Diversity of Tree Species in Gap Regeneration under Tropical Moist Semi-Deciduous Forest: An Example from Bia Tano Forest Reserve
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Sampling Design
2.3. Data Collection and Organization
2.4. Data Analysis
3. Results
3.1. Description of Tree Species Composition in Gaps
3.2. Regeneration Dynamics between Pioneers and Shade Bearers in Gaps at Different Site Conditions
3.3. Description of Tree Species Diversity in Gaps
3.4. Description of Conservation Status of Tree Species in Gaps
4. Discussion
4.1. Assessment of Regeneration Dynamics between Pioneers and Shade Bearers in Gap Regeneration
4.2. Assessment of Composition and Diversity of Tree Species in Gap Regeneration
4.2.1. Species Composition
4.2.2. Species Diversity and Similarity Check
4.3. Assessment of Conservation Status of Tree Species in Gap Regeneration
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burivalova, Z.; Allnutt, T.F.; Rademacher, D.; Schlemm, A.; Wilcove, D.S.; Butler, R.A. What works in tropical forest conservation, and what does not: Effectiveness of four strategies in terms of environmental, social, and economic outcomes. Conserv. Sci. Pract. 2019, 1, e28. [Google Scholar] [CrossRef] [Green Version]
- Stévart, T.; Dauby, G.; Lowry, P.P.; Blach-Overgaard, A.; Droissart, V.; Harris, D.J.; Mackinder, B.A.; Schatz, G.E.; Sonké, B.; Sosef, M.S.M.; et al. A third of the tropical African flora is potentially threatened with extinction. Sci. Adv. 2019, 5, eaax9444. [Google Scholar] [CrossRef] [Green Version]
- Senior, R.A.; Hill, J.K.; Edwards, D.P. Global loss of climate connectivity in tropical forests. Nat. Clim. Chang. 2019, 9, 623–626. [Google Scholar] [CrossRef] [Green Version]
- Pirie, M.D. Remarkable insights into processes shaping African tropical tree diversity. Peer Community Evol. Biol. 2020, 1, 100094. [Google Scholar] [CrossRef]
- Nair, C.T.S.; Tieguhong, J. African Forests and Forestry: An Overview. A Report Prepared for the Project. Lessons Learnt on Sustainable Forest Management in Africa; Royal Swedish Academy of Agriculture and Forestry: Stockholm, Sweden; African Forest Research Network (AFORNET) at the African Academy of Sciences (AAS): Nairobi, Kenya; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2004. [Google Scholar]
- Dutta, G.; Devi, A. Plant diversity, population structure, and regeneration status in disturbed tropical forests in Assam, northeast India. J. For. Res. 2013, 24, 715–720. [Google Scholar] [CrossRef]
- Kacholi, D.S. Edge-Interior Disparities in Tree Species and Structural Composition of the Kilengwe Forest in Morogoro Region, Tanzania. Int. Sch. Res. Not. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Karsten, R.J.; Jovanovic, M.; Meilby, H.; Perales, E.; Reynel, C. Regeneration in canopy gaps of tierra-firme forest in the Peruvian Amazon: Comparing reduced impact logging and natural, unmanaged forests. For. Ecol. Manag. 2013, 310, 663–671. [Google Scholar] [CrossRef]
- Lawer, E.A.; Baatuuwie, B.N.; Ochire-Boadu, K.; Asante, J.W. Preliminary assessment of the effects of anthropogenic activities on vegetation cover and natural regeneration in a moist semi-deciduous forest of Ghana. Int. J. Ecosyst. 2013, 3, 148–156. [Google Scholar]
- Fischer, R.; Bohn, F.; De Paula, M.D.; Dislich, C.; Groeneveld, J.; Gutierrez, A.G.; Kazmierczak, M.; Knapp, N.; Lehmann, S.; Paulick, S.; et al. Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests. Ecol. Model. 2016, 326, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Marcot, B.G.; Saxena, A. Tree species diversity and distribution patterns in tropical forests of Garo Hills. Curr. Sci. 2006, 91, 1370–1381. [Google Scholar]
- Rahman, H.; Khan, A.S.A.; Roy, B.; Fardusi, M.J. Assessment of natural regeneration status and diversity of tree species in the biodiversity conservation areas of Northeastern Bangladesh. J. For. Res. 2011, 22, 551–559. [Google Scholar] [CrossRef]
- De Carvalho, A.L.; D’Oliveira, M.V.N.; Putz, F.E.; De Oliveira, L.C. Natural regeneration of trees in selectively logged forest in western Amazonia. For. Ecol. Manag. 2017, 392, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Park, A.; Justiniano, M.J.; Fredericksen, T.S. Natural regeneration and environmental relationships of tree species in logging gaps in a Bolivian tropical forest. For. Ecol. Manag. 2005, 217, 147–157. [Google Scholar] [CrossRef]
- Čater, M.; Diaci, J.; Rozenbergar, D. Gap size and position influence variable response of Fagus sylvatica L. and Abies alba Mill. For. Ecol. Manag. 2014, 325, 128–135. [Google Scholar] [CrossRef]
- Bentos, T.V.; Nascimento, H.E.; dos Anjos Vizcarra, M.; Williamson, G.B. Effects of light gaps and topography on Amazon secondary forest: Changes in species richness and community composition. For. Ecol. Manag. 2017, 396, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.-I. Forest gap dynamics and tree regeneration. J. For. Res. 2000, 5, 223–229. [Google Scholar] [CrossRef]
- Brokaw, N.; Busing, R.T. Niche versus chance and tree diversity in forest gaps. Trends Ecol. Evol. 2000, 15, 183–188. [Google Scholar] [CrossRef]
- Jaloviar, P.; Sedmáková, D.; Pittner, J.; Danková, L.J.; Kucbel, S.; Sedmák, R.; Saniga, M. Gap Structure and Regeneration in the Mixed Old-Growth Forests of National Nature Reserve Sitno, Slovakia. Forests 2020, 11, 81. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Zhang, G.; Jiao-Jun, Z.; Wang, G.G.; Zhu, C.; Yan, Q.; Zhang, J. Early natural regeneration patterns of woody species within gaps in a temperate secondary forest. Eur. J. For. Res. 2019, 138, 991–1003. [Google Scholar] [CrossRef]
- Zhu, J.; Lu, D.; Zhang, W. Effects of gaps on regeneration of woody plants: A meta-analysis. J. For. Res. 2014, 25, 501–510. [Google Scholar] [CrossRef]
- Agyarko, T. Forestry Outlook Study for Africa (FOSA); Country Report; Ministry of Lands and Forestry: Accra, Ghana, 2001; pp. 15–22. [Google Scholar]
- Agyeman, V.K.; Swaine, M.D.; Thompson, J.; Kyereh, B.; Duah-Gyamfi, A.; Foli, E.G.; Adu-Bredu, S. A comparison of tree seedling growth in artificial gaps of different sizes in two contrasting forest types. Ghana J. For. 2011, 26, 14–40. [Google Scholar] [CrossRef] [Green Version]
- Duah-Gyamfi, A.; Kyereh, B.; Adam, K.A.; Agyeman, V.K.; Swaine, M.D. Natural regeneration dynamics of tree seedlings on skid trails and tree gaps following selective logging in a tropical moist semi-deciduous forest in Ghana. Open For. Res. 2014, 41, 49. [Google Scholar] [CrossRef] [Green Version]
- Wiafe, E.D. Tree regeneration after logging in rain-forest ecosystem. Res. J. Biol. 2014, 2, 18–28. [Google Scholar]
- Kusimi, J.M. Characterizing land disturbance in Atewa Range Forest Reserve and Buffer Zone. Land Use Policy 2015, 49, 471–482. [Google Scholar] [CrossRef]
- Akoto, S.D.; Asare, A.; Gyabaa, G. Natural regeneration diversity and composition of native tree species under monoculture, mixed culture plantation and natural forest. Int. Res. J. Nat. Sci. 2015, 3, 24–38. [Google Scholar]
- Wiafe, E.D. Tree Species Composition of Kakum Conservation Area in Ghana. Ecol. Evol. Biol. 2016, 21, 14. [Google Scholar]
- Gelens, M.F.; van Leeuwen, L.M.; Hussin, Y.A. Geo-Information Applications for Off-Reserve Tree Management, Ghana; Tropenbos International: Wageningen, The Netherlands, 2010; p. 3. [Google Scholar]
- Hawthorne, W.D.; Abu-Juam, M. Forest Protection in Ghana with Particular Reference to Vegetation and Species; IUCN Press: Cambridge, UK, 1995; pp. 12–27. [Google Scholar]
- Hawthorne, W.D.; Gyakari, N. Photoguide for the Forest Trees of Ghana: A Tree-Spotter’s Field Guide for Identifying the Largest Trees; Oxford Forestry Institute: Oxford, UK, 2006; pp. 18–348. [Google Scholar]
- Hawthorne, W.D. Ecological profiles of Ghanaian Forest Trees; Tropical Forestry Paper; Oxford Forestry Institute: Oxford, UK, 1995; p. 29. [Google Scholar]
- Abiem, I.; Arellano, G.; Kenfack, D.; Chapman, H. Afromontane Forest Diversity and the Role of Grassland-Forest Transition in Tree Species Distribution. Diversity 2020, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Kuusipalo, J.; Jafarsidik, Y.; Ådjers, G.; Tuomela, K. Population dynamics of tree seedlings in a mixed dipterocarp rainforest before and after logging and crown liberation. For. Ecol. Manag. 1996, 81, 85–94. [Google Scholar] [CrossRef]
- Dekker, M.; De Graaf, N. Pioneer and climax tree regeneration following selective logging with silviculture in Suriname. For. Ecol. Manag. 2003, 172, 183–190. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Wagner, P.J.; Harper, D.A.T. Numerical Palaeobiology: Computer-Based Modelling and Analysis of Fossils and Their Distributions. PALAIOS 2000, 15, 364–366. [Google Scholar] [CrossRef]
- Raup, D.M.; Crick, R.E. Measurement of faunal similarity in paleontology. J. Paleontol. 1979, 53, 1213–1227. [Google Scholar]
- Ifo, S.A.; Moutsambote, J.M.; Koubouana, F.; Yoka, J.; Ndzai, S.F.; Bouetou-Kadilamio, L.N.O.; Mampouya, H.; Jourdain, C.; Bocko, Y.; Mantota, A.B.; et al. Tree Species Diversity, Richness, and Similarity in Intact and Degraded Forest in the Tropical Rainforest of the Congo Basin: Case of the Forest of Likouala in the Republic of Congo. Int. J. For. Res. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [Green Version]
- World Flora Online. Available online: http://www.worldfloraonline.org/ (accessed on 15 July 2020).
- International Union for Conservation of Nature. 2006 IUCN Red List of Threatened Species, 2020 (Version 2020-2). Available online: http://www.iucnredlist.org/ (accessed on 17 July 2020).
- Muscolo, A.; Bagnato, S.; Sidari, M.; Mercurio, R. A review of the roles of forest canopy gaps. J. For. Res. 2014, 25, 725–736. [Google Scholar] [CrossRef]
- Gomes, E.P.C.; Mantovani, W.; Kageyama, P.Y. Mortality and recruitment of trees in a secondary montane rain forest in southeastern Brazil. Braz. J. Biol. 2003, 63, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Darrigo, M.R.; Venticinque, E.; Dos Santos, F.A.M. Effects of reduced impact logging on the forest regeneration in the central Amazonia. For. Ecol. Manag. 2016, 360, 52–59. [Google Scholar] [CrossRef]
- Pretzsch, H.; Forrester, D.I.; Rötzer, T. Representation of species mixing in forest growth models. A review and perspective. Ecol. Model. 2015, 313, 276–292. [Google Scholar] [CrossRef] [Green Version]
- Pourbabaei, H.; Haddadi-Moghaddam, H.; Begyom-Faghir, M.A.; Abedi, T. The influence of gap size on plant species diversity and composition in beech (Fagus orientalis) forests, Ramsar, Mazandaran Province, North of Iran. Biodivers. J. Biol. Divers. 2013, 14, 2. [Google Scholar] [CrossRef]
- Clinton, B.D.; Boring, L.R.; Swank, W.T. Regeneration Patterns in Canopy Gaps of Mixed-Oak Forests of the Southern Appalachians: Influences of Topographic Position and Evergreen Understory. Am. Midl. Nat. 1994, 132, 308–319. [Google Scholar] [CrossRef] [Green Version]
- Swaine, M.D.; Agyeman, V.K. Enhanced Tree Recruitment Following Logging in Two Forest Reserves in Ghana. Biotropica 2008, 40, 370–374. [Google Scholar] [CrossRef]
- Pelletier, T.A.; Carstens, B.C.; Tank, D.C.; Sullivan, J.; Espíndola, A. Predicting plant conservation priorities on a global scale. Proc. Natl. Acad. Sci. USA 2018, 115, 13027–13032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- del Río, M.; Pretzsch, H.; Alberdi, I.; Bielak, K.; Bravo, F.; Brunner, A.; Condés, S.; Ducey, M.J.; Fonseca, T.; von Lüpke, N.; et al. Characterization of Mixed Forests in Dynamics, Silviculture and Management of Mixed Forests; Springer: Berlin/Heidelberg, Germany, 2018; pp. 27–71. [Google Scholar]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, aaf8957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Lie, G.; Xue, L. Effects of gap size on diversity of soil fauna in a Cunninghamia lanceolata stand damaged by an ice storm in southern China. J. For. Res. 2016, 27, 1427–1434. [Google Scholar] [CrossRef]
- The State of the World’s Forest Genetic Resources; Country Report; Ministry of Lands and Natural Resources: Accra, Ghana, 2012; pp. 20–24.
- Adusei, Y.Y. Assessment of the Natural Regeneration Potential of Reclaimed Mined Sites: Case Study of Owere Mines Limited. Master’s Thesis, University of Energy and Natural Resources, Sunyani, Ghana, 12 May 2017. [Google Scholar]
- Yalley, M.K.; Adusu, D.; Bunyamin, A.-R.; Okyere, I.; Asare, A. Natural Regeneration of Indigenous Tree Species in Broussonetia papyrifera Invaded Sites in Pra-Anum Forest Reserve. Int. J. For. Res. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Maljean-Dubois, S. The intergovernmental science-policy platform on biodiversity and ecosystem services (IPBES). Int. J. Bioethique 2014, 25, 55–73. [Google Scholar] [CrossRef]
- Walker, B.E.; Leão, T.C.C.; Bachman, S.P.; Bolam, F.C.; Nic Lughadha, E. Caution Needed When Predicting Species Threat Status for Conservation Prioritization on a Global Scale. Front. Plant Sci. 2020, 11, 520. [Google Scholar] [CrossRef]
- Convention on International Trade in Endangered Species of Wild Fauna and Flora. Available online: https://cites.org/eng/message_SG_Ivonne_Higuero_idb2020_22052020 (accessed on 21 July 2020).
- Global Tree Assessment. Available online: https://www.globaltreeassessment.org/ (accessed on 21 July 2020).
Species | Families | Conservation System | Relative Density (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
STM | CSR | IUCN | Gap 1 | Gap 2 | Gap 3 | Gap 4 | Gap 5 | Gap 6 | Gap 7 | Gap 8 | Gap 9 | ||
Milicia excelsa (Welw.) C. C. Berg. | Moraceae | Pi | Scarlet | NT | --- | --- | --- | --- | --- | --- | --- | 0.94 | --- |
Milicia regia (A.Chev.) C. C. Berg. | Moraceae | Pi | Scarlet | VU | --- | --- | --- | --- | --- | 1.92 | --- | --- | --- |
Nauclea diderrichii (De Wild.) Merr. | Rubiaceae | Pi | Scarlet | VU | --- | --- | --- | --- | --- | --- | --- | 0.94 | --- |
Triplochiton scleroxylon K. Schum. | Malvaceae | Pi | Scarlet | LC | --- | --- | 2.13 | 1.41 | 2.13 | --- | --- | 0.94 | 1.12 |
Ceiba pentandra (L.) Gaertn | Malvaceae | Pi | Red | LC | 0.81 | --- | --- | --- | --- | --- | 0.59 | 1.89 | --- |
Daniellia ogea (Harms) Holland | Fabaceae | Pi | Red | NT | 2.44 | 10.64 | 21.28 | 1.41 | --- | --- | 2.94 | 4.72 | 2.25 |
Terminalia superba Engl. & Diels. | Combretaceae | Pi | Red | NE* | 0.81 | --- | --- | --- | --- | 1.92 | 38.82 | 16.98 | 1.12 |
Antrocaryon micraster A. Chev. & Guillaumin. | Anacardiaceae | Pi | Pink | VU | --- | --- | --- | --- | --- | --- | --- | 0.94 | --- |
Morus mesozygia Stapf. | Moraceae | Pi | Pink | NE* | 0.81 | --- | --- | --- | 2.13 | --- | --- | 0.94 | --- |
Ricinodendron heudelotii (Baill.) Heckel. | Euphorbiaceae | Pi | Pink | NE* | 0.81 | --- | --- | --- | 2.13 | --- | --- | --- | --- |
Alstonia boonei De Wild. | Apocynaceae | Pi | Green | LC | --- | --- | --- | --- | --- | --- | --- | 0.94 | --- |
Broussonetia papyrifera (L.) L’Hér. ex Vent. | Moraceae | Pi | Green | LC | 3.25 | --- | --- | --- | --- | --- | 0.59 | 0.94 | 1.12 |
Cleistopholis patens (Benth.) Engl. & Diels. | Annonaceae | Pi | Green | LC | --- | --- | --- | --- | 4.26 | --- | --- | --- | --- |
Cola caricifolia (G.Don) K. Schum. | Malvaceae | Pi | Green | LC | --- | --- | 2.13 | 1.41 | --- | --- | --- | --- | --- |
Cola gigantea A. Chev. | Malvaceae | Pi | Green | LC | --- | --- | --- | --- | --- | 3.85 | --- | 0.94 | --- |
Drypetes gilgiana (Pax) Pax & K. Hoffm. | Putranjivaceae | Pi | Green | LC | 0.81 | --- | --- | --- | --- | --- | --- | --- | --- |
Lannea welwitschii (Hiern) Engl. | Anacardiaceae | Pi | Green | LC | --- | --- | --- | --- | 2.13 | --- | --- | --- | --- |
Musanga cecropioides R. Br. ex Tedlie. | Urticaceae | Pi | Green | LC | --- | --- | --- | --- | 2.13 | --- | --- | --- | --- |
Psydrax subcordata (DC.) Bridson. | Rubiaceae | Pi | Green | NE* | 1.63 | --- | --- | --- | --- | --- | --- | --- | --- |
Tetrapleura tetraptera (Schum. & Thonn.) Taub. | Fabaceae | Pi | Green | LC | --- | --- | --- | 1.41 | --- | --- | --- | --- | --- |
Zanthoxylum gilletii (De Wild.) P. G. Waterman. | Rutaceae | Pi | Green | LC | --- | --- | --- | --- | --- | 1.92 | --- | --- | --- |
Aningeria robusta (A.Chev.) Aubrév. & Pellegr. | Sapotaceae | NPLD | Scarlet | LC | 0.81 | 2.13 | --- | --- | 2.13 | --- | --- | --- | --- |
Entandrophragma candollei Harms. | Meliaceae | NPLD | Scarlet | VU | --- | --- | --- | --- | --- | --- | 0.59 | --- | --- |
Entandrophragma cylindricum (Sprague) Sprague. | Meliaceae | NPLD | Scarlet | VU | 0.81 | --- | --- | --- | --- | --- | --- | --- | --- |
Entandrophragma utile (Dawe & Sprague) Sprague. | Meliaceae | NPLD | Scarlet | VU | --- | 2.13 | 2.13 | --- | --- | --- | --- | --- | --- |
Guibourtia ehie (A.Chev.) J. Leonard. | Fabaceae | NPLD | Scarlet | LC | --- | --- | --- | --- | --- | --- | 1.18 | 0.94 | --- |
Khaya ivorensis A. Chev. | Meliaceae | NPLD | Scarlet | VU | --- | --- | --- | --- | --- | 1.92 | --- | --- | --- |
Pterygota macrocarpa K. Schum. | Malvaceae | NPLD | Scarlet | VU | 0.81 | 4.26 | --- | --- | --- | 1.92 | 0.59 | 0.94 | 1.12 |
Amphimas pterocarpoides Harms. | Fabaceae | NPLD | Red | LC | 0.81 | --- | --- | --- | --- | --- | --- | --- | --- |
Antiaris toxicaria Lesch. | Moraceae | NPLD | Red | LC | --- | 2.13 | 2.13 | 1.41 | --- | --- | --- | --- | --- |
Mansonia altissima (A. Chev.) A. Chev. | Malvaceae | NPLD | Red | LC | 3.25 | --- | --- | 4.23 | 2.13 | --- | 7.06 | 16.98 | 1.12 |
Albizia zygia (DC.) J. F. Macbr. | Fabaceae | NPLD | Pink | LC | --- | 2.13 | --- | 1.41 | --- | --- | --- | 0.94 | --- |
Celtis zenkeri Engl. | Cannabaceae | NPLD | Pink | LC | --- | 2.13 | --- | --- | --- | --- | --- | --- | --- |
Funtumia elastica (Preuss) Stapf. | Apocynaceae | NPLD | Pink | LC | --- | --- | --- | --- | --- | --- | 2.35 | 2.83 | --- |
Sterculia oblonga Mast. | Malvaceae | NPLD | Pink | LC | --- | --- | --- | 4.23 | --- | --- | --- | 0.94 | --- |
Sterculia rhinopetala K. Schum. | Malvaceae | NPLD | Pink | LC | 0.81 | --- | --- | --- | --- | 1.92 | 1.18 | --- | 3.37 |
Terminalia ivorensis A. Chev. | Combretaceae | NPLD | Pink | VU | --- | --- | --- | --- | --- | --- | --- | 0.94 | --- |
Albizia adianthifolia (Schum.) W. Wight. | Fabaceae | NPLD | Green | LC | --- | 4.26 | --- | --- | --- | --- | --- | --- | --- |
Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg. | Euphorbiaceae | NPLD | Green | LC | --- | --- | --- | --- | --- | 1.92 | --- | --- | --- |
Blighia sapida K. D. Koenig. | Sapindaceae | NPLD | Green | LC | 3.25 | 12.77 | 12.77 | 2.82 | 2.13 | 13.46 | 1.76 | 1.89 | 10.11 |
Campylospermum reticulatum Tiegh. | Ochnaceae | NPLD | Green | NE* | 0.81 | --- | --- | --- | --- | --- | --- | --- | --- |
Duguetia staudtii (Engl. & Diels) Chatrou. | Annonaceae | NPLD | Green | LC | 2.44 | --- | --- | --- | --- | --- | --- | --- | --- |
Garcinia kola Heckel. | Clusiaceae | NPLD | Green | VU | --- | --- | --- | --- | --- | --- | --- | 1.89 | --- |
Morinda lucida A. Gray. | Rubiaceae | NPLD | Green | NE* | --- | --- | --- | --- | 2.13 | --- | --- | --- | --- |
Trichilia lehmannii C. DC. | Meliaceae | NPLD | Green | NE* | --- | --- | --- | 4.23 | --- | --- | --- | --- | 1.12 |
Trichilia monadelpha (Thonn.) J. J. de Wilde. | Meliaceae | NPLD | Green | LC | 2.44 | --- | --- | --- | --- | --- | --- | --- | --- |
Trichilia tessmannii Harms. | Meliaceae | NPLD | Green | LC | --- | --- | --- | --- | 2.13 | 3.85 | --- | --- | --- |
Trilepisium madagascariense DC. | Moraceae | NPLD | Green | NE* | --- | --- | --- | --- | --- | --- | 1.18 | 0.94 | --- |
Khaya anthotheca (Welw.) C. DC. | Meliaceae | SB | Scarlet | VU | --- | --- | --- | --- | --- | --- | --- | --- | 1.12 |
Guarea cedrata (A.Chev.) Pellegr. | Meliaceae | SB | Red | VU | 0.81 | --- | --- | --- | --- | --- | --- | --- | --- |
Celtis mildbraedii Engl. | Cannabaceae | SB | Pink | LC | 8.13 | 4.26 | 2.13 | 11.27 | --- | 1.92 | 24.12 | 13.21 | 25.84 |
Nesogordonia papaverifera (A. Chev.) Capuron ex N. Hallé. | Malvaceae | SB | Pink | VU | 30.89 | 19.15 | 10.64 | 21.13 | 19.15 | 9.62 | 4.71 | 11.32 | 38.20 |
Strombosia glaucescens Engl. | Olacaceae | SB | Pink | LC | --- | --- | --- | --- | 4.26 | 13.46 | 2.94 | 3.77 | --- |
Baphia nitida Lodd. | Fabaceae | SB | Green | LC | 7.32 | 27.66 | 31.91 | 36.62 | 21.28 | 9.62 | 1.76 | 1.89 | 2.25 |
Carapa procera DC. | Meliaceae | SB | Green | LC | --- | --- | --- | --- | 2.13 | --- | --- | --- | --- |
Chrysophyllum albidum G. Don. | Sapotaceae | SB | Green | NT | 1.63 | --- | --- | --- | --- | --- | 5.29 | 5.66 | 3.37 |
Cleidion gabonicum Baill. | Euphorbiaceae | SB | Green | NE* | 8.94 | --- | --- | --- | --- | --- | --- | --- | --- |
Glyphaea brevis (Spreng.) Monach. | Malvaceae | SB | Green | NE* | 0.81 | 2.13 | --- | --- | --- | --- | --- | --- | --- |
Hymenostegia afzelii (Oliv.) Harms. | Fabaceae | SB | Green | NE* | --- | --- | --- | --- | 17.02 | 3.85 | --- | --- | --- |
Mallotus oppositifolius (Geiseler) Müll.Arg. | Euphorbiaceae | SB | Green | VU | --- | 2.13 | 10.64 | --- | --- | --- | --- | --- | --- |
Memecylon lateriflorum (G. Don) Bremek. | Melastomataceae | SB | Green | LC | --- | --- | --- | --- | 6.38 | 17.31 | --- | 1.89 | 6.74 |
Microdesmis keayana J. Léonard. | Pandaceae | SB | Green | NE* | 13.82 | 2.13 | 2.13 | 7.04 | --- | 5.77 | 2.35 | 1.89 | --- |
Monodora myristica (Gaertn.) Dunal. | Annonaceae | SB | Green | LC | --- | --- | --- | --- | 4.26 | 3.85 | --- | --- | --- |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Gaps | S | N | Diversity Indices | ||||||
---|---|---|---|---|---|---|---|---|---|
1-D | H | e^H/S | Mk | Mf | J | α | |||
Gap 1 | 26 | 123 | 0.86(0.02) ab | 2.52(0.11) cd | 0.49(0.05) ab | 2.25(0.09) b | 5.00(0.21) d | 0.78(0.03) ab | 9.49(0.58) b |
Gap 2 | 15 | 47 | 0.85(0.03) ab | 2.27(0.11) abcd | 0.65(0.07) a | 2.19(0.00) b | 3.64(0.00) ac | 0.84(0.04) ab | 7.61(0.00) b |
Gap 3 | 11 | 47 | 0.80(0.03) ab | 1.92(0.12) a | 0.64(0.07) ab | 1.56(0.05) a | 2.51(0.09) b | 0.81(0.44) ab | 4.31(0.21) a |
Gap 4 | 14 | 71 | 0.79(0.04) ab | 1.99(0.13) ab | 0.54(0.06) ab | 1.58 (0.08) a | 2.89(0.16) ab | 0.76(0.04) ab | 4.86(0.36) a |
Gap 5 | 18 | 47 | 0.87(0.02) ab | 2.42(0.12) abcd | 0.67(0.07) ab | 2.48(0.15) bc | 4.16(0.26) c | 0.85(0.03) ab | 9.65(1.02) b |
Gap 6 | 18 | 52 | 0.89(0.02) ab | 2.54(0.10) cd | 0.73(0.06) b | 2.40(0.09) bc | 4.13(0.17) c | 0.89(0.03) b | 9.13(0.62) b |
Gap 7 | 19 | 170 | 0.78(0.02) ab | 2.02(0.10) abc | 0.42(0.04) a | 1.38(0.00) a | 3.31(0.00) a | 0.70(0.03) a | 5.09(0.00) a |
Gap 8 | 28 | 106 | 0.91(0.01) b | 2.77(0.09) d | 0.58(0.05) ab | 2.69(0.03) c | 5.72(0.07) d | 0.83(0.03) ab | 12.18(0.24) c |
Gap 9 | 15 | 89 | 0.77(0.03) a | 1.88(0.12) a | 0.47(0.05) ab | 1.48(0.11) a | 2.89(0.22) ab | 0.71(0.04) ab | 4.69(0.48) a |
df | 8 | 8 | 8 | 8 | 8 | 8 | 8 | ||
F | 3.97 | 8.49 | 3.13 | 37.97 | 44.35 | 3.21 | 32.51 | ||
p | ** | *** | * | *** | *** | * | *** |
Paired Areas | Species Presence | Similarity Indices | ||
---|---|---|---|---|
Unique Species | Shared Species | SCSI | JCSI | |
Undisturbed × slightly disturbed | 36 | 16 | 0.49 | 0.33 |
Undisturbed × disturbed | 34 | 16 | 0.48 | 0.32 |
Slightly disturbed × disturbed | 32 | 18 | 0.54 | 0.37 |
Conservation System | Conservation Status | Mean Regeneration Density Per Hectare (n/ha) | ||
---|---|---|---|---|
Undisturbed | Slightly Disturbed | Disturbed | ||
CSR | Green Star | 244 (36.38) a | 216 (28.11) a | 449 (161.49) |
Pink Star | 142 (68.64) ab | 116 (37.15) ab | 1134 (482.26) | |
Red Star | 65 (11.86) b | 16 (9.75) b | 1230 (874.59) | |
Scarlet Star | 21 (5.36) b | 12 (2.45) b | 85 (30.77) | |
IUCN Red List | LC | 215 (8.00) | 235 (47.68) a | 1332 (636.5) |
NT | 49 (15.92) | 2 (2.34) b | 248 (127.38) | |
VU | 138 (42.22) A | 69 (19.24) b A | 351 (31.99) B | |
NE* | 71 (59.23) | 54 (13.10) b | 967 (781.13) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammond, M.E.; Pokorný, R. Diversity of Tree Species in Gap Regeneration under Tropical Moist Semi-Deciduous Forest: An Example from Bia Tano Forest Reserve. Diversity 2020, 12, 301. https://doi.org/10.3390/d12080301
Hammond ME, Pokorný R. Diversity of Tree Species in Gap Regeneration under Tropical Moist Semi-Deciduous Forest: An Example from Bia Tano Forest Reserve. Diversity. 2020; 12(8):301. https://doi.org/10.3390/d12080301
Chicago/Turabian StyleHammond, Maame Esi, and Radek Pokorný. 2020. "Diversity of Tree Species in Gap Regeneration under Tropical Moist Semi-Deciduous Forest: An Example from Bia Tano Forest Reserve" Diversity 12, no. 8: 301. https://doi.org/10.3390/d12080301
APA StyleHammond, M. E., & Pokorný, R. (2020). Diversity of Tree Species in Gap Regeneration under Tropical Moist Semi-Deciduous Forest: An Example from Bia Tano Forest Reserve. Diversity, 12(8), 301. https://doi.org/10.3390/d12080301