A Snap-Shot of Domatial Mite Diversity of Coffea arabica in Comparison to the Adjacent Umtamvuna Forest in South Africa
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vega, F.E.; Rosenquist, E.; Collins, W. Global project needed to tackle coffee crisis. Nature 2003, 425, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, F.E.; Ochoa, R.; Astorga, C.; Walter, D.E. Mites (Arachnida: Acari) inhabiting coffee domatia: A short review and recent findings from Costa Rica. Int. J. Acarol. 2007, 33, 291–295. [Google Scholar] [CrossRef]
- O’Dowd, D.J. Mite association with the leaf domatia of coffee (Coffea arabica) in North Queensland, Australia. Bull. Ent. Res. 1994, 84, 361–366. [Google Scholar] [CrossRef]
- Agrawal, A. Do leaf domatia mediate a plant–mite mutualism? An experimental test of the effects on predators and herbivores. Ecol. Entomol. 1997, 22, 371–376. [Google Scholar] [CrossRef]
- Norton, A.P.; English-Loeb, G.; Gadoury, D.; Seem, R.C. Mycophagous mites and foliar pathogens: Leaf domatia mediate tritrophic interactions in grapes. Ecology 2000, 81, 490–499. [Google Scholar] [CrossRef]
- Onzo, A.; Hanna, R.; Zannou, I.; Sabelis, M.W.; Yaninek, J.S. Dynamics of refuge use: Diurnal, vertical migration by predatory and herbivorous mites within cassava plants. Oikos 2003, 101, 59–69. [Google Scholar] [CrossRef]
- Vega, F.E.; Infante, F.; Castillo, A.; Jaramillo, J. The coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae): A short review, with recent findings and future research directions. Terr. Arthrop. Rev. 2009, 2, 129–147. [Google Scholar]
- Oliveira, C.M.; Ferreira, J.A.M.; Olivereira, R.M.; Santo, F.O.; Pallini, A. Ricoseius loxocheles, a phytoseiid mite that feeds on coffee leaf rust. Exp. Appl. Acarol. 2014, 64, 223–233. [Google Scholar] [CrossRef]
- English-loeb, G.; Norton, A.P.; Gadoury, D.M.; Seem, R.C.; Wilcox, W.F. Control of Powdery Mildew in Wild and Cultivated Grapes by a Tydeid Mite. Bio. Con. 1999, 14, 97–103. [Google Scholar] [CrossRef]
- Ferreira, J.A.M.; Eshuis, B.; Janssen, A.; Sabelis, M.W. Domatia reduce larval cannibalism in predatory mites. Ecol. Entomol. 2008, 33, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.A.M.; Cunha, D.F.S.; Pallini, A.; Sabelis, M.W.; Janssen, A. Leaf domatia reduce intraguild predation among predatory mites. Ecol. Entomol. 2011, 36, 435–441. [Google Scholar] [CrossRef]
- Mineiro, J.L.D.; Sato, M.E.; Raga, A.; Arthur, V. Population dynamics of phytophagous and predaceous mites on coffee in Brazil, with emphasis on Brevipalpus phoenicis (Acari: Tenuipalpidae). Exp. Appl. Acarol. 2008, 44, 277–291. [Google Scholar] [CrossRef]
- Fahl, J.I.; Queiroz-Voltan, R.B.; Carrelli, M.L.C.; Schiavinato, M.A.; Pradro, A.K.S.; Souza, J.C. Alterations in leaf anatomy and physiology caused by the red mite (Oligonychus ilicis) in plants of Coffea arabica. Bra. J. Pl. Physiol. 2007, 19, 61–86. [Google Scholar] [CrossRef] [Green Version]
- Romero, G.Q.; Daud, R.D.; Salomão, A.T.; Martins, L.F.; Feres, R.J.F.; Benson, W.W. Mites and leaf domatia: No evidence of mutualism in Coffea arabica plants. Bio. Neo. 2011, 11, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Pemberton, R.W.; Turner, C.E. Occurrence of predatory and fungivorous mites in leaf domatia. Amer. J. Bot. 1989, 76, 105–112. [Google Scholar] [CrossRef]
- Agricultural Reseach Council. Available online: http://www.arc.agric.za/arc-itsc/Pages/Coffee-Information.aspx (accessed on 20 November 2019).
- Situngu, S. An Investigation of the Leaf Domatia—Mite Mutualism in South Africa: Insights from Ecological Studies. Ph.D. Thesis, Rhodes University, Grahamstown, South Africa, 2017. [Google Scholar]
- Clarke, K.R.; Gorley, R.N. PRIMER v6: User Manual/Tutorial; PRIMER-E: Plymouth, UK, 2006. [Google Scholar]
- Matos, C.H.C.; Pallini, A.; Chaves, F.F.; Schoereder, J.S.; Janssen, A. Do domatia mediate mutualistic interactions between coffee plants and predatory mites? Ent. Exp. Et. App. 2006, 118, 185–192. [Google Scholar] [CrossRef]
- Mineiro, J.L.C.; Sato, M.E.; Berton, J.H.C.; Raga, A. Mites (Arachnida: Acari) on coffee plants in forest fragment and conventional plantation in Monte Alegre do Sul, Atate of São Paulo, Brazil. Divulgação Scientífica 2019, 81, 1–30. [Google Scholar]
- Agrawel, A.A.; Karban, R.; Colfer, R.G. How leaf domatia and induced plant resistance affect herbivores, natural enemies and plant performance. Oikos 2000, 89, 70–80. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, D.M.; Lee, W.G.; Monks, A.; Dickinson, K.J.M. Does microhabitat structure affect foliar mite assemblages? Ecol. Entomol. 2010, 35, 317–328. [Google Scholar] [CrossRef]
- English-Loeb, G.; Norton, A.; Walker, M.A. Behavioral and population consequences of acarodomatia in grapes on phytoseiid mites (Acari: Mesostigmata) and implications for plant breeding. Ent. Exp. Et. Appl. 2002, 104, 307–319. [Google Scholar] [CrossRef]
- Melidossian, H.S.; Seem, R.C.; English-Loeb, G.; Wilcox, W.F.; Gadoury, D.M. Suppression of grapevine powdery mildew by a mycophagous mite. Plant Dis. 2005, 89, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Chagas, C.M.; Kitajima, E.W.; Rodrigues, J.C.V. Coffee ringspot virus vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) in coffee. Exp. Appl. Acarol. 2003, 30, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.E.; Navia, D.; dos Santos, L.R.; Rideiqui, P.J.S.; Silva, E.S. Mites associated with sugarcane crop and with nativetrees from adjacent Atlantic forest fragment in Brazil. Exp. Appl. Acarol. 2015, 66, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Demite, P.R.; Feres, R.J.F.; Lofego, A.C. Influence of agricultural environment on the plant mite community in forest fragments. Braz. J. Biol. 2015, 75, 396–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murcia, C. Edge effects in fragmented forests: Implications for conservation. Trends Ecol. Evol. 1995, 10, 58–62. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, S.E.; Burton, P.J.; Chen, J.; Brosofske, K.D.; Saunders, S.C.; Euskirchen, E.S.; Roberts, D.; Jaiteh, M.S.; Esseen, P. Edge influence on forest structure and composition in fragmented landscapes. Con. Biol. 2005, 19, 768–782. [Google Scholar] [CrossRef]
- Ries, L.; Sisk, T.D. A predictive model of edge effects. Ecology 2004, 85, 2917–2926. [Google Scholar] [CrossRef] [Green Version]
- Tian, C.; Yang, X.; Liu, Y. Edge effect and its impacts on forest ecosystem: A review. Chin. J. Appl. Ecol. 2011, 22, 2184–2192. [Google Scholar]
- Lacasella, F.; Gratton, C.; Felici, S.D.; Sbordoni, V. Asymmetrical responses of forest and ‘‘beyond edge’’ arthropod communities across a forest–grassland ecotone. Bio. Con. 2015, 24, 447–465. [Google Scholar] [CrossRef]
- Chen, J.; Saunders, S.C.; Crow, T.R.; Naiman, R.J.; Brosofske, K.D.; Mroz, G.D.; Brookshire, L.; Franklin, J.F. Microclimate in Forest Ecosystem and Landscape Ecology: Variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience 1999, 49, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Fukui, A. Indirect interactions mediated by leaf shelters in animal-plant communities. Pop. Ecol. 2001, 43, 31–40. [Google Scholar] [CrossRef]
- Situngu, S.; Barker, N.P. Position, position, position: Mites occupying leaf domatia are not uniformly distributed in the tree canopy. SA J. Bot. 2016, 108, 23–28. [Google Scholar] [CrossRef]
- Croft, B.A.; Messing, R.H.; Dunley, J.E.; Strong, W.B. Effects of humidity on eggs and immatures of Neoseiulus fallacis, Amblyseieus andersoni, Metaseiulus occidentalis and Typhlodromus pyri (Phytoseiidae): Implications for biological control on apple, caneberry, strawberry and hop. Exp. App. Acarol. 1993, 17, 451–459. [Google Scholar] [CrossRef]
Mite Species | Feeding Guild | Coffee Edge: Abundance (% Frequency) | Coffee Middle: Abundance (% Frequency) | Natural Forest: Abundance (% Frequency) | Total: Abundance (% Frequency) |
---|---|---|---|---|---|
Cheyletidae Prosocheyla hepburni (Lawrence) | Predacious | 14 (7%) | 14 (3%) | ||
Cunaxidae Bunaxella quini Den Heyer Rubroscirus sp. | Predacious Predacious | 15 (25%) | 28 (30%) | 37 (15%) 5 (4%) | 80 (24%) 5 (1%) |
Eriophyidae Eriophyid sp. | Herbivorous | 104 (19%) | 104 (7%) | ||
Eupodidae Eupodes sp. | Algiphagus | 17 (15%) | 17 (6%) | ||
Oribatida Oribatid mite | Mycophagous/Saprophytic | 2 (10%) | 30 (30%) | 32 (12%) | |
Phytoseiidae Amblyseius anomalus van der Merwe Euseius addoensis (van der Merwe and Ryke) Ueckermannseius sp1 Ueckermannseius sp2 Ueckermannseius munsteriensisvan der Merwe Typhlodromus microbullatus van der Merwe Typhlodromus crassusvan der Merwe | Predacious Predacious Predacious Predacious Predacious Predacious Predacious | 212 (95%) 2 (10%) 77 (50%) | 136 (30%) 59 (25%) 35 (35%) 78 (85%) | 227 (56%) 9 (4%) 18 (26%) 73 (41%) 7 (7%) 4 (4%) | 227 (22%) 357 (38 %) 59 (7%) 20 (13%) 73 (16%) 7 (3%) 35 (10%) 159 (41%) |
Stigmaeidae Agistemus tranatalensisMeyer Agistemus sp. (probably new) Mullederia centrata (Meyer) | Predacious Predacious Predacious | 2 (5%) | 15 (20%) | 5 (4%) | 5 (1%) 15 (6%) 2 (1%) |
Tenuipalpidae Brevipalpus sp. (probably new) | Herbivorous | 8 (11%) | 8 (4%) | ||
Tetranychidae Oligonychus sp. (probably new) Tetranychus sp. Tetranychus nymph | Herbivorous Herbivorous Herbivorous | 6 (4%) 33 (25%) 83 (25%) | 6 (1%) 33 (10%) 83 (10%) | ||
Triophtydeidae Tetratriophtydeus myacanthus Ueckermann | Predacious | 5 (4%) | 45 (1%) | ||
Tydeidae Tydeus munsteri Meyer and Ryke | Predacious | 46 (48%) | 46 (19%) | ||
Winterschmidtiidae Saproglyphus sp. | Mycophagous | 11 (15%) | 11 (6%) |
Site | Average within Group Similarity (%) | Contribution of Species (%) |
---|---|---|
Natural forest | 31.21 | Phytoseiidae Amblyseius anomalus (23.6) Ueckermannseius munsteriensis (21.5) Oribatida Oribatid mite (16.8) |
Middle of coffee plantation | 68.27 | Phytoseiidae Euseius addoensis (81.1) Typhlodromus crassus (16.0) |
Edge of coffee plantation | 46.17 | Phytoseiidae Typhlodromus crassus (70.2) Cunaxidae Bunaxella quini (8.7) Phytoseiidae Euseius addoensis (8.2) |
Site | Average between Group Dissimilarity (%) | Contribution of Species (%) |
---|---|---|
Natural forest vs. middle of plantation | 97.97 | Phytoseiidae Euseius addoensis (17.5) Amblyseius anomalus (10.1) Ueckermannseius Munsteriensis (9.7) |
Middle of coffee plantation vs. edge of plantation | 62.48 | Phytoseiidae Euseius addoensis (29.0) Typhlodromus crassus (23.3) Cunaxidae Bunaxella quini (16.1) |
Edge of coffee plantation vs. natural forest | 89.64 | Phytoseiidae Typhlodromus crassus (15.0) Amblyseius anomalus (9.9) Phytoseius sp. (9.4) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Situngu, S.; Barker, N.P.; Vetter, S. A Snap-Shot of Domatial Mite Diversity of Coffea arabica in Comparison to the Adjacent Umtamvuna Forest in South Africa. Diversity 2020, 12, 79. https://doi.org/10.3390/d12020079
Situngu S, Barker NP, Vetter S. A Snap-Shot of Domatial Mite Diversity of Coffea arabica in Comparison to the Adjacent Umtamvuna Forest in South Africa. Diversity. 2020; 12(2):79. https://doi.org/10.3390/d12020079
Chicago/Turabian StyleSitungu, Sivuyisiwe, Nigel P. Barker, and Susanne Vetter. 2020. "A Snap-Shot of Domatial Mite Diversity of Coffea arabica in Comparison to the Adjacent Umtamvuna Forest in South Africa" Diversity 12, no. 2: 79. https://doi.org/10.3390/d12020079
APA StyleSitungu, S., Barker, N. P., & Vetter, S. (2020). A Snap-Shot of Domatial Mite Diversity of Coffea arabica in Comparison to the Adjacent Umtamvuna Forest in South Africa. Diversity, 12(2), 79. https://doi.org/10.3390/d12020079