Low Diversity of Intertidal Canopy-Forming Macroalgae at Urbanized Areas along the North Portuguese Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Sample Processing
2.3. Data Analyses
3. Results
3.1. Canopy-Forming Diversity
3.2. Canopy-Forming Assemblage Structure
3.3. Abundance and Biomass of Most Relevant Species
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duffy, M.E.; Benedetti-Cecchi, L.; Trinanes, J.; Muller-Karger, F.E.; Ambo-Rappe, R.; Boström, C.; Buschmann, A.H.; Byrnes, J.; Coles, R.G.; Creed, J.; et al. Toward a coordinated global observing system for seagrasses and marine macroalgae. Front. Mar. Sci. 2019, 6, 317. [Google Scholar] [CrossRef] [Green Version]
- Filbee-Dexter, K.; Wernberg, T. Rise of turfs: A new battlefront for globally declining kelp forests. Bioscience 2018, 68, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Airoldi, L.; Beck, M.W. Loss, status and trends for coastal marine habitats of Europe. Oceanogr. Mar. Biol. Annu. Rev. 2007, 35, 345–405. [Google Scholar]
- Airoldi, L.; Balata, D.; Beck, M.W. The Gray Zone: Relationships between habitat loss and marine diversity and their applications in conservation. J. Exp. Mar. Biol. 2008, 366, 8–15. [Google Scholar] [CrossRef]
- Christie, H.; Andersen, G.S.; Bekkby, T.; Fagerli, C.W.; Gitmark, J.K.; Gundersen, H.; Rinde, E. Shifts between sugar kelp and turf algae in Norway: Regime shifts or fluctuations between different opportunistic seaweed species? Front. Mar. Sci. 2019, 6, 72. [Google Scholar] [CrossRef] [Green Version]
- Gorman, D.; Russell, B.D.; Connell, S.D. Land-to-sea connectivity: Linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts. Ecol. Appl. 2009, 19, 1114–1126. [Google Scholar] [CrossRef] [PubMed]
- Todd, P.A.; Heery, E.C.; Loke, L.H.L.; Thurstan, R.H.; Kotze, D.J.; Swan, C. Towards an urban marine ecology: Characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. Oikos 2019, 128, 1215–1242. [Google Scholar] [CrossRef] [Green Version]
- Tamburello, L.; Papa, L.; Guarnieri, G.; Basconi, L.; Zampardi, S.; Scipione, M.B.; Terlizzi, A.; Zupo, V.; Fraschetti, S. Are we ready for scaling up restoration actions? An insight from Mediterranean macroalgal canopies. PLoS ONE 2019, 14, e0224477. [Google Scholar] [CrossRef]
- Casado-Amezúa, P.; Araújo, R.; Bárbara, I.; Bermejo, R.; Borja, Á.; Díez, I.; Fernández, C.; Gorostiaga, J.M.; Guinda, X.; Hernández, I.; et al. Distributional shifts of canopy-forming seaweeds from the Atlantic coast of Southern Europe. Biodivers.Conserv. 2019, 28, 1151–1172. [Google Scholar] [CrossRef]
- Iveša l Djakovac, T.; Devescovi, M. Long-term fluctuations in Cystoseira populations along the west Istrian Coast (Croatia) related to eutrophication patterns in the northern Adriatic Sea. Mar. Pollut. Bull. 2016, 106, 162–173. [Google Scholar] [CrossRef]
- Sales, M.; Cebrian, E.; Tomas, F.; Ballesteros, E. Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales, Heterokontophyta). Estuar. Coast. Shelf Sci. 2011, 92, 347–357. [Google Scholar] [CrossRef]
- Mangialajo, I.; Chiantore, M.; Cattaneo-Vietti, R. Loss of fucoid algae along a gradient of urbanisation, and structure of benthic assemblages. Mar. Ecol. Prog. Ser. 2008, 358, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Rubal, M.; Veiga, P.; Reis, P.A.; Bertocci, I.; Sousa-Pinto, I. Effects of subtle pollution at different levels of biological organisation on species-rich assemblages. Environ. Pollut. 2014, 191, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Dethier, M.N.; Graham, E.S.; Cohen, S.; Tear, L.M. Visual versus random-point percent cover estimations:“objective” is not always better. Mar. Ecol. Prog. Ser. 1993, 96, 93–100. [Google Scholar] [CrossRef]
- Underwood, A.J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variances; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Anderson, M.J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 2006, 62, 245–253. [Google Scholar] [CrossRef]
- Clarke, K.R. Nonparametric multivariate analyses of changes in community structure. Austral. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Araújo, R.; Bárbara, I.; Tibaldo, M.; Berecibar, E.; Diaz Tapia, P.; Pereira, R.; Santos, R.; Sousa-Pinto, I. Checklist of benthic marine algae and cyanobacteria of northern Portugal. Bot. Mar. 2009, 52, 24–46. [Google Scholar] [CrossRef]
- Lluch, R.J.; Gómez Garreta, A.; Barceló, M.C.; Ribera, M.A. Mapas de distribución de algas marinas de la Península Ibérica e Islas Baleares. VII. Cystoseira, C. Agardh (Grupo, C. baccata) y Sargassum, C. Agardh (S. muticum y S. vulgare). Botanica Complutenses 1994, 19, 131–138. [Google Scholar]
- Veiga, P.; Rubal, M.; Sousa-Pinto, I. Structural complexity of macroalgae influences epifaunal assemblages associated with native and invasive species. Mar. Environ. Res. 2014, 101, 115–123. [Google Scholar] [CrossRef]
- Veiga, P.; Sousa-Pinto, I.; Rubal, M. Meiofaunal assemblages associated with native and non-indigenous macroalgae. Cont. Shelf Res. 2016, 123, 1–8. [Google Scholar] [CrossRef]
- Salvaterra, T.; Geen, D.S.; Crowe, T.P.; O’Gorman, E.J. Impacts of the invasive alga Sargassum muticum on ecosystem functioning and food web structure. Biol. Invasions 2013, 15, 2563–2576. [Google Scholar] [CrossRef]
- Thibaut, T.; Blanfuné, A.; Verlaque, M.; Boudouresque, C.F.; Ruitton, S. The Sargassum conundrum: Highly rare, threatened or locally extinct in the NW Mediterranean and still lacking protection. Hydrobiologia 2016, 781, 3–23. [Google Scholar] [CrossRef]
- Thibaut, T.; Blanfuné, A.; Boudouresque, C.F.; Cottalorda, J.M.; Hereu, B.; Susini, M.L.; Verlaque, M. Unexpected temporal stability of Cystoseira and Sargassum forests in Port-Cros, one of the oldest Mediterranean marine National Parks. Cryptogam. Algol. 2016, 37, 61–90. [Google Scholar] [CrossRef]
- Devescovi, M. Effects of bottom topography and anthropogenic pressure on northern Adriatic Cystoseira spp. (Phaeophyceae, Fucales). Aquat. Bot. 2015, 121, 26–32. [Google Scholar] [CrossRef]
- Incera, M.; Olabarria, C.; Cacabelos, E.; César, J.; Troncoso, J.S. Distribution of Sargassum muticum on the North West coast of Spain: Relationships with urbanization and community diversity. Cont. Shelf Res. 2011, 31, 488–495. [Google Scholar] [CrossRef]
- Carlton, J.T. Pattern, process, and prediction in marine invasion ecology. Biol. Conserv. 1996, 78, 97–106. [Google Scholar] [CrossRef]
Source of Variation | df | S | H | ||||
---|---|---|---|---|---|---|---|
MS | F | p | MS | F | p | ||
Urbanization = Ur | 1 | 39.0 | 205.7 | 0.000 | 9.48 | 175.6 | 0.000 |
Shore(Ur) = Sh(Ur) | 6 | 0.18 | 0.9 | 0.49 | 0.05 | 1.23 | 0.29 |
Residual | 152 | 0.21 | 0.04 | ||||
Total | 156 | ||||||
Transform | none | none | |||||
Cochran’s Test | C = 0.3312 | s | C = 0.2832 | s |
Source of Variation | df | MS | Pseudo-F | p | Unique Permutations |
---|---|---|---|---|---|
Urbanization = Ur | 1 | 64289 | 2.73 | 0.04 | 35 |
Shore(Ur) = Sh(St) | 6 | 23527 | 14.03 | 0.001 | 999 |
Residual | 152 | 1677 | |||
Total | 159 |
Species | Average Abundance | δi | δi% | δi/SD(δi) | |
---|---|---|---|---|---|
Urban | Non-Urban | ||||
Bifurcariabifurcata | 2.49 | 26.41 | 33.01 | 42.48 | 1.26 |
Sargassummuticum | 22.10 | 13.10 | 29.85 | 38.41 | 1.33 |
Treptacanthabaccata | 0.49 | 7.11 | 13.66 | 7.77 | 17.57 |
Source of Variation | df | S. muticum | B. bifurcata | T. baccata | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MS | F | p | MS | F | p | MS | F | p | ||
Urbanization = Ur | 1 | 2979.8 | 1.01 | 0.35 | 22,393.4 | 7.46 | 0.03 | 1755.6 | 44.68 | 0.001 |
Shore(Ur) = Sh(Ur) | 6 | 2952.8 | 17.16 | 0.000 | 3000.4 | 20.14 | 0.000 | 39.3 | 0.36 | 0.9 |
Residual | 152 | 172.0 | 149 | 109.4 | ||||||
Total | 156 | |||||||||
Transform | ArcSin (%) | none | none | |||||||
Cochran’s Test | C = 0.2075 | n.s. | C = 0.2487 | n.s. | C = 0.5454 | s. |
Source of Variation | df | S. muticum (Biomass) | ||
---|---|---|---|---|
MS | F | p | ||
Urbanization = Ur | 1 | 141.0 | 0.06 | 0.81 |
Shore(Ur) = Sh(Ur) | 6 | 2177.2 | 3.82 | 0.002 |
Residual | 72 | 569.9 | ||
Total | 79 | |||
Transform | none | |||
Cochran’s Test | C = 0.2919 | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, M.R.; Torres, C.A.; Veiga, P. Low Diversity of Intertidal Canopy-Forming Macroalgae at Urbanized Areas along the North Portuguese Coast. Diversity 2020, 12, 211. https://doi.org/10.3390/d12060211
García MR, Torres CA, Veiga P. Low Diversity of Intertidal Canopy-Forming Macroalgae at Urbanized Areas along the North Portuguese Coast. Diversity. 2020; 12(6):211. https://doi.org/10.3390/d12060211
Chicago/Turabian StyleGarcía, Marcos Rubal, Catarina A. Torres, and Puri Veiga. 2020. "Low Diversity of Intertidal Canopy-Forming Macroalgae at Urbanized Areas along the North Portuguese Coast" Diversity 12, no. 6: 211. https://doi.org/10.3390/d12060211
APA StyleGarcía, M. R., Torres, C. A., & Veiga, P. (2020). Low Diversity of Intertidal Canopy-Forming Macroalgae at Urbanized Areas along the North Portuguese Coast. Diversity, 12(6), 211. https://doi.org/10.3390/d12060211