen Lobaria pulmonaria limited by dispersal capacity or habitat quality? Biodivers. Conserv. 2005, 14, 759–773. [Google Scholar] [CrossRef]
- Belinchón, R.; Harrison, P.J.; Mair, L.; Várkonyi, G.; Snäll, T. Local epiphyte establishment and future metapopulation dynamics in landscapes with different spatiotemporal properties. Ecology 2017, 98, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Dettki, H.; Klintberg, P.; Esseen, P.-A. Are epiphytic lichens in young forests limited by local dispersal? Écoscience 2000, 7, 317–325. [Google Scholar] [CrossRef]
- Gjerde, I.; Blom, H.; Heegaard, E.; Sætersdal, M. Lichen colonization patterns show minor effects of dispersal distance at landscape scale. Ecography 2015, 38, 939–948. [Google Scholar] [CrossRef]
- Hedenås, H.; Ericson, L. Species occurrence at the stand level cannot be understood without considering the landscape context: Cyanolichens on aspen in boreal Sweden. Biol. Conserv. 2008, 141, 710–718. [Google Scholar] [CrossRef]
- Geml, J.; Kauff, F.; Brochmann, C.; Taylor, D.L. Surviving climate changes: High genetic diversity and transoceanic gene flow in two arctic-alpine lichens, Flavocetraria cucullata and F. nivalis (Parmeliaceae, Ascomycota). J. Biogeogr. 2010, 37, 1529–1542. [Google Scholar] [CrossRef]
- Buschbom, J. Migration between continents: Geographical structure and long-distance gene flow in Porpidia flavicunda (lichen-forming Ascomycota). Mol. Ecol. 2007, 16, 1835–1846. [Google Scholar] [CrossRef]
- Löbel, S.; Snäll, T.; Rydin, H. Species richness patterns and metapopulation processes—Evidence from epiphyte communities in boreo-nemoral forests. Ecography 2006, 29, 169–182. [Google Scholar] [CrossRef]
- Gjerde, I.; Blom, H.; Lindblom, L.; Sætersdal, M.; Schei, F.H. Community assembly in epiphytic lichens in early stages of colonization. Ecology 2012, 93, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Hedenås, H.; Ericson, L. Epiphytic macrolichens as conservation indicators: Successional sequence in Populus tremula stands. Biol. Conserv. 2000, 93, 43–53. [Google Scholar] [CrossRef]
- Werth, S.; Wagner, H.H.; Holderegger, R.; Kalwij, J.M.; Scheidegger, C. Effect of disturbance on the genetic diversity of an old-forest associated lichen. Mol. Ecol. 2006, 15, 911–921. [Google Scholar] [CrossRef]
- Walser, J.-C. Molecular evidence for the limited dispersal of vegetative propagules in the epiphytic lichen Lobaria pulmonaria. Am. J. Bot. 2004, 91, 1273–1276. [Google Scholar] [CrossRef]
- Jüriado, I.; Liira, J.; Csencsics, D.; Widmer, I.; Adolf, C.; Kohv, K.; Scheidegger, C. Dispersal ecology of the endangered woodland lichen Lobaria pulmonaria in managed hemiboreal forest landscape. Biodivers. Conserv. 2011, 20, 1803–1819. [Google Scholar] [CrossRef]
- Ronnås, C.; Werth, S.; Ovaskainen, O.; Várkonyi, G.; Scheidegger, C.; Snäll, T. Discovery of long-distance gamete dispersal in a lichen-forming ascomycete. New Phytol. 2017, 216, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Belinchón, R.; Ellis, C.J.; Yahr, R. Climate-woodland effects on population genetics for two congeneric lichens with contrasting reproductive strategies. FEMS Microbiol. Ecol. 2018, 94, fiy159. [Google Scholar] [CrossRef] [PubMed]
- Rikkinen, J.; Oksanen, J.; Lohtander, K. Lichen guilds share related cyanobacterial symbionts. Science 2002, 297, 357. [Google Scholar] [CrossRef] [PubMed]
- Belinchón, R.; Yahr, R.; Ellis, C.J. Interactions among species with contrasting dispersal modes explain distributions for epiphytic lichens. Ecography 2015, 38, 762–768. [Google Scholar] [CrossRef]
- Fedrowitz, K.; Kaasalainen, U.; Rikkinen, J. Genotype variability of Nostoc symbionts associated with three epiphytic Nephroma species in a boreal forest landscape. Bryologist 2011, 114, 220–230. [Google Scholar] [CrossRef]
- Otálora, M.A.G.; Martínez, I.; Belinchón, R.; Widmer, I.; Aragón, G.; Escurado, A.; Scheidegger, C. Remnant fragments preserve genetic diversity of the old forest lichen Lobaria pulmonaria in a fragmented Mediterranean mountain forest. Biodivers. Conserv. 2011, 20, 1239–1254. [Google Scholar] [CrossRef]
- Scheidegger, C.; Bilovitz, P.O.; Werth, S.; Widmer, I.; Mayrhofer, H. Hitchhiking with forests: Population genetics of the epiphytic lichen Lobaria pulmonaria in primeval and managed forests in southeastern Europe. Ecol. Evol. 2012, 2, 2223–2240. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, G.J.; Dyer, P.S.; Furneaux, P.A.; Crittenden, P.D. Molecular and physiological diversity in the bipolar lichen-forming fungus Xanthoria elegans. Mycol. Res. 2002, 106, 1277–1286. [Google Scholar] [CrossRef]
- Nadyeina, O.; Dymytrova, L.; Naumovych, A.; Postoyalkin, S.; Werth, S.; Cheenacharoen, S.; Scheidegger, C. Microclimatic differentiation of gene pools in the Lobaria pulmonaria symbiosis in a primeval forest landscape. Mol. Ecol. 2014, 23, 5164–5178. [Google Scholar] [CrossRef]
- Keller, C.; Scheidegger, C. Multiple mating events and spermatia-mediated gene flow in the lichen-forming fungus Lobaria pulmonaria. Herzogia 2016, 29, 435–450. [Google Scholar] [CrossRef]
- Singh, G.; Dal Grande, F.; Werth, S.; Scheidegger, C. Long-term consequences of disturbances on reproductive strategies of the rare epiphytic lichen Lobaria pulmonaria: Clonality a gift and a curse. FEMS Microbiol. Ecol. 2015, 91, fiu009. [Google Scholar] [CrossRef]
- Lange, O.L.; Green, T.G.A. Lichens show that fungi can acclimate their respiration to seasonal changes in temperature. Oecologia 2005, 142, 11–19. [Google Scholar] [CrossRef]
- Larson, D.W.; Kershaw, K.A. Acclimation in arctic lichens. Nature 1975, 254, 421–423. [Google Scholar] [CrossRef]
- Colesie, C.; Büdel, B.; Hurry, V.; Green, T.G.A. Can Antarctic lichens acclimatize to changes in temperature? Glob. Chang. Biol. 2018, 24, 1123–1135. [Google Scholar] [CrossRef] [PubMed]
- Gauslaa, Y.; Solhaug, K.A.; Longinotti, S. Functional traits prolonging photosynthetically active periods in epiphytic lichens during desiccation. Environ. Exp. Bot. 2017, 141, 83–91. [Google Scholar] [CrossRef]
- Phinney, N.H.; Solhaug, K.A.; Gauslaa, Y. Rapid resurrection of chlorolichens in humid air: Specific thallus mass drives rehydration and reactivation kinetics. Environ. Exp. Bot. 2018, 148, 184–191. [Google Scholar] [CrossRef]
- Larsson, P.; Solhaug, K.A.; Gauslaa, Y. Seasonal partitioning of growth into biomass and area expansion in a cephalolichen and a cyanolichen of the old forest genus Lobaria. New Phytol. 2012, 194, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Gauslaa, Y.; Coxson, D. Interspecific and intraspecific variations in water storage in epiphytic old forest lichens. Botany 2011, 89, 787–798. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Lie, M.; Solhaug, K.A.; Ohlson, M. Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia 2006, 147, 406–416. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Palmqvist, K.; Solhaug, K.A.; Holien, H.; Nybakken, L.; Ohlson, M. Size-dependent growth of two old-growth associated macrolichen species. New Phytol. 2009, 181, 683–692. [Google Scholar] [CrossRef]
- Merinero, S.; Hilmo, O.; Gauslaa, Y. Size is a main driver for hydration traits in cyano- and cephalolichens of boreal rainforest canopies. Fungal Ecol. 2014, 7, 59–66. [Google Scholar] [CrossRef]
- Gaio-Oliveira, G.; Dahlman, L.; Máguas, C.; Palmqvist, K. Growth in relation to microclimatic conditions and physiological characteristics of four Lobaria pulmonaria populations in two contrasting habitats. Ecography 2004, 27, 13–28. [Google Scholar] [CrossRef]
- Longinotti, S.; Solhaug, K.A.; Gauslaa, Y. Hydration traits in cephalolichen members of the epiphytic old forest genus Lobaria (s.lat). Lichenologist 2017, 49, 493–506. [Google Scholar] [CrossRef]
- Yahr, R.; Vilgalys, R.; DePriest, P.T. Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol. 2006, 171, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Nelsen, M.P.; Gargas, A. Symbiont flexibility in Thamnolia vermicularis (Pertusariales: Icmadophilaceae). Bryologist 2009, 112, 404–417. [Google Scholar] [CrossRef]
- Nelsen, M.P.; Gargas, A. Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytol. 2008, 177, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Piercey-Normore, M.D. The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol. 2006, 169, 331–344. [Google Scholar] [CrossRef]
- Determeyer-Wiedmann, N.; Sadowsky, A.; Convey, P.; Ott, S. Physiological life strategies of photobionts of lichen species from Antarctic and moderate European habitats in response to stressful conditions. Polar Biol. 2019, 42, 395–405. [Google Scholar] [CrossRef]
- Casano, L.M.; del Campo, E.M.; García-Breijo, F.J.; Reig-Armiñana, J.; Gasulla, F.; del Hoyo, A.; Guéra, A.; Barreno, E. Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence or competition? Enviro. Microbiol. 2011, 13, 806–818. [Google Scholar] [CrossRef]
- Fernández-Mendoza, F.; Domaschke, S.; García, M.A.; Jordan, P.; Martín, M.P.; Printzan, C. Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol. Ecol. 2011, 20, 1208–1232. [Google Scholar] [CrossRef] [PubMed]
- Dal Grande, F.; Rolshausen, G.; Divakar, P.K.; Crespo, A.; Otte, J.; Schleuning, M.; Schmitt, I. Environment and host identity structure communities of green algal symbionts in lichens. New Phytol. 2017, 217, 277–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domaschke, S.; Vivas, M.; Sancho, L.G.; Printzen, C. Ecophysiology and genetic structure of polar versus temperature populations of the lichen Cetraria aculeata. Oecologia 2013, 173, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Rolhausen, G.; Dal Grande, F.; Sadowska-Deś, A.D.; Otte, J.; Schmitt, I. Quantifying the climatic niche of symbiont partners in a lichen symbiosis indicates mutualist-mediated niche expansions. Ecography 2018, 41, 1380–1392. [Google Scholar] [CrossRef]
- Vančurová, L.; Muggia, L.; Peksa, O.; Řídká, T.; Škaloud, P. The complexity of symbiotic interactions influences the ecological amplitude of the host: A case study in Stereocaulon (lichenized Ascomycota). Mol. Ecol. 2018, 27, 3016–3033. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.; Colesie, C.; Ullman, A.; Westberg, M.; Wedin, M.; Büdel, B. Lichen acclimation to changing environments: Photobiont switching vs. climate-specific uniqueness in Psora decipiens. Ecol. Evol. 2017, 7, 2560–2574. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, D.; Körner, C. Infra-red thermometry of alpine landscapes challenges climate warming projections. Glob. Chang. Biol. 2010, 16, 2602–2613. [Google Scholar]
- Scherrer, D.; Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 2011, 38, 406–416. [Google Scholar] [CrossRef]
- John, E.; Dale, M.R.T. Determinants of spatial patterns in saxicolous lichen communities. Lichenologist 1991, 23, 227–236. [Google Scholar] [CrossRef]
- John, E.A. Fine scale patterning of species distributions in a saxicolous lichen community at Jonas Rockslide, Canadian Rocky Mountains. Holarct. Ecol. 1990, 13, 187–194. [Google Scholar] [CrossRef]
- Rodriguez, J.M.; Renison, D.; Filippini, E.; Estrabou, C. Small shifts in microsite occupation could mitigate climate change consequences for mountain top endemics: A test analyzing saxicolous lichen distribution patterns. Biodivers. Conserv. 2017, 26, 1199–1215. [Google Scholar] [CrossRef]
- Rull, V. Microrefugia. J. Biogeogr. 2009, 36, 481–484. [Google Scholar] [CrossRef] [Green Version]
- Dobrowski, S.Z. A climatic basis for microrefugia: The influence of terrain on climate. Glob. Chang. Biol. 2010, 17, 1022–1035. [Google Scholar] [CrossRef]
- Goward, T. Nephroma occultum and the maintenance of lichen diversity in British Columbia. For. Snow Landsc. Res. 1995, 70, 93–101. [Google Scholar]
- Lidén, M.; Hilmo, O. Population characteristics of the suboceanic lichen Platismatia norvegica in core and fringe habitats: Relations to macroclimate, substrate, and proximity to streams. Bryologist 2005, 108, 506–517. [Google Scholar] [CrossRef]
- Lisewski, V.; Ellis, C.J. Epiphyte sensitivity to a cross-scale interaction between habitat quality and macroclimate: An opportunity for range-edge conservation. Biodivers. Conserv. 2010, 19, 3935–3949. [Google Scholar] [CrossRef]
- Goward, T. Notes on old growth-dependent epiphytic macrolichens in inland British Columbia, Canada. Acta Bot. Fenn. 1994, 150, 31–38. [Google Scholar]
- Arsenault, A.; Goward, T. Macrolichen diversity as an indicator of stand age and ecosystem reslience along a precipitation gradient in humid forests of inland British Columbia, Canada. Ecol. Indic. 2016, 69, 730–738. [Google Scholar] [CrossRef]
- Lesica, P.; McCune, B.; Cooper, S.V.; Hong, W.S. Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. Can. J. Bot. 1991, 69, 1745–1755. [Google Scholar] [CrossRef]
- McCune, B.; Antos, J.A. Epiphyte communities of the Swan Valley, Montana. Bryologist 1982, 85, 1–12. [Google Scholar] [CrossRef]
- Radies, D.; Coxson, D.S.; Johnson, C.; Konwicki, K. Predicting canopy macrolichen diversity and abundance within old-growth inland temperate rainforests. For. Ecol. Manag. 2009, 259, 86–97. [Google Scholar] [CrossRef]
- Goward, T.; Arseneau, A. Inland old-growth rain forests: safe havens for rare lichens? In Proceedings, The Management of Species and Habitats at Risk. Volume 2; Darling, L.M., Ed.; Ministry of Environment, Land and Parks: Victoria, UK, 1999. [Google Scholar]
- Van Herk, C.M.; Aptroot, A.; Van Dobben, H.F. Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 2002, 34, 141–154. [Google Scholar] [CrossRef]
- Aptroot, A.; Van Herk, C.M. Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environ. Pollut. 2007, 146, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Lättman, H.; Milberg, P.; Palmer, M.W.; Mattson, J.-E. Changes in the distribution of epiphytic lichens in southern Sweden using a new statistical method. Nord. J. Bot. 2009, 27, 413–418. [Google Scholar] [CrossRef]
- Ellis, C.J.; Binder, M.D. Inferred shift in the British distribution of Vulpicida pinastri using herbarium and mapping data. Bull. Br. Lichen Soc. 2007, 101, 4–10. [Google Scholar]
- Søchting, U. Flavoparmelia caperata—A probable indicator of increased temperatures in Denmark. Graph. Scr. 2004, 15, 53–56. [Google Scholar]
- Ohmura, Y.; Seaward, M.R.D. Is Glyphis cicatricosa an indicator for ‘global warming’ or an ‘urban heat island’ effect in Japan? Lichenologist 2017, 49, 291–296. [Google Scholar] [CrossRef]
- Dawson, T.P.; Jackson, S.T.; House, J.I.; Prentice, I.C.; Mace, G.M. Beyond predictions: Biodiversity conservation in a changing climate. Science 2011, 332, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.D.; Hill, J.K.; Anderson, B.J.; Bailey, S.; Beale, C.M.; Bradbury, R.B.; Bulman, C.R.; Crick, H.Q.P.; Eigenbrod, F.; Griffiths, H.M.; et al. A framework for assessing threats and benefits to species responding to climate change. Methods Ecol. Evol. 2011, 2, 125–142. [Google Scholar] [CrossRef]
- Ellis, C.J.; Eaton, S. The biogeography of climate change risk for Scotland’s woodland biodiversity: Epiphytes. Scott. Geogr. J. 2018, 134, 257–267. [Google Scholar] [CrossRef]
- Smith, R.J.; Nelson, P.R.; Jovan, S.; Hanson, P.J.; McCune, B. Novel climates reverse carbon uptake of atmospherically dependent epiphytes: Climatic constraints on the iconic boreal forest lichen Evernia mesomorpha. Am. J. Bot. 2018, 105, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ellis, C.J. A mechanistic model of climate change risk: Growth rates and microhabitat specificity for conservation priority woodland epiphytes. Perspect. Plant Ecol. Syst. 2018, 32, 38–48. [Google Scholar] [CrossRef]
Response | Extent | Resolution | Baseline | Variables | Covariables | Data | Method | Purpose | Citation |
---|---|---|---|---|---|---|---|---|---|
Cetradonia linearis | South East USA | 0.3 km | Unspecified | Temperature Precipitation | None | Presence Pseudo-absences | MAXENT | Conservation Assessment | [44] |
Cladonia rei | Alberta | 0.025 km | 2009–2013 | Proxy Climate (Lat. & Long.) | Edaphic Habitat Structure | Presence-Absence | GLM | Conservation Assessment Method Development | [37] |
Erioderma mollissimum | Atlantic Canada | Unspecified | Unspecified | Temperature Precipitation | Altitude | Presence | Mahalanobis | Conservation Assessment | [38] |
Erioderma pedicellatum | Newfoundland | 0.08 km | 1998–2008 | Proxy Climate (Distance to Coast) | Topography Habitat Structure | Presence Pseudo-absences | GAM | Conservation Assessment | [39] |
Fuscopannaria leucosticta | New Brunswick | 0.05 km | Unspecified | Temperature Precipitation Thermic Indices | Edaphic Habitat Structure | Presence Pseudo-absences | MAXENT | Conservation Assessment | [45] |
Fuscopannaria leucosticta | Nova Scotia | 0.05 km | 2005–2015 | Temperature Precipitation | Altitude Topography Edaphic Habitat Structure | Presence Pseudo-absence | MAXENT | Conservation Assessment | [40] |
Hypogymnia imshaugii agg. | Pacific Northwest | Unspecified | Unspecified | PCA Axes (Temp. and Precip.) | None | Presence-Absence | NPMR | Taxonomic Hypotheses | [32] |
Pectenia plumbea | Cabañeros NP(Spain) | 0.005 km | 2013 | Temperature Precipitation | Altitude Topography Habitat Structure | Presence-Absence Abundance | GLM | Conservation Assessment | [41] |
Squamarina cartilaginea agg. | Italy | 1 km | Unspecified | Temperature Precipitation | Geology Habitat Structure | Presence Pseudo-absence | GLMRF | Taxonomic Hypotheses | [33] |
Usnea hirta | Western USA | 1 km | 1991–1999 | Temperature Precipitation | Altitude Topography Solar Radiation Habitat Structure | Presence-Absence | NPMR | Bioindicator Testing | [48] |
Usnea longissima | Global | 5 km | Unspecified | Temperature Precipitation | Altitude Habitat Structure | Presence Pseudo-absence | MAXENT | Taxonomic Hypotheses | [34] |
Xanthoparmelia pulla agg. | Central Europe | 1 km | Unspecified | Temperature Precipitation | Altitude | Presence Pseudo-absence | MAXENT | Taxonomic Hypotheses | [35] |
4 species (proxies for rare species) | Pacific Northwest | 0.09 km | 1993–2000 | Temperature Precipitation Relative Humidity Vapour Pressure Thermic Indices | Altitude Topography Solar Radiation | Presence-Absence | CART | Method Development | [52] |
6 species (epiphytes) | Switzerland | Plots & 20 km | Unspecified 1989–2000 | Thermic Indices Hygric Indices | Habitat Structure Solar Radiation | Presence & Presence-Absence | GLM | Method Development | [53] |
9 species (Lecanora varia agg.) | Western USA | 2 km | Unspecified | Temperature Precipitation Relative Humidity Dew Point Thermic Indices | Altitude | Presence | NPMR | Taxonomic Hypotheses | [36] |
9 species (three bioindicator groups) | England | 5 km | 2009–2011 | Temperature Precipitation Relative Humidity | Pollutants | Abundance Presence-Absence | GLM | Bioindicator Testing | [49] |
11 species (Peltigerales) | Spain | 10 km | 1995–2005 | Temperature Precipitation Hygric Indices | Altitude Geology Habitat Structure | Presence | ENFA | Conservation Assessment | [46] |
12 species (epiphytes) | Alaska | 0.8 km | 2004–2008 | PCA Axes (Temp. and Precip.) | Habitat Structure | Abundance | NPMR | Bioindicator Testing | [50] |
15 species (epiphytes) | Pacific Northwest | 0.06 km | 2000–2001 | Temperature Precipitation Relative Humidity Dew Point | Topography Habitat Structure | Presence-Absence | GLM | Conservation Assessment | [42] |
18 species (three substratum types) | Spain | 10 km | Unspecified | Temperature Precipitation Hygric Indices | Altitude Geology Habitat Structure | Presence | ENFA | Conservation Assessment | [47] |
20 species (epiphytes) | Switzerland | Plots & 20 km | Unspecified 1989–2000 | Precipitation Thermic Indices Hygric Indices | Topography Habitat Structure Solar Radiation | Presence-Absence & Pseudo-absence | GLM MAXENT | Method Development | [54] |
59 species (epiphytes) | NW Italy | Unspecified | Unspecified | Temperature Precipitation | None | Presence-Absence | NPMR | Bioindicator Testing | [51] |
193 species (epiphytes & terricolous) | USA Atlantic Coast | 1 km | 1870–2015 | Temperature Precipitation | None | Presence Pseudo-absence | MAXENT | Conservation Assessment | [43] |
Response | Extent | Resolution | Baseline | Variables | Covariables | Data | Method | Climate Scenario | Citation |
---|---|---|---|---|---|---|---|---|---|
Lecanora populicola | Scotland | 10 km | 2003–2005 | Temperature Precipitation | None | Presence-Absence | NPMR | 2020s & 2050s B2 & A1F1 (SRES) | [93] |
Ochrolechia austroamericana | Global | 5 km | Unspecified | Temperature Precipitation | Altitude | PresencePseudo-absences | MAXENT | 2080s A1b, A2a & B2a (SRES) | [89] |
Vulpicida pinastri | Britain | 10 km | 1961–2008 | Temperature Precipitation | Pollutants | Presence Pseudo-absences | NPMR | 2050s B2 & A1F1 (SRES) | [91] |
2 species (Solonopsora spp.) | Carpathians | 2010-2015 | 0.5 km | Temperature Precipitation | Altitude Topography Geology Habitat Structure | Presence-Absence | CSM | 2050s & 2070s 2.6 & 8.5 (RCP) | [86] |
3 species (Lobaria spp.) | Italy | 1 km | Unspecified | Temperature Precipitation | None | Presence Pseudo-absences | MAXENT | 2020s, 2050s & 2080s A2 and B1 (SRES) | [88] |
8 species (endemics) | South East USA | 1 km | 2014 | Temperature Precipitation | None | Presence Pseudo-absences | MAXENT | 2050s & 2070s 2.6 & 8.5 (RCP) | [87] |
26 species (five biogeographic groups) | Britain | 10 km | 1961–2006 | Temperature Precipitation | None | Presence Pseudo-absences | NPMR | 2050s B2 & A1F1 (SRES) | [96] |
41 species (five trait groups) | Iberian Peninsula | 1 km & 10 km | Unspecified | Temperature Precipitation | None | Presence Pseudo-absences | GAMGLMCART | 2080s A1B (SRES) | [90] |
42 species (old-growth indicators) | Scotland | 5 km | 1971–2006 | Temperature Precipitation | Habitat Structure | Presence-Absence | NPMR | 2050s B2 & A1F1 (SRES) | [92] |
382 species (epiphytes) | Britain | 10 km | 1961–2010 | Temperature Precipitation | Pollutants Habitat Structure | Presence Pseudo-absences | MAXENT | 2050s & 2080s A1B & A1F1 (SRES) | [94,95] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellis, C.J. Climate Change, Bioclimatic Models and the Risk to Lichen Diversity. Diversity 2019, 11, 54. https://doi.org/10.3390/d11040054
Ellis CJ. Climate Change, Bioclimatic Models and the Risk to Lichen Diversity. Diversity. 2019; 11(4):54. https://doi.org/10.3390/d11040054
Chicago/Turabian StyleEllis, Christopher J. 2019. "Climate Change, Bioclimatic Models and the Risk to Lichen Diversity" Diversity 11, no. 4: 54. https://doi.org/10.3390/d11040054
APA StyleEllis, C. J. (2019). Climate Change, Bioclimatic Models and the Risk to Lichen Diversity. Diversity, 11(4), 54. https://doi.org/10.3390/d11040054