Spatial and Temporal Trends of Burnt Area in Angola: Implications for Natural Vegetation and Protected Area Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Burnt Area Data, Trend Estimation, and Testing
2.3. WWF Ecoregions, Protected Areas, and Land Cover Data
3. Results
3.1. Area Burnt in Angola since 2001
3.2. Spatial Trends of Burnt Area in Angola since 2001
3.3. Burnt Area Trends According to WWF Ecoregions, Protected Areas, and Land Cover
4. Discussion
4.1. Trends of Annual Burnt Area in Angolan Provinces and Ecoregions
4.2. Implications for Vegetation and Land Cover
4.3. Conservation and Management of Protected Areas
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- He, T.; Lamont, B.B.; Pausas, J.G. Fire as a key driver of earth’s biodiversity. Biol. Rev. 2019, 94, 1983–2010. [Google Scholar] [CrossRef]
- Kahiu, M.N.; Hanan, N.P. Fire in sub-Saharan Africa: The fuel, cure and connectivity hypothesis. Glob. Ecol. Biogeogr. 2008, 27, 946–957. [Google Scholar] [CrossRef] [Green Version]
- Higgins, S.I.; Bond, W.J.; Trollope, W.S.W. Fire, resprouting and variability: A recipe for grass-tree coexistence in savanna. J. Ecol. 2000, 88, 213–229. [Google Scholar] [CrossRef]
- Bond, W.J.; Woodward, F.I.; Midgley, G.F. The global distribution of ecosystems in a world without fire. New Phytol. 2005, 165, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Shorrocks, B.; Bates, W. The Biology of African Savannahs; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Maurin, O.; Davies, T.J.; Burrows, J.E.; Daru, B.H.; Yessoufou, K.; Muasya, A.M.; van der Bank, M.; Bond, W.J. Savanna fire and the origins of the ‘underground forests’ of Africa. New Phytol. 2014, 204, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.N.; Vega-Oliveros, D.A.; Zhao, L.; Cardoso, M.F.; Macau, E.E. Global fire season severity analysis and forecasting. Comput. Geosci. 2020, 134, 104339. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Grégoire, J.M.; Tansey, K.; Silva, J.M.N. The GBA2000 initiative: Developing a global burnt area database from SPOT-VEGETATION imagery. Int. J. Remote Sens. 2003, 24, 1369–1376. [Google Scholar] [CrossRef]
- Goldammer, J.G.; De Ronde, C. Wildland fire Management Handbook for Sub-Sahara Africa; Global Fire Monitoring Center: Freiburg, Germany, 2004. [Google Scholar]
- Hodnebrog, Ø.; Myhre, G.; Forster, P.M.; Sillmann, J.; Samset, B.H. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Schneibel, A.; Stellmes, M.; Röder, A.; Finckh, M.; Revermann, R.; Frantz, D.; Hill, J. Evaluating the trade-off between food and timber resulting from the conversion of Miombo forests to agricultural land in Angola using multi-temporal Landsat data. Sci. Total Environ. 2016, 548, 390–401. [Google Scholar] [CrossRef] [PubMed]
- United States Agency for International Development. Angola Biodiversity and Tropical Forests: 118/119 Assessment. Prepared by the Biodiversity Analysis and Technical Support (BATS) Team for the United States Agency for International Development. Available online: https://usaidgems.org/Documents/FAA&Regs/FAA118119/Angola2013.pdf (accessed on 6 April 2020).
- Archibald, S.; Roy, D.P.; van Wilgen, B.W.; Scholes, R.J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Change Biol. 2009, 15, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Shlisky, A.; Alencar, A.A.; Nolasco, M.M.; Curran, L.M. Overview: Global fire regime conditions, threats, and opportunities for fire management in the tropics. In Tropical Fire Ecology; Cochrane, M.A., Ed.; Springer–Praxis: Berlin, Germany, 2009; pp. 65–83. [Google Scholar]
- Barbosa, P.M.; Stroppiana, D.; Grégoire, J.M.; Pereira, J.M.C. An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass, and atmospheric emissions. Global Biogeochem. Cycles 1999, 13, 933–950. [Google Scholar] [CrossRef]
- Archibald, S.; Scholes, R.J.; Roy, D.P.; Roberts, G.; Boschetti, L. Southern African fire regimes as revealed by remote sensing. Int. J. Wildland Fire 2010, 19, 861–878. [Google Scholar] [CrossRef] [Green Version]
- Frazão, R.; Catarino, S.; Goyder, D.; Darbyshire, I.; Magalhães, M.F.; Romeiras, M.M. Species richness and distribution of the largest plant radiation of Angola: Euphorbia (Euphorbiaceae). Biodivers. Conserv. 2020, 29, 187–206. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the world a new map of life on earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Romeiras, M.M.; Figueira, R.; Duarte, M.C.; Beja, P.; Darbyshire, I. Documenting biogeographical patterns of African timber species using herbarium records: A conservation perspective based on native trees from Angola. PLoS ONE 2014, 9, e103403. [Google Scholar] [CrossRef]
- Dwyer, E.; Pinnock, S.; Grégoire, J.M.; Pereira, J.M.C. Global spatial and temporal distribution of vegetation fire as determined from satellite observations. Int. J. Remote Sens. 2020, 21, 1289–1302. [Google Scholar] [CrossRef]
- Mendelsohn, J.M. Landscape changes in Angola. In Biodiversity of Angola. Science & Conservation: A Modern Synthesis; Huntley, B.J., Russo, V., Lages, F., Ferrand, N., Eds.; Springer: Cham, Switzerland, 2019; pp. 123–137. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.B.; Mainali, K.P.; Crews, K.A. Modelling spatiotemporal variability in fires in semiarid savannas: A satellite-based assessment around Africa’s largest protected area. Int. J. Wildland Fire 2016, 25, 730–741. [Google Scholar] [CrossRef]
- Schneibel, A.; Frantz, D.; Röder, A.; Stellmes, M.; Fischer, K.; Hill, J. Using annual landsat time series for the detection of dry forest degradation processes in south-central Angola. Remote Sens. 2017, 9, 905. [Google Scholar] [CrossRef] [Green Version]
- De Cauwer, V.; Mertens, J. Impact of fire on the Baikiaea woodlands. In Climate Change and Adaptive Land Management in Southern Africa—Assessments, Changes, Challenges, and Solutions; Revermann, R., Krewenka, K.M., Schmiedel, U., Olwoch, J.M., Helmschrot, J., Jürgens, N., Eds.; Biodiversity & Ecology, Klaus Hess Publishers: Windhoek, Namibia, 2018; pp. 334–335. [Google Scholar] [CrossRef]
- Sankaran, M.; Ratnam, J.; Hanan, N.P. Tree-grass coexistence in savannas revisited—Insights from an examination of assumptions and mechanisms invoked in existing models. Ecol. Lett. 2004, 7, 480–490. [Google Scholar] [CrossRef]
- Gignoux, J.; Lahoreau, G.; Julliard, R.; Barot, S. Establishment and early persistence of tree seedlings in an annually burned savanna. J. Ecol. 2009, 97, 484–495. [Google Scholar] [CrossRef]
- Stellmes, M.; Frantz, D.; Finckh, M.; Revermann, R. Fire frequency, fire seasonality and fire intensity within the Okavango region derived from MODIS fire products. Biodivers. Ecol. 2013, 5, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2020—Key Findings. Available online: http://www.fao.org/3/CA8753EN/CA8753EN.pdf (accessed on 8 June 2020).
- Global Forest Watch. Available online: https://www.globalforestwatch.org/map (accessed on 3 March 2020).
- Graham, P.H.; Vance, C.P. Legumes: Importance and constraints to greater use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catarino, S.; Duarte, M.C.; Costa, E.; Carrero, P.G.; Romeiras, M.M. Conservation and sustainable use of the medicinal Leguminosae plants from Angola. PeerJ 2019, 7, e6736. [Google Scholar] [CrossRef] [Green Version]
- Syampungani, S.; Chirwa, P.W.; Akinnifesi, F.K.; Sileshi, G.; Ajayi, O.C. The miombo woodlands at the cross roads: Potential threats, sustainable livelihoods, policy gaps and challenges. Nat. Resour. Forum. 2009, 33, 150–159. [Google Scholar] [CrossRef]
- Ribeiro, N.S.; Syampungani, S.; Nangoma, D.; Ribeiro-Barros, A. Miombo Woodlands Research Towards the Sustainable use of Ecosystem Services in Southern Africa. In Biodiversity in Ecosystems-Linking Structure and Function; Lo, Y., Blanco, J.A., Roy, S., Eds.; IntechOpen: London, UK, 2015; pp. 475–491. [Google Scholar]
- Jew, E.K.; Dougill, A.J.; Sallu, S.M.; O’Connell, J.; Benton, T.G. Miombo woodland under threat: Consequences for tree diversity and carbon storage. For. Ecol. Manag. 2016, 361, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartB_FINAL.pdf (accessed on 3 April 2020).
- Enright, N.J.; Fontaine, J.B.; Bowman, D.M.; Bradstock, R.A.; Williams, R.J. Interval squeeze: Altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 2015, 13, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Shlisky, A.; Waugh, J.; Gonzalez, P.; Gonzalez, M.; Manta, M.; Santoso, H.; Alvarado, E.; Nuruddin, A.A.; Rodriguez-Trejo, D.A.; Swarty, R.; et al. Fire, Ecosystems and People: Threats and Strategies for Global Biodiversity Conservation. Global Fire Initiative Technical Report 2007-2; The Nature Conservancy: Arlington, VA, USA, 2007. [Google Scholar]
- Silva, J.M.N.; Pereira, J.M.C.; Cabral, A.I.; Sá, A.C.L.; Vasconcelos, M.J.P.; Mota, B.; Grégoire, J.M. An estimate of the area burned in southern Africa during the 2000 dry season using SPOT-VEGETATION satellite data. J. Geophys. Res. 2003, 108, 8498. [Google Scholar] [CrossRef] [Green Version]
- Grégoire, J.M.; Eva, H.D.; Belward, A.S.; Palumbo, I.; Simonetti, D.; Brink, A. Effect of land-cover change on Africa’s burnt area. Int. J. Wildland Fire 2013, 22, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; van der Werf, G.R.; Randerson, J.T.; Collatz, G.J.; Kasibhatla, P. Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys. 2006, 6, 957–974. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burnt area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L. Southern Africa Validation of the MODIS, L3JRC, and GlobCarbon Burned-Area Products. Geosci. Remote 2009, 47, 1032–1044. [Google Scholar] [CrossRef]
- Huntley, B.J. Angola in Outline: Physiography, Climate and Patterns of Biodiversity. In Biodiversity of Angola Science & Conservation: A Modern Synthesis; Huntley, B.J., Russo, V., Lages, F., Ferrand, N., Eds.; Springer: Cham, Switzerland, 2019; pp. 15–42. [Google Scholar] [CrossRef]
- Ministério do Ambiente de Angola. 5º Relatório Nacional 2007–2012 Sobre a Implementação da Convenção da Diversidade Biológica em Angola; Direcção Nacional da Biodiversidade, República de Angola: Luanda, Angola, 2014. [Google Scholar]
- Huntley, B.J.; Beja, P.; Vaz-Pinto, P.; Russo, V.; Veríssimo, L.; Morais, M. Biodiversity conservation history, protected areas and hotspots. In Biodiversity of Angola. Science & Conservation: A Modern Synthesis; Huntley, B.J., Russo, V., Lages, F., Ferrand, N., Eds.; Springer: Cham, Switzerland, 2019; pp. 495–512. [Google Scholar] [CrossRef] [Green Version]
- Instituto Nacional de Estatística. Resultados Preliminares do Recenseamento Geral da População e da Habitação de Angola 2014; Instituto Nacional de Estatística: Luanda, Angola, 2014.
- Pröpper, M.; Gröngröft, A.; Finckh, M.; Stirn, S.; De Cauwer, V. The Future Okavango: Findings, Scenarios and Recommendations for Action: Research Project Final Synthesis Report 2010–2015; University of Hamburg-Biocentre Klein Flottbek: Hamburg, Germany, 2015. [Google Scholar]
- Goyder, D.J.; Gonçalves, F.M.P. The Flora of Angola: Collectors, richness and endemism. In Biodiversity of Angola. Science & Conservation: A Modern Synthesis; Huntley, B.J., Russo, V., Lages, F., Ferrand, N., Eds.; Springer: Cham, Switzerland, 2019; pp. 79–96. [Google Scholar] [CrossRef]
- MCD64A1 MODIS/Terra+Aqua Burnt Area Monthly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. Available online: https://lpdaac.usgs.gov/products/mcd64a1v006/ (accessed on 3 February 2020). [CrossRef]
- Vermote, E.F.; Justice, N.Z.E. Operational atmospheric correction of the MODIS data in the visible to middle infrared: First results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODISfire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Xiong, X.; Chiang, K.; Sun, J.; Barnes, W.L.; Guenther, B.; Salomonson, V.V. NASA EOS Terra and Aqua MODIS on-orbit performance. Adv. Space Res. 2009, 43, 413–422. [Google Scholar] [CrossRef]
- Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a global algorithm for systematic fire affected area mapping using MODIS time series data. Remote Sens. Environ. 2005, 97, 137–162. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://qgis.osgeo.org (accessed on 24 February 2020).
- TerrSet 2020, Geospatial Monitoring and Modeling System. Clark Labs. Available online: https://clarklabs.org/wp-content/uploads/2020/05/TerrSet_2020_Brochure-FINAL27163334.pdf (accessed on 5 February 2020).
- Durbin, J.; Watson, G.S. Testing for serial correlation in least squares regression. Biometrika 1950, 37, 409–428. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. Regional streamflow trend detection with consideration of both temporal and spatial correlation. Int. J. Climatol. 2002, 22, 933–946. [Google Scholar] [CrossRef]
- Silva, J.M.N.; Moreno, M.V.; Le Page, Y.; Oom, D.; Bistinas, I.; Pereira, J.M.C. Spatiotemporal trends of area burnt in the Iberian Peninsula, 1975–2013. Reg. Environ. Change 2019, 19, 515–527. [Google Scholar] [CrossRef]
- Wang, X.L.L.; Swail, V.R. Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J. Clim. 2001, 14, 2204–2221. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 2nd ed.; C. Griffin: London, UK, 1975. [Google Scholar]
- Neeti, N.; Eastman, J.R. A contextual Mann-Kendall approach for the assessment of trend significance in image time series. Trans. GIS 2011, 15, 599–611. [Google Scholar] [CrossRef]
- Chandler, R.E.; Scott, E.M. Statistical Methods for Trend Detection and Analysis in the Environmental Sciences; Wiley: Chichester, UK, 2011. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. I, II, III. Proc. R. Neth. Acad. Arts Sci. 1950, 53, 386–392, 521–525, 1397–1412. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Land Cover CCI: Product User Guide Version 2.0. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 2 March 2020).
- Defourny, P.; Lamarche, C.; Flasse, C. Product User Guide and Specification ICDR Land Cover 2016 and 2017. Version 1.1.1.; ECMWF: Shinfield Park, UK, 2019. [Google Scholar]
- Terrestrial Ecoregions of the World. Available online: https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world (accessed on 3 March 2020).
- Burgess, N.; Hales, J.A.; Underwood, E.; Dinerstein, E.; Olson, D.; Itoua, I.; Schipper, J.; Rickketts, T.; Newman, K. Terrestrial Ecoregions of Africa and Madagascar: A Conservation Assessment; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Ladle, R.J.; Whittaker, R.J. Conservation Biogeography; Wiley-Blackwell: Oxford, UK, 2011. [Google Scholar]
- Rodrigues, P.; Figueira, R.; Vaz Pinto, P.; Araújo, M.B.; Beja, P. A biogeographical regionalization of Angolan mammals. Mamm. Rev. 2015, 45, 103–116. [Google Scholar] [CrossRef]
- World Database on Protected Areas. Available online: https://www.protectedplanet.net/c/world-database-on-protected-areas (accessed on 3 March 2020).
- Land Cover Classification Gridded Maps from 1992 to Present Derived from Satellite Observations. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview (accessed on 3 March 2020).
- Andela, N.; van Der Werf, G.R. Recent trends in African fires driven by cropland expansion and El Nino to La Nina transition. Nat. Clim. Chang. 2014, 4, 791–795. [Google Scholar] [CrossRef]
- Andela, N.; van der Werf, G.R.; Kaiser, J.W.T.; van Leeuwen, T.; Wooster, M.J.; Lehmann, C.E.R. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite. Biogeosciences 2016, 13, 3717–3734. [Google Scholar] [CrossRef] [Green Version]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Carranza, F.; Treakle, J.; Groppo, P. Land, Territorial Development and Family Farming in Angola: A Holistic Approach to Community-based Natural Resource Governanance: The Cases of Bie, Huambo, and Huila Provinces; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Huntley, B.J. Wildlife at War in Angola. The Rise and Fall of an African Eden; Protea Book House: Pretoria, South Africa, 2017. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Mills, M.S.; Dean, W.R.J.; Town, R. The avifauna of the Lagoa Carumbo area, northeast Angola. Malimbus 2013, 35, 77–92. [Google Scholar]
- Maquia, I.; Catarino, S.; Pena, A.R.; Brito, D.R.; Ribeiro, N.; Romeiras, M.M.; Ribeiro-Barros, A.I. Diversification of African Tree Legumes in Miombo–Mopane Woodlands. Plants 2019, 8, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timberlake, J.; Chidumayo, E. Miombo Ecoregion Vision Report. Occasional Publications in Biodiversity no. 20; Biodiversity Foundation for Africa: Bulawayo, Zimbabwe, 2011. [Google Scholar]
- White, F. The Vegetation of Africa; Unesco: Paris, France, 1983. [Google Scholar]
- Palacios, G.; Lara-Gomez, M.; Márquez, A.; Vaca, J.L.; Ariza, D.; Lacerda, V.; Navarro-Cerrillo, R.M. Miombo’s Cover Change in Huambo Province (2002–2015); SASSCAL Project Proceedinds: Huambo, Angola, 2015. [Google Scholar]
- Schneibel, A.; Stellmes, M.; Revermann, R.; Finckh, M. Agricultural expansion during the post-civil war period in southern Angola based on bi-temporal Landsat data. Biodivers. Ecol. 2013, 5, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Mendelsohn, J.M.; Mendelsohn, S. Sudoeste de Angola: Um Retrato da Terra e da Vida. South West Angola: A Portrait of Land and Life; Raison: Windhoek, Namibia, 2018. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2010, Main Report. Available online: http://www.fao.org/3/a-i1757e.pdf (accessed on 8 June 2020).
- Li, W.; Ciais, P.; MacBean, N.; Peng, S.; Defourny, P.; Bontemps, S. Major forest changes and land cover transitions based on plant functional types derived from the ESA CCI Land Cover product. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 30–39. [Google Scholar] [CrossRef]
- Li, W.; MacBean, N.; Ciais, P.; Defourny, P.; Lamarche, C.; Bontemps, S.; Houghton, R.A.; Peng, S. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 2018, 10, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, F.M.; Revermann, R.; Gomes, A.L.; Aidar, M.P.; Finckh, M.; Juergens, N. Tree species diversity and composition of miombo woodlands in south-central Angola: A chronosequence of forest recovery after shifting cultivation. Int. J. For. Res. 2017, 2017, 6202093. [Google Scholar] [CrossRef] [Green Version]
- Chase, M.J.; Griffin, C.R. Elephants of south-east Angola in war and peace: Their decline, re-colonization and recent status. Afr. J. Ecol. 2011, 49, 353–361. [Google Scholar] [CrossRef]
- Eby, S.L.; Dempewolf, J.; Holdo, R.M.; Metzger, K.L. Fire in the Serengeti ecosystem: History, drivers, and consequences. In Serengeti IV: Sustaining Biodiversity in a Coupled Human-Natural System; de Sinclair, A.R.E., Metzger, K.L., Mduma, S.A.R., Fryxell, J.M., Eds.; The University of Chicago Press: Chicago, IL, USA, 2015. [Google Scholar]
- Butler, B.O.; Ceríaco, L.M.; Marques, M.P.; Bandeira, S.; Júlio, T.; Heinicke, M.; Bauer, A.M. Herpetological survey of Huíla Province, Southwest Angola, including first records from Bicuar National Park. Herpetol. Rev. 2019, 50, 225–240. [Google Scholar]
- Pinto, P.V. The Giant Sable Antelope: Angola’s National Icon. In Biodiversity of Angola. Science & Conservation: A Modern Synthesis; Huntley, B.J., Russo, V., Lages, F., Ferrand, N., Eds.; Springer: Cham, Switzerland, 2019; pp. 471–491. [Google Scholar] [CrossRef]
- Ministério do Urbanismo e Ambiente. National Biodiversity Strategy and Action Plan (2007–2012); Ministério do Urbanismo e Ambiente, República de Angola: Luanda, Angola, 2006.
- Austen, B. The History of Veld Burning in the Wankie National Park, Rhodesia. Proc. Annu. Tall Timbers Fire Ecol. Conf. 1972, 11, 277–296. [Google Scholar]
- Venter, F.J.; Naiman, R.J.; Biggs, H.C.; Pienaar, D.J. The evolution of conservation management philosophy: Science, environmental change and social adjustments in Kruger National Park. Ecosystems 2008, 11, 173–192. [Google Scholar] [CrossRef]
- te Beest, M.; Cromsigt, J.P.G.M.; Ngobese, J.; Olff, H. Managing invasions at the cost of native habitat? An experimental test of the impact of fire on the invasion of Chromolaena odorata in a South African savanna. Biol. Invasions 2012, 14, 607–618. [Google Scholar] [CrossRef] [Green Version]
Provinces | Total Area | Area of Decreasing Trend | Area of Increasing Trend | ||
---|---|---|---|---|---|
(km2) | (km2) | (%) | (km2) | (%) | |
Bengo | 34,363 | 579 | 1.7 | 425 | 1.2 |
Benguela | 39,509 | 9689 | 24.5 | 459 | 1.2 |
Bié | 72,048 | 3625 | 5.0 | 15,830 | 22.0 |
Cabinda | 7119 | 0 | 0.0 | 188 | 2.6 |
Cuando Cubango | 199,483 | 34,581 | 17.3 | 18,628 | 9.3 |
Cuanza Norte | 23,823 | 2301 | 9.7 | 381 | 1.6 |
Cuanza Sul | 55,257 | 7196 | 13.0 | 7149 | 12.9 |
Cunene | 77,259 | 11,347 | 14.7 | 545 | 0.7 |
Huambo | 33,133 | 4391 | 13.3 | 4303 | 13.0 |
Huíla | 78,684 | 6769 | 8.6 | 12,658 | 16.1 |
Luanda | 2447 | 0 | 0.0 | 0 | 0.0 |
Lunda Norte | 107,973 | 19,353 | 17.9 | 5639 | 5.2 |
Lunda Sul | 77,927 | 21,049 | 27.0 | 5680 | 7.3 |
Malanje | 82,163 | 10,645 | 13.0 | 6641 | 8.1 |
Moxico | 199,986 | 12,506 | 6.3 | 34,731 | 17.4 |
Namibe | 57,911 | 8100 | 14.0 | 82 | 0.1 |
Uíge | 62,005 | 2102 | 3.4 | 2610 | 4.2 |
Zaire | 36,590 | 0.0 | 3461 | 9.5 | |
WWF ecoregions | |||||
Angolan Miombo woodlands | 628,703 | 64,488 | 10.3 | 86,310 | 13.7 |
Angolan montane forest-grassland mosaic | 25,419 | 8251 | 32.5 | 1172 | 4.6 |
Angolan mopane woodlands | 51,064 | 1344 | 2.6 | 1045 | 2.0 |
Angolan scarp savanna and woodlands | 73,947 | 3375 | 4.6 | 2552 | 3.5 |
Atlantic Equatorial coastal forests | 2534 | 0 | 0.0 | 0 | 0.0 |
Central African mangroves | 1240 | 0 | 0.0 | 326 | 26.3 |
Central Zambezian Miombo woodlands | 40,648 | 1769 | 4.4 | 6633 | 16.3 |
Kaokoveld desert | 20,590 | 0 | 0.0 | 0 | 0.0 |
Namibian savanna woodlands | 33,491 | 0 | 0.0 | 0 | 0.0 |
Southern Congolian forest-savanna mosaic | 58,558 | 18,693 | 31.9 | 3208 | 5.5 |
Western Congolian forest-savanna mosaic | 168,864 | 23,118 | 13.7 | 9698 | 5.7 |
Western Zambezian grasslands | 4606 | 133 | 2.9 | 1134 | 24.6 |
Zambezian Baikiaea woodlands | 131,010 | 32,382 | 24.7 | 6559 | 5.0 |
Zambezian Cryptosepalum dry forests | 3085 | 0 | 0.0 | 776 | 25.1 |
Zambezian flooded grasslands | 3197 | 681 | 21.3 | 0 | 0.0 |
Protected Areas | |||||
Bicuar National Park | 7728 | 162 | 2.1 | 1809 | 23.4 |
Bufalo Partial Reserve | 332 | 0 | 0.0 | 0 | 0.0 |
Chimalavera Natural Regional Park | 214 | 0 | 0.0 | 0 | 0.0 |
Ilha dos Pássaros Integral Nature Reserve | 0 | 0 | 0.0 | 0 | 0.0 |
Iona National Park | 15,264 | 0 | 0.0 | 0 | 0.0 |
Cameia National Park | 14,185 | 3918 | 27.6 | 161 | 1.1 |
Cangandala National Park | 642 | 0 | 0.0 | 33 | 5.1 |
Quiçama National Park | 8597 | 0 | 0.0 | 42 | 0.5 |
Luando Integral Nature Reserve | 8737 | 48 | 0.5 | 769 | 8.8 |
Land Cover Class | Area of Decreasing Trends | Area of Increasing Trends | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2002 (km2) | 2006 (km2) | 2010 (km2) | 2014 (km2) | 2018 (km2) | Change 2001–2018 (km2) | 2002 (km2) | 2006 (km2) | 2010 (km2) | 2014 (km2) | 2018 (km2) | Change 2001–2018 (km2) | |
Bare areas | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 0 |
Cropland, irrigated, or post-flooding | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 1 |
Cropland, rainfed | 4153 | 4425 | 4581 | 4606 | 4656 | 503 | 2203 | 2239 | 2251 | 2251 | 2349 | 146 |
Grassland | 30,162 | 30,081 | 29,904 | 29,859 | 29,795 | −366 | 4938 | 4939 | 4928 | 4932 | 4942 | 4 |
Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%) | 1720 | 1925 | 2094 | 2111 | 2148 | 428 | 1746 | 1760 | 1777 | 1792 | 1948 | 202 |
Mosaic herbaceous cover (>50%)/tree and shrub (<50%) | 706 | 701 | 710 | 711 | 705 | −1 | 621 | 580 | 575 | 576 | 547 | −74 |
Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/cropland (<50%) | 1759 | 1483 | 1382 | 1379 | 1394 | −365 | 1039 | 693 | 673 | 659 | 684 | −355 |
Mosaic tree and shrub (>50%)/herbaceous cover (<50%) | 1054 | 1008 | 1015 | 1015 | 1032 | −22 | 603 | 620 | 632 | 653 | 682 | 78 |
Shrub or herbaceous cover, flooded, fresh/saline/brackish water | 467 | 471 | 484 | 481 | 497 | 30 | 441 | 440 | 446 | 447 | 458 | 17 |
Shrubland | 29,043 | 28,936 | 28,910 | 28,916 | 28,927 | −116 | 12,364 | 12,336 | 12,320 | 12,318 | 12,317 | −47 |
Sparse vegetation (tree, shrub, herbaceous cover) (<15%) | 83 | 83 | 83 | 83 | 83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Tree cover, broadleaved, deciduous, closed to open (>15%) | 82,910 | 82,938 | 82,870 | 82,837 | 82,696 | −214 | 94,565 | 94,827 | 94,829 | 94,801 | 94,493 | −72 |
Tree cover, broadleaved, evergreen, closed to open (>15%) | 1753 | 1753 | 1756 | 1758 | 1770 | 17 | 762 | 789 | 788 | 790 | 784 | 22 |
Tree cover, flooded, fresh, or brackish water | 51 | 52 | 53 | 52 | 52 | 1 | 8 | 12 | 13 | 13 | 13 | 5 |
Tree cover, flooded, saline water | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 13 | 13 | 13 | 14 | 4 |
Urban areas | 73 | 83 | 92 | 123 | 174 | 101 | 4 | 4 | 4 | 5 | 5 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catarino, S.; Romeiras, M.M.; Figueira, R.; Aubard, V.; Silva, J.M.N.; Pereira, J.M.C. Spatial and Temporal Trends of Burnt Area in Angola: Implications for Natural Vegetation and Protected Area Management. Diversity 2020, 12, 307. https://doi.org/10.3390/d12080307
Catarino S, Romeiras MM, Figueira R, Aubard V, Silva JMN, Pereira JMC. Spatial and Temporal Trends of Burnt Area in Angola: Implications for Natural Vegetation and Protected Area Management. Diversity. 2020; 12(8):307. https://doi.org/10.3390/d12080307
Chicago/Turabian StyleCatarino, Silvia, Maria Manuel Romeiras, Rui Figueira, Valentine Aubard, João M. N. Silva, and José M. C. Pereira. 2020. "Spatial and Temporal Trends of Burnt Area in Angola: Implications for Natural Vegetation and Protected Area Management" Diversity 12, no. 8: 307. https://doi.org/10.3390/d12080307
APA StyleCatarino, S., Romeiras, M. M., Figueira, R., Aubard, V., Silva, J. M. N., & Pereira, J. M. C. (2020). Spatial and Temporal Trends of Burnt Area in Angola: Implications for Natural Vegetation and Protected Area Management. Diversity, 12(8), 307. https://doi.org/10.3390/d12080307