Disentangling the Effects of Disturbance from Those of Dominant Tall Grass Features in Driving the Functional Variation of Restored Grassland in a Sub-Mediterranean Context
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design and Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Effects of Mowing
4.2. Effects of Brachypodium rupestre Features
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burrascano, S.; Chytrý, M.; Kuemmerle, T.; Giarrizzo, E.; Luyssaert, S.; Sabatini, F.M.; Blasi, C. Current European policies are unlikely to jointly foster carbon sequestration and protect biodiversity. Biol. Conserv. 2016, 201, 370–376. [Google Scholar] [CrossRef]
- Giarrizzo, E.; Burrascano, S.; Chiti, T.; de Bello, F.; Lepš, J.; Zavattero, L.; Blasi, C. Re-visiting historical semi-natural grasslands in the Apennines to assess patterns of changes in species composition and functional traits. Appl. Veg. Sci. 2017, 20, 247–258. [Google Scholar] [CrossRef]
- Malavasi, M.; Carranza, M.L.; Moravec, D.; Cutini, M. Reforestation dynamics after land abandonment: A trajectory analysis in Mediterranean mountain landscapes. Reg. Environ. Chang. 2018, 18, 2459–2469. [Google Scholar] [CrossRef]
- Poschlod, P.; Kiefer, S.; Tränkle, U.; Fischer, S.; Bonn, S. Plant species richness in calcareous grasslands as affected by dispersability in space and time. Appl. Veg. Sci. 1998, 1, 75–90. [Google Scholar] [CrossRef]
- Louault, F.; Soussana, J.F.; Perrodin, M. Long-term effects of a reduced herbage use in a semi-natural grassland: I–plant functional traits and plant response groups. Grassl. Sci. Eur. 2002, 7, 338–339. [Google Scholar]
- Pottier, J.; Evette, A. On the Relationship between Clonal Traits and Small-Scale Spatial Patterns of Three Dominant Grasses and its Consequences on Community Diversity. Folia Geobot. 2010, 45, 59–75. [Google Scholar] [CrossRef]
- de Kroon, H.; Bobbink, R. Clonal plant dominance under elevated nitrogen deposition, with special reference to Brachypodium pinnatum in chalk grassland. In The Ecology and Evolution of Clonal Plants; de Kroon, H., van Groenendael, J., Eds.; Backhuys Publishers: Leiden, The Netherlands, 1997; pp. 359–379. [Google Scholar]
- Tardella, F.M.; Bricca, A.; Piermarteri, K.; Postiglione, N.; Catorci, A. Context-dependent variation of SLA and plant height of a dominant, invasive tall grass (Brachypodium genuense) in sub-Mediterranean grasslands. Flora 2017, 229, 116–123. [Google Scholar] [CrossRef]
- Bonanomi, G.; Allegrezza, M. Effetti della colonizzazione di Brachypodium rupestre (Host) Roemer et Schultes sulla diversità di alcune fitocenosi erbacee dell’Appennino centrale. Fitosociologia 2004, 41, 51–69. [Google Scholar]
- Catorci, A.; Ottaviani, G.; Ballelli, S.; Cesaretti, S. Functional differentiation of Central Apennine grasslands under mowing and grazing disturbance regimes. Pol. J. Ecol. 2011, 59, 15–128. [Google Scholar]
- Vitasović Kosić, I.; Tardella, F.M.; Grebeša, D.; Skovrc, Z.; Catorci, A. Effects of abandonment on the functional composition and forage nutritive value of a north Adriatic dry grassland community (Ćićarija, Croatia). Appl. Ecol. Env. Res. 2014, 12, 285–299. [Google Scholar] [CrossRef]
- Catorci, A.; Antolini, E.; Tardella, F.M.; Scocco, P. Assessment of interaction between sheep and poorly palatable grass: A key tool for grassland management and restoration. J. Plant Interact. 2014, 9, 112–121. [Google Scholar] [CrossRef]
- Suding, K.N.; Gross, K.L.; Houseman, G.R. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 2004, 19, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Suding, K.N.; Hobbs, R.J. Threshold models in restoration and conservation: A developing framework. Trends Ecol. Evol. 2009, 24, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Grime, J.P. Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. J. Veg. Sci. 2006, 17, 255–260. [Google Scholar] [CrossRef]
- Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef] [Green Version]
- Mayfield, M.M.; Levine, J.M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 2010, 13, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Lepš, J. Scale-and time-dependent effects of fertilization, mowing and dominant removal on a grassland community during a 15-year experiment. J. Appl. Ecol. 2014, 51, 978–987. [Google Scholar] [CrossRef]
- Canals, R.M.; San Emeterio, L.; Durán, M.; Múgica, L. Plant-herbivory feedbacks and selective allocation of a toxic metal are behind the stability of degraded covers dominated by Brachypodium pinnatum in acidic soils. Plant Soil 2017, 415, 373–386. [Google Scholar] [CrossRef]
- Scocco, P.; Mercati, F.; Brusaferro, A.; Ceccarelli, P.; Belardinellli, C.; Malfatti, A. Keratinisation degree of rumen epithelium and body condition score in sheep grazing on Brachypodium rupestre. Vet. Ital. 2013, 49, 211–217. [Google Scholar]
- Scocco, P.; Mercati, F.; Tardella, F.M.; Catorci, A. Increase of forage dryness induces differentiated anatomical response in the sheep rumen compartments. Microsc. Res. Tech. 2016, 79, 738–743. [Google Scholar] [CrossRef]
- Oroian, S.; Sămărghiţan, M.; Popa, R.; Calalb, T. The conservation status of grasslands habitats identified in the “Hârtibaciu-Târnava Mare-Olt” Natura 2000 site. Contrib. Bot. 2014, 49, 179–189. [Google Scholar]
- Tälle, M.; Bergman, K.O.; Paltto, H.; Pihlgren, A.; Svensson, R.; Westerberg, L.; Wissman, L.; Milberg, P. Mowing for biodiversity: Grass trimmer and knife mower perform equally well. Biodivers. Conserv. 2014, 23, 3073–3089. [Google Scholar] [CrossRef]
- Köhler, B.; Gigon, A.; Edwards, P.J.; Krüsi, B.; Langenauer, R.; Lüscher, A.; Ryser, P. Changes in the species composition and conservation value of limestone grasslands in Northern Switzerland after 22 years of contrasting managements. Persp. Plant Ecol. Evol. System. 2005, 7, 51–67. [Google Scholar] [CrossRef]
- Overbeck, G.; Kiehl, K.; Abs, C. Seedling recruitment of Succisella inflexa in fen meadows: Importance of seed and microsite availability. Appl. Veg. Sci. 2003, 6, 97–104. [Google Scholar] [CrossRef]
- Ilmarinen, K.; Mikola, J. Soil feedback does not explain mowing effects on vegetation structure in a semi-natural grassland. Acta Oecol. 2009, 35, 838–848. [Google Scholar] [CrossRef]
- Collins, S.L.; Knapp, A.K.; Briggs, J.M.; Blair, J.M.; Steinauer, E.M. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 1998, 280, 745–747. [Google Scholar] [CrossRef]
- Hautier, Y.; Niklaus, P.A.; Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 2009, 324, 636–638. [Google Scholar] [CrossRef] [Green Version]
- Huhta, A.-P.; Rautio, P. Evaluating the impacts of mowing: A case study comparing managed and abandoned meadow patches. Ann. Bot. Fenn. 1998, 35, 85–99. [Google Scholar]
- Klimešová, J.; Latzel, V.; de Bello, F.; van Groenendael, J.M. Plant functional traits in studies of vegetation changes in response to grazing and mowing: Towards a use of more specific traits. Preslia 2008, 80, 245–253. [Google Scholar]
- Valkó, O.; Török, P.; Matus, G.; Tóthmérész, B. Is regular mowing the most appropriate and cost-effective management maintaining diversity and biomass of target forbs in mountain hay meadows? Flora 2012, 207, 303–309. [Google Scholar] [CrossRef]
- Halassy, M.; Botta-Dukát, Z.; Csecserits, A.; Szitár, K.; Török, K. Trait-based approach confirms the importance of propagule limitation and assembly rules in old-field restoration. Restor. Ecol. 2019, 27, 840–849. [Google Scholar] [CrossRef] [Green Version]
- Socher, S.A.; Prati, D.; Boch, S.; Müller, J.; Baumbach, H.; Gockel, S.; Hemp, A.; Schöning, I.; Wells, K.; Buscot, F.; et al. Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. Basic Appl. Ecol. 2013, 14, 126–136. [Google Scholar] [CrossRef]
- Bonanomi, G.; Sicurezza, M.G.; Caporaso, S.; Esposito, A.; Mazzoleni, S. Phytotoxicity dynamics of decaying plant materials. New Phytol. 2006, 169, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Tardella, F.M.; Malatesta, L.; Goia, I.G.; Catorci, A. Effects of long-term mowing on coenological composition and recovery routes of a Brachypodium rupestre-invaded community: Insight into the restoration of sub-Mediterranean productive grasslands. Rendiconti Lincei. Sci. Fis. Nat. 2018, 29, 329–341. [Google Scholar] [CrossRef]
- Grime, J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd ed.; Wiley: Chichester, UK, 2001. [Google Scholar]
- de Bello, F.; Vandewalle, M.; Reitalu, T.; Lepš, J.; Prentice, H.C.; Lavorel, S.; Sykes, M.T. Evidence for scale-and disturbance-dependent trait assembly patterns in dry semi-natural grasslands. J. Ecol. 2013, 101, 1237–1244. [Google Scholar] [CrossRef]
- Bricca, A.; Conti, L.; Tardella, M.F.; Catorci, A.; Iocchi, M.; Theurillat, J.P.; Cutini, M. Community assembly processes along a sub-Mediterranean elevation gradient: Analyzing the interdependence of trait community weighted mean and functional diversity. Plant Ecol. 2019, 220, 1139–1151. [Google Scholar] [CrossRef]
- Cingolani, A.M.; Cabido, M.; Gurvich, D.E.; Renison, D.; Díaz, S. Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits? J. Veg. Sci. 2007, 18, 911–920. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Rivas Sáenz, S.; Penas, A. Worldwide bioclimatic classification system. Glob. Geobot. 2011, 1, 1–634. [Google Scholar]
- Catorci, A.; Cesaretti, S.; Gatti, R. Biodiversity conservation: Geosynphytosociology as a tool of analysis and modelling of grassland systems. Hacquetia 2009, 8/2, 129–146. [Google Scholar] [CrossRef] [Green Version]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; United States Department of Agriculture Handbook 436; Natural Resources Conservation Service: Washington, DC, USA, 1999; p. 869.
- Catorci, A.; Ottaviani, G.; Kosić, I.V.; Cesaretti, S. Effect of spatial and temporal patterns of stress and disturbance intensities in a sub-Mediterranean grassland. Plant Biosyst. 2012, 146, 352–367. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Austral. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference; Spinger: New York, NY, USA, 2002. [Google Scholar]
- Dormann, C.F.; McPherson, J.M.; Araújo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hirzel, A.; Jeta, W.; Kissling, D.; et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef] [Green Version]
- Package ‘nlme’. Available online: https://cran.r-project.org/web/packages/nlme/nlme.pdf (accessed on 15 August 2019).
- Endresz, G.; Zöld-Balogh, Á.; Kalapos, T. Local distribution pattern of Brachypodium pinnatum (Poaceae)-Field Experiments in xeric loess Grassland in N. Hungary. Phyton 2005, 45, 249–265. [Google Scholar]
- Bonanomi, G.; Caporaso, S.; Allegrezza, M. Short-term effects of nitrogen enrichment, litter removal and cutting on a Mediterranean grassland. Acta Oecol. 2006, 30, 419–425. [Google Scholar] [CrossRef]
- Catorci, A.; Cesaretti, S.; Tardella, F.M. Effect of tall-grass invasion on the flowering-related functional pattern of submediterranean hay-meadows. Plant Biosyst. 2014, 148, 1127–1137. [Google Scholar] [CrossRef]
- Catorci, A.; Carotenuto, L.; Gatti, R. Flowering patterns in sub-Mediterranean grasslands: A functional approach. Plant Ecol. Evol. 2012, 145, 165–175. [Google Scholar] [CrossRef]
- Fahrig, L.; Coffin, D.P.; Lauenroth, W.K.; Shugart, H.H. The advantage of long-distance clonal spreading in highly disturbed habitats. Evol. Ecol. 1994, 8, 172–187. [Google Scholar] [CrossRef]
- Huhta, A.P.; Rautio, P.; Tuomi, J.; Laine, K. Restorative mowing on an abandoned semi-natural meadow: Short-term and predicted long-term effects. J. Veg. Sci. 2001, 12, 677–686. [Google Scholar] [CrossRef]
- Kahmen, S.; Poschlod, P.; Schreiber, K.F. Conservation management of calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years. Biol. Conserv. 2002, 104, 319–328. [Google Scholar] [CrossRef]
- Völler, E.; Auge, H.; Prati, D.; Fischer, M.; Hemp, A.; Bossdorf, O. Geographical and land-use effects on seed-mass variation in common grassland plants. Basic Appl. Ecol. 2012, 13, 395–404. [Google Scholar] [CrossRef]
- Catorci, A.; Piermarteri, K.; Penksza, K.; Házi, J.; Tardella, F.M. Filtering effect of temporal niche fluctuation and amplitude of environmental variations on the trait-related flowering patterns: Lesson from sub-Mediterranean grasslands. Sci. Rep. 2017, 7, 12034. [Google Scholar] [CrossRef] [Green Version]
- Catorci, A.; Cesaretti, S.; Gatti, R.; Tardella, F.M. Trait-related flowering patterns in submediterranean mountain meadows. Plant Ecol. 2012, 213, 1315–1328. [Google Scholar] [CrossRef]
- Leishman, M.R.; Wright, I.J.; Moles, A.T.; Westoby, M. The evolutionary ecology of seed size. In Seeds: The Ecology of Regeneration in Plant Communities; Fenner, M., Ed.; CABI International: Oxon, UK, 2000; pp. 31–47. [Google Scholar]
- Lhotsky, B.; Kovács, B.; Ónodi, G.; Csecserits, A.; Rédei, T.; Lengyel, A.; Kertéz, M.; Botta-Dukát, Z. Changes in assembly rules along a stress gradient from open dry grasslands to wetlands. J. Ecol. 2016, 104, 507–517. [Google Scholar] [CrossRef] [Green Version]
Brachypodium rupestre Features | Treatment | Min. | Max. | Mean | Standard Deviation |
---|---|---|---|---|---|
Aboveground phytomass (g) | Unmown | 5.40 | 20.30 | 11.32 | 4.27 |
Mown | 0.60 | 5.20 | 1.88 | 1.11 | |
Plant height (m) | Unmown | 0.22 | 0.47 | 0.31 | 0.06 |
Mown | 0.10 | 0.25 | 0.15 | 0.04 |
Response Variable | Intercept Estimate | Fixed Effect Estimate | AICc | logLik | |||
---|---|---|---|---|---|---|---|
Management Mown | B. rupestre’s Phytomass | B. rupestre’s Plant Height | |||||
Life span | Annual a | −2.3030 *** | 2.6027 *** | 72.6 | −33.0 | ||
Perennial | 2.0395 *** | 0.6303 *** | 219.1 | −106.2 | |||
Vegetative propagation | Presence of vegetative propagation | 1.6653 *** | 0.7392 *** | 203.2 | −98.2 | ||
Absence of vegetative propagation a | 0.8329 ** | 0.6257 *** | 151.4 | −72.3 | |||
Bulbils | −30.3026 n.s. | 28.6932 n.s. | 28.9 | −11.1 | |||
Root tuber/stem tuber/root splitter | 0.2574 n.s. | -0.1046 ** | 86.5 | -39.9 | |||
Runner | 1.0296 *** | 0.7020 *** | 160.8 | −77.1 | |||
Rhizome | 1.5742 *** | 0.6776 *** | 185.4 | −89.4 | |||
Storage organs | Presence of belowground storage organ a | 1.6771 *** | 0.8840 *** | 214.0 | −103.7 | ||
Absence of belowground storage organ a | 0.9272 *** | 136.8 | −66.8 | ||||
Rhizome | 1.4400 *** | 0.8507 *** | 190.4 | −91.9 | |||
Bulb | −7.2559 n.s. | 3.9508 n.s. | 12.7530 n.s. | 45.1 | −18.0 | ||
Root tuber/stem tuber/shoot tuber | −2.9957 *** | 20.3 | −8.0 | ||||
Tap root | 0.3498 n.s. | 1.1100 *** | 153.1 | −73.2 | |||
Leaf persistence | Persistent green leaves | 1.3238 *** | 0.6391 *** | 174.2 | −83.8 | ||
Summer green leaves a | 1.3863 *** | 0.7419 *** | 178.9 | −86.1 | |||
Spring green leaves b | −13.9086 ** | 8.6920 * | 0.3188 n.s. | 20.1435 * | 45.2 | −16.7 | |
Overwintering green leavesc | −0.3882 n.s. | −2.2784 n.s. | 18.4 | −3.3 | |||
Leaf anatomy | Succulent leaves a | 2.1662 n.s. | −18.9194 * | 44.5 | −18.9 | ||
Succulent/hygromorphic leaves | −30.3026 n.s. | 28.4055 n.s. | 24.0 | -8.7 | |||
Mesomorphic/hygromorphic leavesa | −1.7431 *** | 45.5 | −20.6 | ||||
Mesomorphic leaves a | 0.7885 ** | 1.1062 *** | 166.9 | −80.1 | |||
Scleromorphic leaves | 0.0953 n.s. | 101.4 | −48.5 | ||||
Scleromorphic/mesomorphic leaves b | 1.5005 *** | 0.4672 *** | 174.3 | −83.8 | |||
Horizontal space occupation | Absence of horizontal architecture | −0.7985 * | 1.8101 *** | 116.9 | −55.1 | ||
Caespitose a | 1.6363 *** | 161.8 | −78.8 | ||||
Pleiocorma | 1.3798 *** | −0.1141 *** | 143.0 | −68.2 | |||
Reptant c | 0.7867 *** | 0.9151 *** | 149.2 | −71.3 | |||
Rosulate a | 1.1130 *** | −0.1698 *** | 113.6 | −53.4 | |||
Vertical space occupation | Sedge | −8.6652 *** | 7.5229 *** | 0.3727 *** | 52.3 | −21.6 | |
Grass a | 1.5265 *** | 157.8 | −76.7 | ||||
Rosette forb | 1.0707 *** | −0.1616 *** | 113.3 | −53.3 | |||
Hemirosulate upright forb | 1.5479 *** | −0.1051 *** | 146.2 | −69.7 | |||
Erosulate upright forb | 0.2383 n.s. | 1.1486 *** | 138.9 | −66.1 | |||
Prostrate forb | −1.2138 n.s. | −0.2321 n.s. | 33.9 | −13.6 | |||
Plant height | ≤20 cm d | 0.1440 n.s. | 1.5126 *** | 149.7 | −71.5 | ||
21–40 cm | 1.1800 *** | 0.6781 *** | 165.3 | −79.3 | |||
41–60 cm a | 1.2025 *** | 154.3 | −75.0 | ||||
81–100 cm | -0.9186 * | 67.4 | −31.6 | ||||
Seed mass | ≤0.20 mg | 1.5283 *** | −0.2310 *** | 112.0 | −52.6 | ||
0.21–0.50 mg a | 0.7659 *** | 124.5 | −60.1 | ||||
0.51–1.00 mg | −0.0813 n.s. | 1.0986 *** | 136.2 | −64.8 | |||
1.01–2.00 mg | 0.9933 ** | 0.6457 *** | 161.3 | −77.3 | |||
2.01–4.00 mg | 0.2231 ** | 97.5 | −46.6 | ||||
4.01–10.00 mg | −0.1625 n.s. | 101.6 | −48.7 | ||||
>10.00 mg | 1.1543 n.s. | −22.0392 n.s. | 23.7 | −8.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bricca, A.; Tardella, F.M.; Tolu, F.; Goia, I.; Ferrara, A.; Catorci, A. Disentangling the Effects of Disturbance from Those of Dominant Tall Grass Features in Driving the Functional Variation of Restored Grassland in a Sub-Mediterranean Context. Diversity 2020, 12, 11. https://doi.org/10.3390/d12010011
Bricca A, Tardella FM, Tolu F, Goia I, Ferrara A, Catorci A. Disentangling the Effects of Disturbance from Those of Dominant Tall Grass Features in Driving the Functional Variation of Restored Grassland in a Sub-Mediterranean Context. Diversity. 2020; 12(1):11. https://doi.org/10.3390/d12010011
Chicago/Turabian StyleBricca, Alessandro, Federico Maria Tardella, Fabio Tolu, Irina Goia, Arianna Ferrara, and Andrea Catorci. 2020. "Disentangling the Effects of Disturbance from Those of Dominant Tall Grass Features in Driving the Functional Variation of Restored Grassland in a Sub-Mediterranean Context" Diversity 12, no. 1: 11. https://doi.org/10.3390/d12010011
APA StyleBricca, A., Tardella, F. M., Tolu, F., Goia, I., Ferrara, A., & Catorci, A. (2020). Disentangling the Effects of Disturbance from Those of Dominant Tall Grass Features in Driving the Functional Variation of Restored Grassland in a Sub-Mediterranean Context. Diversity, 12(1), 11. https://doi.org/10.3390/d12010011