The Importance of Genomics for Deciphering the Invasion Success of the Seagrass Halophila stipulacea in the Changing Mediterranean Sea
Abstract
:1. Introduction
2. Methods
2.1. Literature Survey
2.2. Genomic Analysis
2.2.1. Sampling
2.2.2. DNA Extraction, Library Preparation, and Sequencing
2.2.3. Bioinformatic Analyses
3. Results and Discussion
3.1. Research Interest on H. stipulacea Genetics
3.2. The First Draft Reference Genome of H. Stipulacea
4. Closing Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simberloff, D.; Martin, J.-L.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; García-Berthou, E.; Pascal, M.; et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef] [PubMed]
- Zenetos, A.; Çinar, M.E.; Crocetta, F.; Golani, D.; Rosso, A.; Servello, G.; Shenkar, N.; Turon, X.; Verlaque, M. Uncertainties and validation of alien species catalogues: The Mediterranean as an example. Estuar. Coast. Shelf Sci. 2017, 191, 171–187. [Google Scholar] [CrossRef]
- Bates, A.E.; McKelvie, C.M.; Sorte, C.J.B.; Morley, S.A.; Jones, N.A.R.; Mondon, J.A.; Bird, T.J.; Quinn, G. Geographical range, heat tolerance and invasion success in aquatic species. PLoS ONE 2013, 280, 20131958. [Google Scholar] [CrossRef] [Green Version]
- Marbà, N.; Jordà, G.; Agustí, S.; Girard, C.; Duarte, C.M. Footprints of climate change on Mediterranean Sea biota. Front. Mar. Sci. 2015, 2, 56. [Google Scholar] [CrossRef]
- Georgiou, D.; Alexandre, A.; Luis, J.; Santos, R. Temperature is not a limiting factor for the expansion of Halophila stipulacea throughout the Mediterranean Sea. Mar. Ecol. Prog. Ser. 2016, 544, 159–167. [Google Scholar] [CrossRef]
- Sharon, Y.; Levitan, O.; Spungin, D.; Berman-Frank, I.; Beer, S. Photoacclimation of the seagrass Halophila stipulacea to the dim irradiance at its 48-meter depth limit. Limnol. Oceanogr. 2011, 56, 357–362. [Google Scholar] [CrossRef]
- Marbà, N.; Duarte, C.M. Rhizome elongation and seagrass clonal growth. Mar. Ecol. Prog. Ser. 1998, 174, 269–280. [Google Scholar] [CrossRef]
- Weatherall, E.J.; Jackson, E.L.; Hendry, R.A.; Campbell, M.L. Quantifying the dispersal potential of seagrass vegetative fragments: A comparison of multiple subtropical species. Estuar. Coast. Shelf Sci. 2016, 169, 207–215. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Kleitou, P.; Kletou, D.; Sapir, Y.; Winters, G. Differences in flowering sex ratios between native and invasive populations of the seagrass Halophila stipulacea. Bot. Mar. 2018, 61, 337–342. [Google Scholar] [CrossRef]
- Gerakaris, V.; Tsiamis, K. Sexual reproduction of the Lessepsian seagrass Halophila stipulacea in the Mediterranean Sea. Bot. Mar. 2015, 58, 51–53. [Google Scholar] [CrossRef]
- Lipkin, Y. Halophila stipulacea in Cyprus and Rhodes, 1967–1970. Aquat. Bot. 1975, 1, 309–320. [Google Scholar] [CrossRef]
- Apostolaki, E.T.; Holmer, M.; Santinelli, V.; Karakassis, I. Species-specific response to sulfide intrusion in native and exotic Mediterranean seagrasses under stress. Mar. Environ. Res. 2018, 134, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Delgado, E.A.; Toledo-Hernández, C.; Ruíz-Díaz, C.P.; Gómez-Andújar, N.; Medina-Muñiz, J.L.; Canals-Silander, M.F.; Suleimán-Ramos, S.E. Hurricane Impacts and the Resilience of the Invasive Sea Vine, Halophila stipulacea: A Case Study from Puerto Rico. Estuaries Coasts 2020, 1–21. [Google Scholar] [CrossRef]
- O’Brien, K.R.; Waycott, M.; Maxwell, P.; Kendrick, G.A.; Udy, J.W.; Ferguson, A.J.P.; Kilminster, K.; Scanes, P.; McKenzie, L.J.; McMahon, K.; et al. Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance. Mar. Pollut. Bull. 2018, 134, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Wesselmann, M.; Anton, A.; Duarte, C.M.; Hendriks, I.E.; Agustí, S.; Savva, I.; Apostolaki, E.T.; Marbà, N. Tropical seagrass Halophila stipulacea shifts thermal tolerance during Mediterranean invasion. Proc. Royal Soc. B Biol. Sci. 2020, 287, 20193001. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, C.N. Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 2007, 580, 7–21. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Bernard, G.; Pergent, G.; Shimabukuro, H.; Verlaque, M. Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: A critical review. Bot. Mar. 2009, 52, 395–418. [Google Scholar] [CrossRef]
- Sghaier, Y.R.; Zakhama-Sraieb, R.; Charfi-Cheikhrouha, F. Effects of the invasive seagrass Halophila stipulacea on the native seagrass Cymodocea nodosa. In Proceedings of the Fifth Mediterranean 281 Symposium on Marine Vegetation, Portoroz, Slovenia, 27–28 October 2014; RAC/SPA: Tunis, Tunisia, 2014; pp. 167–172. [Google Scholar]
- Willette, D.A.; Ambrose, R.F. Effects of the invasive seagrass Halophila stipulacea on the native seagrass, Syringodium filiforme, and associated fish and epibiota communities in the Eastern Caribbean. Aquat. Bot. 2012, 103, 74–82. [Google Scholar] [CrossRef]
- Van Tussenbroek, B.I.; Van Katwijk, M.M.; Bouma, T.J.; Van der Heide, T.; Govers, L.L.; Leuven, R.S.E.W. Non-native seagrass Halophila stipulacea forms dense mats under eutrophic conditions in the Caribbean. J. Sea Res. 2016, 115, 1–5. [Google Scholar] [CrossRef]
- Marbà, N.; Díaz-Almela, E.; Duarte, C.M. Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biol. Conserv. 2014, 176, 183–190. [Google Scholar] [CrossRef]
- Stapley, J.; Reger, J.; Feulner, P.G.D.; Smadja, C.; Galindo, J.; Ekblom, R.; Bennison, C.; Ball, A.D.; Beckerman, A.P.; Slate, J. Adaptation genomics: The next generation. Trends Ecol. Evol. 2010, 25, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Primmer, C.R. From Conservation Genetics to Conservation Genomics. Ann. N.Y. Acad. Sci. 2009, 1162, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Rius, M.; Turon, X.; Bernardi, G.; Volckaert, F.A.M.; Viard, F. Marine invasion genetics: From spatio-temporal patterns to evolutionary outcomes. Biol. Invasions 2015, 17, 869–885. [Google Scholar] [CrossRef] [Green Version]
- Ekblom, R.; Wolf, J.B.W. A field guide to whole-genome sequencing, assembly and annotation. Evol. Appl. 2014, 7, 1026–1042. [Google Scholar] [CrossRef]
- Baird, N.A.; Etter, P.D.; Atwood, T.S.; Currey, M.C.; Shiver, A.L.; Lewis, Z.A.; Selker, E.U.; Cresko, W.A.; Johnson, E.A. Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLoS ONE 2008, 3, e3376. [Google Scholar] [CrossRef]
- Tassell, C.P.V.; Smith, T.P.L.; Matukumalli, L.K.; Taylor, J.F.; Schnabel, R.D.; Lawley, C.T.; Haudenschild, C.D.; Moore, S.S.; Warren, W.C.; Sonstegard, T.S. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat. Methods 2008, 5, 247–252. [Google Scholar] [CrossRef]
- Zavodna, M.; Grueber, C.E.; Gemmell, N.J. Parallel Tagged Next-Generation Sequencing on Pooled Samples—A New Approach for Population Genetics in Ecology and Conservation. PLoS ONE 2013, 8, e61471. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 2011, 475, 493–496. [Google Scholar] [CrossRef] [Green Version]
- Hohenlohe, P.A.; Phillips, P.C.; Cresko, W.A. Using Population Genomics to Detect Selection in Natural Populations: Key Concepts and Methodological Considerations. Int. J. Plant Sci. 2010, 171, 1059–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Arabidopsis Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408, 796–815. [Google Scholar] [CrossRef] [Green Version]
- Goff, S.A.; Ricke, D.; Lan, T.H.; Presting, G.; Wang, R.; Dunn, M.; Glazebrook, J.; Sessions, A.; Oeller, P.; Varma, H.; et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002, 296, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Haberer, G.; Gundlach, H.; Gläßer, C.; Nussbaumer, T.; Luo, M.C.; Lomsadze, A.; Borodovsky, M.; Kerstetter, R.A.; Shanklin, J.; et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 2014, 5, 3311. [Google Scholar] [CrossRef] [PubMed]
- Hoeck, A.V.; Horemans, N.; Monsieurs, P.; Cao, H.X.; Vandenhove, H.; Blust, R. The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotechnol. Biofuels 2015, 8, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Sun, P.; Lv, L.; Wang, D.; Ru, D.; Li, Y.; Ma, T.; Zhang, L.; Shen, X.; Meng, F.; et al. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nat. Plants 2020, 6, 215–222. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Zhou, Y.; Li, C.; Xiao, Q.; Wang, T.; Zhang, Y.; Wu, Y.; Li, Y.; Chao, D.-Y.; Messing, J.; et al. Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela. Proc. Natl. Acad. Sci. USA 2019, 116, 18893–18899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, J.L.; Rouzé, P.; Verhelst, B.; Lin, Y.-C.; Bayer, T.; Collen, J.; Dattolo, E.; Paoli, E.D.; Dittami, S.; Maumus, F.; et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 2016, 530, 331–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Golicz, A.A.; Bayer, P.E.; Jiao, Y.; Tang, H.; Paterson, A.H.; Sablok, G.; Krishnaraj, R.R.; Chan, C.-K.K.; Batley, J.; et al. The Genome of a Southern Hemisphere Seagrass Species (Zostera muelleri). Plant Physiol. 2016, 172, 272–283. [Google Scholar] [CrossRef] [Green Version]
- Marín-Guirao, L.; Ruiz, J.M.; Dattolo, E.; Garcia-Munoz, R.; Procaccini, G. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Sci. Rep. 2016, 6, 28615. [Google Scholar] [CrossRef] [Green Version]
- Jueterbock, A.; Franssen, S.U.; Bergmann, N.; Gu, J.; Coyer, J.A.; Reusch, T.B.H.; Bornberg-Bauer, E.; Olsen, J.L. Phylogeographic differentiation versus transcriptomic adaptation to warm temperatures in Zostera marina, a globally important seagrass. Mol. Ecol. 2016, 25, 5396–5411. [Google Scholar] [CrossRef] [Green Version]
- Franssen, S.U.; Gua, J.; Bergmannb, N.; Wintersa, G.; Klostermeierc, U.C.; Rosenstielc, P.; Bornberg-Bauera, E.; Reuschb, T.B.H. Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc. Natl. Acad. Sci. USA 2011, 108, 19276–19281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Esposito, D.; Orrù, L.; Dattolo, E.; Bernardo, L.; Lamontanara, A.; Orsini, L.; Serra, I.A.; Mazzuca, S.; Procaccini, G. Transcriptome characterisation and simple sequence repeat marker discovery in the seagrass Posidonia oceanica. Sci. Data 2016, 3, 160115. [Google Scholar] [CrossRef] [PubMed]
- De Kock, W.; Hasler-Sheetal, H.; Holmer, M.; Tsapakis, M.; Apostolaki, E.T. Metabolomics and traditional indicators unveil stress of a seagrass (Cymodocea nodosa) meadow at intermediate distance from a fish farm. Ecol. Indic. 2020, 109, 105765. [Google Scholar] [CrossRef]
- Malandrakis, E.; Dadali, O.; Kavouras, M.; Danis, T.; Panagiotaki, P.; Miliou, H.; Tsioli, S.; Orfanidis, S.; Küpper, F.C.; Exadactylos, A. Identification of the abiotic stress-related transcription in little Neptune grass Cymodocea nodosa with RNA-seq. Mar. Genom. 2017, 34, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Barbier, F.F.; Chabikwa, T.G.; Ahsan, M.U.; Cook, S.E.; Powell, R.; Tanurdzic, M.; Beveridge, C.A. A phenol/chloroform-free method to extract nucleic acids from recalcitrant, woody tropical species for gene expression and sequencing. Plant Methods 2019, 15, 62. [Google Scholar] [CrossRef] [Green Version]
- Maltas, E.; Vural, H.C.; Yildiz, S. Extraction of genomic DNA from polysaccharide- and phenolics-rich Ginkgo biloba. J. Med. Plants Res. 2011, 5, 332–339. [Google Scholar]
- Doyle, J.J.; Doyle, L.J. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Procaccini, G.; Acunto, S.; Fama, P.; Maltagliati, F. Structural, morphological and genetic variability in Halophila stipulacea (Hydrocharitaceae) populations in the western Mediterranean. Mar. Biol. 1999, 135, 181–189. [Google Scholar] [CrossRef]
- Rindi, F.; Cavas, L.; Serrão, E.; Duarte, C.M.; Marrá, N. Molecular identification of the tropical seagrass Halophila stipulacea from Turkey. Cah. Biol. Mar. 2011, 52, 227–232. [Google Scholar]
- Ruggiero, M.V.; Procaccini, G. The rDNA ITS Region in the Lessepsian Marine Angiosperm Halophila stipulacea (Forssk.) Aschers. (Hydrocharitaceae): Intragenomic Variability and Putative Pseudogenic Sequences. J. Mol. Evol. 2004, 58, 115–121. [Google Scholar] [CrossRef]
- El-Hady, H.H.A.; Hamed, E.R.; Shehata, A.N. Molecular Identification, Antimicrobial and Antioxidant Activities of the Tropical Seagrass Halophila stipulacea Grown in El-Bardawil Lake, Egypt. Aust. J. Basic Appl. Sci. 2012, 6, 474–481. [Google Scholar]
- Gargiulo, G.M.; Vilardo, I.; Cambrea, G.; Gemelli, F.; Crosca, A. Karyomorphology and DNA quantification in the marine angiosperm Halophila stipulacea (Forsskål) Ascherson from Mediterranean and Red Seas. Aquat. Bot. 2018, 148, 1–9. [Google Scholar] [CrossRef]
- Lee, H.; Golicz, A.A.; Bayer, P.E.; Severn-Ellis, A.A.; Chan, C.-K.K.; Batley, J.; Kendrick, G.A.; Edwards, D. Genomic comparison of two independent seagrass lineages reveals habitat-driven convergent evolution. J. Exp. Bot. 2018, 69, 3689–3702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrotra, S.; Goyal, V. Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genom. Proteom. Bioinform. 2014, 12, 164–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurka, J.; Kapitonov, V.V.; Kohany, O.; Jurka, M.V. Repetitive Sequences in Complex Genomes: Structure and Evolution. Annu. Rev. Genom. Hum. Genet. 2007, 8, 241–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toll-Riera, M.; Radó-Trilla, N.; Martys, F.; Albà, M.M. Role of Low-Complexity Sequences in the Formation of Novel Protein Coding Sequences. Mol. Biol. Evol. 2012, 29, 883–886. [Google Scholar] [CrossRef] [Green Version]
- Feschotte, C.; Jiang, N.; Wessler, S.R. Plant transposable elements: Where genetics meets genomics. Nat. Rev. Genet. 2002, 3, 329–341. [Google Scholar] [CrossRef]
- Choulet, F.; Wicker, T.; Rustenholz, C.; Paux, E.; Salse, J.; Leroy, P.; Schlub, S.; Le Paslier, M.C.; Magdelenat, G.; Gonthier, C.; et al. Megabase Level Sequencing Reveals Contrasted Organization and Evolution Patterns of the Wheat Gene and Transposable Element Spaces. Plant Cell 2020, 22, 1686–1701. [Google Scholar] [CrossRef] [Green Version]
- Stevens, K.A.; Wegrzyn, J.L.; Zimin, A.; Puiu, D.; Crepeau, M.; Cardeno, C.; Paul, R.; Gonzalez-Ibeas, D.; Koriabine, M.; Holtz-Morris, A.E.; et al. Sequence of the Sugar Pine Megagenome. Genetics 2016, 204, 1613–1626. [Google Scholar] [CrossRef]
- Akakpo, R.; Carpentier, M.; Hsing, Y.I.; Panaud, O. The impact of transposable elements on the structure, evolution and function of the rice genome. New Phytol. 2020, 226, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Edger, P.P.; Poorten, T.J.; VanBuren, R.; Hardigan, M.A.; Colle, M.; McKain, M.R.; Smith, R.D.; Teresi, S.J.; Nelson, A.D.L.; Wai, C.M.; et al. Origin and evolution of the octoploid strawberry genome. Nat. Genet. 2019, 51, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Danis, T.; Tsakogiannis, A.; Kristoffersen, J.B.; Golani, D.; Tsaparis, D.; Kasapidis, P.; Kotoulas, G.; Magoulas, A.; Tsigenopoulos, C.S.; Manousaki, T. Building a high-quality reference genome assembly for the eastern Mediterranean Sea invasive sprinter Lagocephalus sceleratus (Tetraodontiformes, Tetraodontidae). bioRxiv 2020. [Google Scholar] [CrossRef]
- Jiang, S.; An, H.; Xu, F.; Zhang, X. Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome. Gigascience 2020, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Assembly Statistics | |
---|---|
Total length in bp | 3,705,345,858 |
Total number of contigs | 866,469 |
Contig N50 * | 7949 |
L50 ** | 102,383 |
GC% | 41.97 |
Number of unknown bases (N’s) per 100 Kbp | 14.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsakogiannis, A.; Manousaki, T.; Anagnostopoulou, V.; Stavroulaki, M.; Apostolaki, E.T. The Importance of Genomics for Deciphering the Invasion Success of the Seagrass Halophila stipulacea in the Changing Mediterranean Sea. Diversity 2020, 12, 263. https://doi.org/10.3390/d12070263
Tsakogiannis A, Manousaki T, Anagnostopoulou V, Stavroulaki M, Apostolaki ET. The Importance of Genomics for Deciphering the Invasion Success of the Seagrass Halophila stipulacea in the Changing Mediterranean Sea. Diversity. 2020; 12(7):263. https://doi.org/10.3390/d12070263
Chicago/Turabian StyleTsakogiannis, Alexandros, Tereza Manousaki, Vasileia Anagnostopoulou, Melanthia Stavroulaki, and Eugenia T. Apostolaki. 2020. "The Importance of Genomics for Deciphering the Invasion Success of the Seagrass Halophila stipulacea in the Changing Mediterranean Sea" Diversity 12, no. 7: 263. https://doi.org/10.3390/d12070263
APA StyleTsakogiannis, A., Manousaki, T., Anagnostopoulou, V., Stavroulaki, M., & Apostolaki, E. T. (2020). The Importance of Genomics for Deciphering the Invasion Success of the Seagrass Halophila stipulacea in the Changing Mediterranean Sea. Diversity, 12(7), 263. https://doi.org/10.3390/d12070263