Meiofauna in a Potential Deep-Sea Mining Area—Influence of Temporal and Spatial Variability on Small-Scale Abundance Models
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Spatial Prediction of Environmental Variables and Correlation with Meiofauna Patterns
3.2. Spatial Prediction of Meiofauna Abundance and Diversity
3.3. Differences in Meiofauna Abundance between Years
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wedding, L.M.; Reiter, S.M.; Smith, C.R.; Gjerde, K.M.; Kittinger, J.N.; Friedlander, A.M.; Gaines, S.D.; Clark, M.R.; Thurnherr, A.M.; Hardy, S.M.; et al. Managing mining of the deep seabed. Science 2015, 349, 144–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, T.; Wegorzewski, A.; Rühlemann, C.; Vink, A. Composition, formation, and occurrence of polymetallic nodules. In Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations; Sharma, R., Ed.; Springer: Cham, Switzerland, 2017; pp. 23–63. ISBN 978-3-319-52557-0. [Google Scholar] [CrossRef]
- Cuvelier, D.; Gollner, S.; Jones, D.O.B.; Kaiser, S.; Martínez Arbizu, P.; Menzel, L.; Mestre, N.C.; Morato, T.; Pham, C.; Pradillon, F.; et al. Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Mining. Front. Mar. Sci. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Gollner, S.; Kaiser, S.; Menzel, L.; Jones, D.O.B.; Brown, A.; Mestre, N.C.; van Oevelen, D.; Menot, L.; Colaço, A.; Canals, M.; et al. Resilience of benthic deep-sea fauna to mining activities. Mar. Environ. Res. 2017, 129, 76–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D.O.B.; Kaiser, S.; Sweetman, A.K.; Smith, C.R.; Menot, L.; Vink, A.; Trueblood, D.; Greinert, J.; Billett, D.S.M.; Martínez Arbizu, P.; et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 2017, 12, e0171750. [Google Scholar] [CrossRef]
- Kaiser, S.; Smith, C.R.; Martínez Arbizu, P. Editorial: Biodiversity of the Clarion Clipperton Fracture Zone. Mar. Biodivers. 2017, 47, 259–264. [Google Scholar] [CrossRef]
- Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; De Mol, B.; Escobar, E.; German, C.R.; Levin, L.A.; Martínez Arbizu, P.; Menot, L.; Buhl-Mortensen, P.; et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 2010, 7, 2851–2899. [Google Scholar] [CrossRef] [Green Version]
- Hauquier, F.; Macheriotou, L.; Bezerra, T.N.; Egho, G.; Martínez Arbizu, P.; Vanreusel, A. Distribution of free-living marine nematodes in the Clarion–Clipperton Zone: Implications for future deep-sea mining scenarios. Biogeosciences 2019, 16, 3475–3489. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, T.; Uhlenkott, K.; Vink, A.; Rühlemann, C.; Martínez Arbizu, P. Manganese nodule fields from the Northeast Pacific as benthic habitats. In Seafloor Geomorphology as Benthic Habitat: GeoHab Atlas of Seafloor Geomorphic Features and Benthic Habitats; Harris, P.T., Baker, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 933–947. ISBN 978-0-12-814960-7. [Google Scholar]
- Miljutina, M.A.; Miljutin, D.M.; Mahatma, R.; Galéron, J. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Mar. Biodivers. 2010, 40, 1–15. [Google Scholar] [CrossRef]
- Miljutin, D.; Miljutina, M.; Messié, M. Changes in abundance and community structure of nematodes from the abyssal polymetallic nodule field, Tropical Northeast Pacific. Deep Sea Res. Part Oceanogr. Res. Pap. 2015, 106, 126–135. [Google Scholar] [CrossRef]
- Pape, E.; Bezerra, T.N.; Hauquier, F.; Vanreusel, A. Limited spatial and temporal variability in meiofauna and nematode communities at distant but environmentally similar sites in an area of interest for deep-sea mining. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef]
- Uhlenkott, K.; Vink, A.; Kuhn, T.; Martínez Arbizu, P. Predicting meiofauna abundance to define preservation and impact zones in a deep-sea mining context using random forest modelling. J. Appl. Ecol. 2020, 57, 1210–1221. [Google Scholar] [CrossRef]
- Singh, R.; Miljutin, D.M.; Vanreusel, A.; Radziejewska, T.; Miljutina, M.M.; Tchesunov, A.; Bussau, C.; Galtsova, V.; Martínez Arbizu, P. Nematode communities inhabiting the soft deep-sea sediment in polymetallic nodule fields: Do they differ from those in the nodule-free abyssal areas? Mar. Biol. Res. 2016, 12, 345–359. [Google Scholar] [CrossRef]
- Vanreusel, A.; Fonseca, G.; Danovaro, R.; Silva, M.C.D.; Esteves, A.M.; Ferrero, T.; Gad, G.; Galtsova, V.; Gambi, C.; da Fonsêca Genevois, V.; et al. The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity. Mar. Ecol. 2010, 31, 6–20. [Google Scholar] [CrossRef] [Green Version]
- Thiel, H.; Schriever, G.; Bussau, C.; Borowski, C. Manganese nodule crevice fauna. Deep Sea Res. Part Oceanogr. Res. Pap. 1993, 40, 419–423. [Google Scholar] [CrossRef]
- Bussau, C.; Schriever, G.; Thiel, H. Evaluation of abyssal metazoan meiofauna from a manganese nodule area of the Eastern South Pacific. Vie Milieu 1995, 45, 39–48. [Google Scholar]
- Schratzberger, M.; Larcombe, P. The role of the sedimentary regime in shaping the distribution of subtidal sandbank environments and the associated meiofaunal nematode communities: An example from the Southern North Sea. PLoS ONE 2014, 9, e109445. [Google Scholar] [CrossRef]
- Danovaro, R.; Gambi, C.; Della Croce, N. Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean. Deep-Sea Res. Part I 2002, 49, 843–857. [Google Scholar] [CrossRef]
- Guidi-Guilvard, L.D.; Thistle, D.; Khripounoff, A.; Gasparini, S. Dynamics of benthic copepods and other meiofauna in the benthic boundary layer of the deep NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 2009, 396, 181–195. [Google Scholar] [CrossRef]
- Zeppilli, D.; Pusceddu, A.; Trincardi, F.; Danovaro, R. Seafloor heterogeneity influences the biodiversity–ecosystem functioning relationships in the deep sea. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Wedding, L.M.; Friedlander, A.M.; Kittinger, J.N.; Watling, L.; Gaines, S.D.; Bennett, M.; Hardy, S.M.; Smith, C.R. From principles to practice: A spatial approach to systematic conservation planning in the deep sea. Proc. R. Soc. B Biol. Sci. 2013, 280, 20131684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warton, D.I.; Shipley, B.; Hastie, T. CATS regression—A model-based approach to studying trait-based community assembly. Methods Ecol. Evol. 2015, 6, 389–398. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2009; ISBN 978-0-387-95284-0. [Google Scholar]
- Ostmann, A.; Schnurr, S.; Martínez Arbizu, P. Marine environment around Iceland: Hydrography, sediments and first predictive models of Icelandic deep-sea sediment characteristics. Pol. Polar Res. 2014, 35, 151–176. [Google Scholar] [CrossRef]
- Rühlemann, C. Shipboard Scientific Party. In MANGAN 2013; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2014. [Google Scholar]
- Rühlemann, C. Shipboard Scientific Party. In MANGAN 2014; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2015. [Google Scholar]
- Rühlemann, C. Shipboard Scientific Party. In MANGAN 2016; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2017. [Google Scholar]
- Rühlemann, C. Shipboard Scientific Party. In MANGAN 2018; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2019. [Google Scholar]
- Rühlemann, C. Shipboard Scientific Party. In SO205 MANGAN; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2010. [Google Scholar]
- Martínez Arbizu, P. Shipboard Scientific Party. In SO239 EcoResponse: Assessing the Ecology, Connectivity and Resilience of Polymetallic Nodule Field Systems; GEOMAR Helmholtz-Zentrum für Ozeanforschung: Kiel, Germany, 2015. [Google Scholar]
- Heip, C.; Vincx, M.; Vranken, G. The ecology of marine nematodes. Oceanogr. Mar. Biol. Annu. Rev. 1985, 23, 399–489. [Google Scholar]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Wiedicke-Hombach, M. Shipboard Scientific Party. In Campaign “MANGAN 2008” with R/V Kilo Moana; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2009. [Google Scholar]
- Rühlemann, C. Shipboard Scientific Party. In BIONOD Volume 1: German License Area; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2012. [Google Scholar]
- Kuhn, T. Shipboard Scientific Party. In SO240 FLUM: Low-Temperature Fluid Circulation at Seamounts and Hydrothermal Pits: Heat Flow Regime, Impact on Biogeochemical Processes, and Its Potential Influence on the Occurrence and Composition of Manganese Nodules in the Equatorial Eastern Pacific; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2015. [Google Scholar]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling; The Comprehensive R Archive Network: Vienna, Austria, 2020. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package; The Comprehensive R Archive Network: Vienna, Austria, 2019. [Google Scholar]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Martinez Arbizu, P. pairwiseAdonis: Pairwise Multilevel Comparison Using Adonis; The Comprehensive R Archive Network: Vienna, Austria, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Keitt, T. colorRamps: Builds Color Tables; The Comprehensive R Archive Network: Vienna, Austria, 2012. [Google Scholar]
- Rabosky, A.R.D.; Cox, C.L.; Rabosky, D.L.; Title, P.O.; Holmes, I.A.; Feldman, A.; McGuire, J.A. Coral snakes predict the evolution of mimicry across New World snakes. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef]
- Garnier, S. viridisLite: Default Color Maps from “matplotlib” (Lite Version); The Comprehensive R Archive Network: Vienna, Austria, 2018. [Google Scholar]
- Lutz, M.J.; Caldeira, K.; Dunbar, R.B.; Behrenfeld, M.J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans 2007, 112. [Google Scholar] [CrossRef]
- Sayre, R.G.; Wright, D.J.; Breyer, S.P.; Butler, K.A.; Van Graafeiland, K.; Costello, M.J.; Harris, P.T.; Goodin, K.L.; Guinotte, J.M.; Basher, Z.; et al. A three-dimensional mapping of the ocean based on environmental data. Oceanography 2017, 30, 90–103. [Google Scholar] [CrossRef]
- Glover, A.G.; Smith, C.R. The deep-sea floor ecosystem: Current status and prospects of anthropogenic change by the year 2025. Environ. Conserv. 2003, 30, 219–241. [Google Scholar] [CrossRef] [Green Version]
- Janssen, A.; Kaiser, S.; Meißner, K.; Brenke, N.; Menot, L.; Martínez Arbizu, P. A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields. PLoS ONE 2015, 10, e0117790. [Google Scholar] [CrossRef] [Green Version]
- Simon-Lledó, E.; Pomee, C.; Ahokava, A.; Drazen, J.C.; Leitner, A.B.; Flynn, A.; Jones, D.O.B. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 2020, 187, 102405. [Google Scholar] [CrossRef]
- Rosli, N.; Leduc, D.; Rowden, A.A.; Probert, P.K. Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales. Mar. Biodivers. 2018, 48, 13–34. [Google Scholar] [CrossRef]
- Ostmann, A.; Martínez Arbizu, P. Predictive models using randomForest regression for distribution patterns of meiofauna in Icelandic waters. Mar. Biodivers. 2018, 48, 719–735. [Google Scholar] [CrossRef]
- Lambshead, P.J.D.; Brown, C.J.; Ferrero, T.J.; Hawkins, L.E.; Smith, C.R.; Mitchell, N.J. Biodiversity of nematode assemblages from the region of the Clarion-Clipperton Fracture Zone, an area of commercial mining interest. BMC Ecol. 2003, 12, 1. [Google Scholar] [CrossRef]
- Gambi, C.; Lampadariou, N.; Danovaro, R. Latitudinal, longitudinal and bathymetric patterns of abundance, biomass of metazoan meiofauna: Importance of the rare taxa and anomalies in the deep Mediterranean Sea. Adv. Oceanogr. Limnol. 2010, 1, 167–197. [Google Scholar] [CrossRef]
- Volz, J.B.; Mogollón, J.M.; Geibert, W.; Arbizu, P.M.; Koschinsky, A.; Kasten, S. Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton Zone, Pacific Ocean. Deep Sea Res. Part. Oceanogr. Res. Pap. 2018, 140, 159–172. [Google Scholar] [CrossRef]
- Rogers, A.D. The biology of seamounts. In Advances in Marine Biology; Elsevier: Amsterdam, The Netherlands, 1994; Volume 30, pp. 305–350. ISBN 978-0-12-026130-7. [Google Scholar] [CrossRef]
- Stefanoudis, P.V.; Bett, B.J.; Gooday, A.J. Abyssal hills: Influence of topography on benthic foraminiferal assemblages. Prog. Oceanogr. 2016, 148, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Gillard, B.; Purkiani, K.; Chatzievangelou, D.; Vink, A.; Iversen, M.H.; Thomsen, L. Physical and hydrodynamic properties of deep sea mining-generated, abyssal sediment plumes in the Clarion Clipperton Fracture Zone (eastern-central Pacific). Elem. Sci Anthr. 2019, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Knobloch, A.; Kuhn, T.; Rühlemann, C.; Hertwig, T.; Zeissler, K.-O.; Noack, S. Predictive mapping of the nodule abundance and mineral resource estimation in the Clarion-Clipperton Zone using artificial neural networks and classical geostatistical methods. In Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations; Sharma, R., Ed.; Springer: Cham, Switzerland, 2017; pp. 189–212. ISBN 978-3-319-52557-0. [Google Scholar] [CrossRef]
- Aleynik, D.; Inall, M.E.; Dale, A.; Vink, A. Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
Variable | % Explained Variance | Pearson’s Correlation | Number of Observations |
---|---|---|---|
sediment parameters | |||
iron (1 cm) | 0.00 | 0.16 | 30 |
copper (1 cm) | 0.04 | 0.22 | 30 |
zinc (1 cm) | 0.03 | 0.23 | 30 |
dry bulk density (1 cm) | 0.02 | 0.23 * | 133 |
dry bulk density (4 cm) | 0.17 | 0.42 * | 133 |
shear strength (2 cm) | 0.03 | 0.2 * | 133 |
total organic carbon (1cm) | 0.05 | 0.26 * | 114 |
total inorganic carbon (1 cm) | 0.23 | 0.48 * | 114 |
total carbon (1 cm) | 0.25 | 0.51 * | 114 |
total inorganic carbon (4 cm) | 0.23 | 0.48 * | 114 |
total carbon (4 cm) | 0.23 | 0.49 * | 114 |
nodule parameters | |||
wet weight nodules | 0.44 | 0.66 * | 211 |
mean size nodules | 0.37 | 0.6 * | 211 |
ratio large (>4 cm) to small (<4 cm) nodules | 0.08 | 0.31 * | 211 |
number of nodules | 0.38 | 0.62 * | 211 |
cobalt | 0.08 | 0.33 * | 211 |
iron | 0.17 | 0.41 * | 211 |
nickel | 0.13 | 0.37 * | 211 |
zinc | 0.11 | 0.36 * | 211 |
lithium | 0.15 | 0.39 * | 211 |
titanium | 0.03 | 0.24 * | 211 |
zirconium | 0.23 | 0.48 * | 211 |
molybdenum | 0.2 | 0.44 * | 211 |
barium | 0.2 | 0.45 * | 211 |
quotient of manganese and iron | 0.09 | 0.32 * | 211 |
sum of rare earth elements | 0.14 | 0.37 * | 211 |
pairwise.adonis | permutest.betadisper | |||
---|---|---|---|---|
Pair | F-Model | R2 | adj. p-Value | p-Value |
2013 vs. 2010 | 2.50 | 0.06 | 1 | 0.60 |
2013 vs. 2014 | 1.07 | 0.02 | 1 | 0.003 * |
2013 vs. 2015 | 0.30 | 0.01 | 1 | 0.97 |
2013 vs. 2016 | 14.02 | 0.19 | 0.02 * | 0.26 |
2013 vs. 2018 | 1.18 | 0.03 | 1 | 0.09 |
2010 vs. 2014 | 7.93 | 0.23 | 0.05 | 0.02 * |
2010 vs. 2015 | 1.99 | 0.13 | 1 | 0.69 |
2010 vs. 2016 | 13.65 | 0.29 | 0.02 * | 0.25 |
2010 vs. 2018 | 0.68 | 0.08 | 1 | 0.23 |
2014 vs. 2015 | 0.66 | 0.02 | 1 | 0.05 * |
2014 vs. 2016 | 13.47 | 0.21 | 0.03 * | 0.06 |
2014 vs. 2018 | 6.30 | 0.2 | 0.26 | 0.71 |
2015 vs. 2016 | 5.24 | 0.12 | 0.29 | 0.45 |
2015 vs. 2018 | 1.42 | 0.1 | 1 | 0.25 |
2016 vs. 2018 | 12.76 | 0.28 | 0.03 * | 0.22 |
a | b | c | ||||
---|---|---|---|---|---|---|
Variable | % Explained Variance | Pearson’s Correlation | % Explained Variance | Pearson’s Correlation | % Explained Variance | Pearson’s Correlation |
overall abundance | 0.10 | 0.45 * | 0.15 | 0.43 * | 0.16 | 0.45 * |
taxon richness | 0.19 | 0.47 * | 0.19 | 0.48 * | 0.19 | 0.48 * |
Simpson’s Index | 0.14 | 0.39 * | 0.15 | 0.44 * | 0.14 | 0.43 * |
evenness | 0.14 | 0.44 * | 0.15 | 0.45 * | 0.15 | 0.44 * |
Annelida | −0.03 | 0.24 * | −0.04 | 0.23 * | −0.05 | 0.23 * |
Copepoda | −0.02 | 0.24 * | −0.03 | 0.24 * | −0.05 | 0.22 * |
Gastrotricha | −0.15 | 0.11 | −0.16 | 0.011 | −0.16 | 0.01 |
Kinoryncha | −0.25 | −0.03 | −0.26 | −0.03 | −0.28 | −0.03 |
Loricifera | −0.03 | 0.27 * | −0.10 | 0.23 * | 0.08 | 0.25 * |
Nematoda | 0.18 | 0.46 * | 0.16 | 0.45 * | 0.17 | 0.46 * |
Ostracoda | −0.04 | 0.26 * | −0.05 | 0.26 * | −0.05 | 0.25 * |
Tantulocarida | −0.10 | 0.09 | −0.10 | 0.09 | −0.11 | 0.08 |
Tardigrada | −0.31 | −0.12 | −0.36 | −0.15 | −0.33 | −0.14 |
Variable | a vs. c | b vs. c | a vs. b |
---|---|---|---|
overall abundance | 0.85 | 0.78 | 0.42 |
Simpson’s Index | 0.81 | 0.91 | 0.60 |
Nematoda abundance | 0.83 | 0.81 | 0.42 |
Variable | 2013 | 2014 | 2016 | ||||||
---|---|---|---|---|---|---|---|---|---|
% Explained Variance | Pearson’s Correlation | Number of Observations | % Explained Variance | Pearson’s Correlation | Number of Observations | % Explained Variance | Pearson’s Correlation | Number of Observations | |
overall abundance | −0.03 | 0.27 | 33 | 0.23 | 0.53 * | 23 | −0.11 | 0.23 | 30 |
taxon richness | −0.02 | 0.29 | 33 | 0.07 | 0.40 | 23 | −0.11 | 0.25 | 30 |
Simpson’s Index | −0.03 | 0.29 | 33 | −0.20 | 0.15 | 23 | 0.09 | 0.41 * | 30 |
evenness | 0.03 | 0.36 * | 33 | −0.07 | 0.27 | 23 | −0.10 | 0.25 | 30 |
Annelida | 0.22 | 0.51 * | 33 | −0.29 | 0.02 | 23 | −0.04 | 0.30 | 30 |
Copepoda | −0.02 | 0.29 | 33 | −0.47 | −0.10 | 23 | −0.19 | 0.17 | 30 |
Gastrotricha | −0.41 | −0.12 | 33 | −0.53 | −0.24 | 23 | −0.06 | 0.29 | 30 |
Kinoryncha | −0.36 | −0.13 | 33 | −0.32 | −0.00 | 23 | −0.49 | −0.15 | 30 |
Loricifera | −0.07 | 0.26 | 33 | 0.31 | 0.58 * | 23 | −0.57 | −0.19 | 30 |
Nematoda | −0.04 | 0.27 | 33 | 0.22 | 0.53 * | 23 | −0.06 | 0.27 | 30 |
Ostracoda | 0.16 | 0.46 * | 33 | −0.40 | −0.17 | 23 | −0.41 | 0.03 | 30 |
Tantulocarida | −0.27 | −0.09 | 33 | 0.15 | 0.46 * | 23 | −0.51 | −0.18 | 30 |
Tardigrada | −0.35 | −0.24 | 33 | −0.30 | −0.00 | 23 | −0.66 | −0.37 * | 30 |
Year | 2013 | 2014 | 2016 |
---|---|---|---|
2013 | - | −0.39 | −0.12 |
2014 | 0.87 | - | 0.37 |
2016 | 0.65 | 0.59 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uhlenkott, K.; Vink, A.; Kuhn, T.; Gillard, B.; Martínez Arbizu, P. Meiofauna in a Potential Deep-Sea Mining Area—Influence of Temporal and Spatial Variability on Small-Scale Abundance Models. Diversity 2021, 13, 3. https://doi.org/10.3390/d13010003
Uhlenkott K, Vink A, Kuhn T, Gillard B, Martínez Arbizu P. Meiofauna in a Potential Deep-Sea Mining Area—Influence of Temporal and Spatial Variability on Small-Scale Abundance Models. Diversity. 2021; 13(1):3. https://doi.org/10.3390/d13010003
Chicago/Turabian StyleUhlenkott, Katja, Annemiek Vink, Thomas Kuhn, Benjamin Gillard, and Pedro Martínez Arbizu. 2021. "Meiofauna in a Potential Deep-Sea Mining Area—Influence of Temporal and Spatial Variability on Small-Scale Abundance Models" Diversity 13, no. 1: 3. https://doi.org/10.3390/d13010003
APA StyleUhlenkott, K., Vink, A., Kuhn, T., Gillard, B., & Martínez Arbizu, P. (2021). Meiofauna in a Potential Deep-Sea Mining Area—Influence of Temporal and Spatial Variability on Small-Scale Abundance Models. Diversity, 13(1), 3. https://doi.org/10.3390/d13010003