Shattercane (Sorghum bicolor (L.) Moench Subsp. Drummondii) and Weedy Sunflower (Helianthus annuus L.)—Crop Wild Relatives (CWRs) as Weeds in Agriculture
Abstract
:1. Introduction
2. Shattercane [Sorghum bicolor (L.) Moench Subsp. drummondii]
2.1. Origin
2.2. Morphological and Ecological Traits
2.3. Competitive Ability and Distribution
2.4. Herbicide Resistance
2.5. Hybridization with Domesticated Sorghum
3. Weedy Sunflower (Helianthus annuus L.)
3.1. Origin
3.2. Morphological and Ecological Traits
3.3. Competitive Ability and Distribution
Crop | Weedy Sunflower Density | Yield Loss | Reference |
---|---|---|---|
Sunflower | 4 Plants m−2 | 50% | [13] |
Sunflower | 10.7 Plants m−2 | 80% | [22] |
Sunflower | 12–15 Plants m−2 | 35–60% | [86] |
Maize | 4 Plants m−2 | 34% | [26] |
Spring Wheat | 2–32 Plants m−2 | 27–75% | [104] |
Soybean | 3 Plants m−2 | 47–72% | [24] |
Soybean | 4.6 Plants m−2 | 97% | [100] |
Soybean | 220 Heads m−2 | 94% | [101] |
Dry Bean | 1.5 Plants m−1 of Row | 27–34% | [102] |
Cowpea | 6 Plants m−2 | 77–82% | [28] |
Cotton | 5–50 Plants m−2 | 100% | [25] |
Sugar Beet | 6–30 Plants m−1 of Row | 40–73% | [103] |
3.4. Herbicide Resistance
3.4.1. Natural Selection of Herbicide–Resistant Weedy Sunflower Populations
3.4.2. Herbicide Resistance as a Gene–Flow Consequence in H. annuus
4. Management of Shattercane [Sorghum bicolor (L.) Moench subsp. drummondii] and Weedy Sunflower (Helianthus annuus L.)
4.1. Proactive Strategies
4.2. Reactive Strategies
4.2.1. Cultural Practices
4.2.2. Herbicides and Mechanical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maxted, N.; Ford-Lloyd, B.V.; Jury, S.; Kell, S.; Scholten, M. Towards a definition of a crop wild relative. Biodivers. Conserv. 2006, 15, 2673–2685. [Google Scholar] [CrossRef]
- Ananda, G.K.S.; Myrans, H.; Norton, S.L.; Gleadow, R.; Furtado, A.; Henry, R.J. Wild sorghum as a promising resource for crop improvement. Front. Plant Sci. 2020, 11, 1108. [Google Scholar] [CrossRef] [PubMed]
- Ohadi, S.; Hodnett, G.; Rooney, W.; Bagavathiannan, M. Gene flow and its consequences in Sorghum spp. Crit. Rev. Plant Sci. 2017, 36, 367–385. [Google Scholar] [CrossRef] [Green Version]
- Presotto, A.; Fernández-Moroni, I.; Poverene, M.; Cantamutto, M. Sunflower crop-wild hybrids: Identification and risks. Crop Prot. 2011, 30, 611–616. [Google Scholar] [CrossRef]
- Travlos, I.S.; Montull, J.M.; Kukorelli, G.; Malidza, G.; Dogan, M.N.; Cheimona, N.; Antonopoulos, N.; Kanatas, P.J.; Zannopoulos, S.; Peteinatos, G. Key aspects on the biology, ecology and impacts of johnsongrass [Sorghum halepense (L.) Pers] and the role of glyphosate and non-chemical alternative practices for the management of this weed in Europe. Agronomy 2019, 9, 717. [Google Scholar] [CrossRef] [Green Version]
- Honsdorf, N.; March, T.J.; Berger, B.; Tester, M.; Pillen, K. High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE 2014, 9, e97047. [Google Scholar]
- Munns, R.; James, R.A.; Xu, B.; Athman, A.; Conn, S.J.; Jordans, C.; Byrt, C.S.; Haere, R.A.; Tyerman, S.D.; Tester, M.; et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat. Biotechnol. 2012, 30, 360–364. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Uzokwe, V.N.E.; Zhang, C.H.; Cheng, L.R.; Wang, L.; Chen, K.; Gao, X.Q.; Sun, Y.; Chen, J.J.; Zhu, L.H.; et al. Improvement of bacterial blight resistance of hybrid rice in China using the Xa23 gene derived from wild rice (Oryza rufipogon). Crop Prot. 2011, 30, 637–644. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, H.; Du, Q.; Hu, Z.; Yang, Z.; Li, X.; Wang, J.; Huang, F.; Yu, D.; Wang, H.; et al. Genetic dissection of yield-related traits via genome-wide association analysis across multiple environments in wild soybean (Glycine soja Sieb. and Zucc.). Planta 2020, 251, 1–17. [Google Scholar] [CrossRef]
- Capel, C.; Del Carmen, A.F.; Alba, J.M.; Lima-Silva, V.; Hernández-Gras, F.; Salinas, M.; Boronat, A.; Angosto, T.; Botella, M.A.; Fernández-Muñoz, R.; et al. Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theor. Appl. Genet. 2015, 128, 2019–2035. [Google Scholar] [CrossRef]
- Swamy, B.M.; Sarla, N. Yield-enhancing quantitative trait loci (QTLs) from wild species. Biotechnol. Adv. 2008, 26, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Kaya, Y.; Jocic, S.; Miladinovic, D. Sunflower. In Technological Innovations in Major World Oil Crops; Gupta, S.K., Ed.; Springer: New York, NY, USA, 2012; Volume 1, pp. 85–129. [Google Scholar]
- Casquero, M.; Presotto, A.; Cantamutto, M. Exoferality in sunflower (Helianthus annuus L.): A case study of intraspecific/interbiotype interference promoted by human activity. Field Crops Res. 2013, 142, 95–101. [Google Scholar] [CrossRef]
- Defelice, M.S. Shattercane, Sorghum bicolor (L.) Moench ssp. drummondii (Nees ex Steud.) De Wet ex Davidse—Black sheep of the family. Weed Technol. 2006, 20, 1076–1083. [Google Scholar]
- Nadir, S.; Xiong, H.-B.; Zhu, Q.; Zhang, X.-L.; Xu, H.-Y.; Li, J.; Dongchen, W.; Henry, D.; Guo, X.-Q.; Khan, S. Weedy rice in sustainable rice production. A review. Agron. Sustain. Dev. 2017, 37, 46. [Google Scholar] [CrossRef]
- Ejeta, G.; Grenier, C. Sorghum and its weedy hybrids. In Crop Ferality and Volunteerism; Gressel, J., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 123–135. [Google Scholar]
- Presotto, A.; Poverene, M.; Cantamutto, M. Seed dormancy and hybridization effect of the invasive species, Helianthus annuus. Ann. Appl. Biol. 2014, 164, 373–383. [Google Scholar] [CrossRef]
- Arias, D.M.; Rieseberg, L.H. Gene flow between cultivated and wild sunflowers. Theor. Appl. Genet. 1994, 89, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, B.S. Strategies to manage weedy rice in Asia. Crop Prot. 2013, 48, 51–56. [Google Scholar] [CrossRef]
- Presotto, A.; Hernández, F.; Casquero, M.; Vercellino, R.; Pandolfo, C.; Poverene, M.; Cantamutto, M. Seed bank dynamics of an invasive alien species, Helianthus annuus L. J. Plant Ecol. 2020, 13, 313–322. [Google Scholar] [CrossRef]
- Schmidt, J.J.; Yerka, M.K.; Pedersen, J.F.; Lindquist, J.L. Growth, fitness, and overwinter survival of a shattercane (Sorghum bicolor ssp. drummondii) × grain sorghum (Sorghum bicolor ssp. bicolor) F2 population. Weed Sci. 2018, 66, 634–641. [Google Scholar]
- Casquero, M.; Cantamutto, M. Interference of the agrestal Helianthus annuus biotype with sunflower growth. Weed Res. 2016, 56, 229–236. [Google Scholar] [CrossRef]
- Werle, R.; Bernards, M.L.; Sattler, S.E.; Lindquist, J.L. Susceptibility of shattercane × ALS-resistant sorghum hybrids and their parents to rimsulfuron and nicosulfuron. In Proceedings of the 53rd Annual Meeting of Weed Science Society of America, Baltimore, MD, USA, 4–7 February 2013; Weed Science Society of America: Champaign, IL, USA, 2013. Abstract 331. [Google Scholar]
- Allen, J.R.; Johnson, W.G.; Smeda, R.J.; Kremer, R.J. ALS resistant Helianthus annuus interference in Glycine max. Weed Sci. 2000, 48, 461–466. [Google Scholar] [CrossRef]
- Charles, G.W.; Sindel, B.M.; Cowie, A.L.; Knox, O.G. Determining the critical period for weed control in high-yielding cotton using common sunflower as a mimic weed. Weed Technol. 2019, 33, 800–807. [Google Scholar] [CrossRef] [Green Version]
- Deines, S.R.; Dille, J.A.; Blinka, E.L.; Regehr, D.L.; Staggenborg, S.A. Common sunflower (Helianthus annuus) and shattercane (Sorghum bicolor) interference in corn. Weed Sci. 2004, 52, 976–983. [Google Scholar] [CrossRef]
- Raey, Y.; Ghassemi-Golezani, K.; Javanshir, A.; Alyari, H.; Mohammadi, S.A. Interference between shattercane (Sorghum bicolor) and soybean (Glycine max). N. Z. J. Crop Hortic. Sci. 2005, 33, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; McGiffen, M.E.; Ehlers, J.D.; Marchi, E.C. Competitive ability of cowpea genotypes with different growth habit. Weed Sci. 2006, 54, 775–782. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: www.weedscience.org (accessed on 2 September 2021).
- Presotto, A.; Ureta, M.S.; Cantamutto, M.; Poverene, M. Effects of gene flow from IMI resistant sunflower crop to wild Helianthus annuus populations. Agric. Ecosyst. Environ. 2012, 146, 153–161. [Google Scholar] [CrossRef]
- Werle, R.; Schmidt, J.J.; Laborde, J.; Tran, A.; Creech, C.F.; Lindquist, J.L. Shattercane × ALS-tolerant sorghum F1 hybrid and shattercane interference in ALS-tolerant sorghum. J. Agric. Sci. 2014, 6, 159–165. [Google Scholar] [CrossRef]
- Ellstrand, N.C.; Prentice, H.C.; Hancock, J.F. Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Evol. Syst. 1999, 30, 539–563. [Google Scholar] [CrossRef]
- Gressel, J. Introduction—The challenges of ferality. In Crop Ferality and Volunteerism; Gressel, J., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 1–7. [Google Scholar]
- Reagon, M.; Snow, A.A. Cultivated Helianthus annuus (Asteraceae) volunteers as a genetic “bridge” to weedy sunflower populations in North America. Am. J. Bot. 2006, 93, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Engku, A.K.; Norida, M.; Juraimi, A.S.; Rafii, M.Y.; Abdullah, S.N.A.; Alam, M.A. Gene flow from Clearfield® rice to weedy rice under field conditions. Plant Soil Environ. 2016, 62, 16–22. [Google Scholar]
- Sahoo, L.; Schmidt, J.J.; Pedersen, J.F.; Lee, D.J.; Lindquist, J.L. Growth and fitness components of wild × cultivated Sorghum bicolor (Poaceae) hybrids in Nebraska. Am. J. Bot. 2010, 97, 1610–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J.J.; Pedersen, J.F.; Bernards, M.L.; Lindquist, J.L. Rate of shattercane × sorghum hybridization in situ. Crop Sci. 2013, 53, 1677–1685. [Google Scholar] [CrossRef] [Green Version]
- Faure, N.; Serieys, H.; Bervillé, A. Potential gene flow from cultivated sunflower to volunteer, wild Helianthus species in Europe. Agric. Ecosyst. Environ. 2002, 89, 183–190. [Google Scholar] [CrossRef]
- Ureta, M.S.; Carrera, A.D.; Cantamutto, M.A.; Poverene, M.M. Gene flow among wild and cultivated sunflower, Helianthus annuus in Argentina. Agric. Εcosyst. Environ. 2008, 123, 343–349. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer Associates: Sunderland, CT, USA, 2015. [Google Scholar]
- Taylor, L.P.; Hepler, P.K. Pollen germination and tube growth. Annu. Rev. Plant Biol. 1997, 48, 461–491. [Google Scholar] [CrossRef] [PubMed]
- Steinhorst, L.; Kudla, J. Calcium—A central regulator of pollen germination and tube growth. Biochim. Biophys. Acta 2013, 1833, 1573–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, R.H.; Su, S.D.; Xiao, H.; Tian, H.Q. Calcium: A Critical factor in pollen germination and tube elongation. Int. J. Mol. Sci. 2019, 20, 420. [Google Scholar] [CrossRef] [Green Version]
- Berenji, J.; Dahlberg, J. Perspectives of sorghum in Europe. J. Agron. Crop Sci. 2004, 190, 332–338. [Google Scholar] [CrossRef]
- Stojićević, D.; Ilić, A.; Sekulić, T.; Stupar, V.; Božić, D.; Vrbničanin, S. Distribution of weedy sunflower on territory of Republic of Serbia and potential risks for agriculture. J. Hortic. For. Biotechnol. 2017, 21, 132–137. [Google Scholar]
- De Wet, J.M.J. Systematics and evolution of Sorghum Sect. Sorghum (Gramineae). Am. J. Bot. 1978, 65, 477–484. [Google Scholar] [CrossRef]
- Harlan, J.R.; de Wet, J.M.J. A simplified classification of cultivated sorghum. Crop Sci. 1972, 12, 172–176. [Google Scholar] [CrossRef]
- Wiersema, J.H.; Dahlberg, J. The nomenclature of Sorghum bicolor (L.) Moench (Gramineae). Taxon 2007, 56, 941–946. [Google Scholar] [CrossRef] [Green Version]
- Beckett, T.H.; Stoller, E.W.; Wax, L.M. Interference of four annual weeds in corn (Zea mays). Weed Sci. 1988, 36, 764–769. [Google Scholar] [CrossRef]
- Dille, J.A.; Stahlman, P.W.; Thompson, C.R.; Bean, B.W.; Soltani, N.; Sikkema, P.H. Potential yield loss in grain sorghum (Sorghum bicolor) with weed interference in the United States. Weed Technol. 2020, 34, 624–629. [Google Scholar] [CrossRef]
- Hans, S.R.; Johnson, W.G. Influence of shattercane [Sorghum bicolor (L.) Moench.] interference on corn (Zea mays L.) yield and nitrogen accumulation. Weed Τechnol. 2002, 16, 787–791. [Google Scholar] [CrossRef]
- Celarier, R.P. Cytotaxonomic notes on the subsection Halepensia of the genus Sorghum. Bull. Torrey Bot. Club 1958, 85, 49–62. [Google Scholar] [CrossRef]
- Paterson, A.H.; Schertz, K.F.; Lin, Y.R.; Liu, S.C.; Chang, Y.L. The weediness of wild plants: Molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proc. Natl. Acad. Sci. USA 1995, 92, 6127–6131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, S.L.; Lawrence, P.K.; Henry, R.J.; Price, H.J. Sorghum resolved as a distinct genus based on combined ITS1, ndh F and Adh 1 analyses. Plant Syst. Evol. 2007, 268, 29–43. [Google Scholar] [CrossRef]
- Klein, P.; Smith, C.M. Invasive johnsongrass, a threat to native grasslands and agriculture. Biologia 2021, 76, 413–420. [Google Scholar] [CrossRef]
- Quinby, J.R.; Karper, R.E. Inheritance of height in sorghum. Agron. J. 1954, 46, 211–216. [Google Scholar] [CrossRef]
- Horak, M.J.; Moshier, L.J. Shattercane (Sorghum bicolor) biology and management. Rev. Weed Sci. 1994, 6, 133–149. [Google Scholar]
- Burnside, O.C.; Wicks, G.A.; Fenster, C.R. Longevity of shattercane seed in soil across Nebraska. Weed Res. 1977, 17, 139–143. [Google Scholar] [CrossRef]
- Fellows, G.M.; Roeth, F.W. Factors influencing shattercane (Sorghum bicolor) seed survival. Weed Sci. 1992, 40, 434–440. [Google Scholar] [CrossRef]
- Adugna, A.; Bekele, E. Morphology and fitness components of wild × crop F1 hybrids of Sorghum bicolor (L.) in Ethiopia: Implications for survival and introgression of crop genes in the wild pool. Plant Genet. Resour. 2013, 11, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Vesecky, J.F.; Feltner, K.C.; Vanderlip, R.L. Wild cane and forage sorghum competition in grain sorghum. Weed Sci. 1973, 21, 28–32. [Google Scholar] [CrossRef]
- King, S.R.; Hagood, E.S. Herbicide programs for the control of ALS-resistant shattercane (Sorghum bicolor) in corn (Zea mays). Weed Technol. 2006, 20, 416–421. [Google Scholar] [CrossRef]
- Fellows, G.M.; Roeth, F.W. Shattercane (Sorghum bicolor) interference in soybean (Glycine max). Weed Sci. 1992, 40, 68–73. [Google Scholar] [CrossRef]
- Hoffman, M.L.; Buhler, D.D. Utilizing sorghum as a functional model of crop-weed competition. I. Establishing a competitive hierarchy. Weed Sci. 2002, 50, 466–472. [Google Scholar] [CrossRef]
- Werle, R.; Tenhumberg, B.; Lindquist, J.L. Modeling shattercane dynamics in herbicide-tolerant grain sorghum cropping systems. Ecol. Modell. 2017, 343, 131–141. [Google Scholar] [CrossRef]
- Schaffasz, A.; Windpassinger, S.; Friedt, W.; Snowdon, R.; Wittkop, B. Sorghum as a novel crop for Central Europe: Using a broad diversity set to dissect temperate-adaptation. Agronomy 2019, 9, 535. [Google Scholar] [CrossRef] [Green Version]
- Popescu, A. Sorghum production in the EU–28 in the period 2008–2019 and its forecast for 2020–2014 horizon. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2020, 20, 479–488. [Google Scholar]
- United States Department of Agriculture (USDA). Weed Risk Assessment for Sorghum bicolor (L.) Moench Nothosubsp. drummondii (Steud.) de Wet ex Davidse (Poaceae). Available online: https://www.aphis.usda.gov/plant_health/plant_pest_info/weeds/downloads/wra/sorghum-bicolor-drummondii.pdf (accessed on 18 September 2021).
- Dahlberg, J.; Berenji, J.; Sikora, V.; Latković, D. Assessing sorghum [Sorghum bicolor (L.) Moench] germplasm for new traits: Food, fuels & unique uses. Maydica 2012, 56, 85–92. [Google Scholar]
- Schwartz-Lazaro, L.M.; Gage, K.L. Sustainable weed control in grain sorghum. In Weed Control: Sustainability, Hazards, and Risks in Cropping Systems Worldwide; Korres, N.E., Burgos, N.R., Duke, S.O., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 262–275. [Google Scholar]
- Berenji, J.; Dahlberg, J.; Sikora, V.; Latkovi, D. Origin, history, morphology, production, improvement, and utilization of broomcorn [Sorghum bicolor (L.) Moench] in Serbia. Econ. Bot. 2011, 65, 190–208. [Google Scholar] [CrossRef]
- Anderson, D.D.; Roeth, F.W.; Martin, A.R. Discovery of a primisulfuron-resistant shattercane (Sorghum bicolor) biotype. Weed Technol. 1998, 12, 74–77. [Google Scholar] [CrossRef]
- Lee, C.D.; Martin, A.R.; Roeth, F.W.; Johnson, B.E.; Lee, D.J. Comparison of ALS inhibitor resistance and allelic interactions in shattercane accessions. Weed Sci. 1999, 47, 275–281. [Google Scholar] [CrossRef]
- Brenly-Bultemeier, T.L.; Stachler, J.; Harrison, S.K. Confirmation of shattercane (Sorghum bicolor) resistance to ALS-inhibiting herbicides in Ohio. Plant Health Prog. 2002, 3, 1. [Google Scholar] [CrossRef]
- Zelaya, I.A.; Owen, M.D.K. Evolved resistance to acetolactate synthase-inhibiting herbicides in common sunflower (Helianthus annuus), giant ragweed (Ambrosia trifida), and shattercane (Sorghum bicolor) in Iowa. Weed Sci. 2004, 52, 538–548. [Google Scholar] [CrossRef]
- Werle, R.; Jhala, A.J.; Yerka, M.K.; Dille, J.A.; Lindquist, J.L. Distribution of herbicide-resistant shattercane and johnsongrass populations in sorghum production areas of Nebraska and Northern Kansas. Agron. J. 2016, 108, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Mutegi, E.; Sagnard, F.; Labuschagne, M.; Herselman, L.; Semagn, K.; Deu, M.; de Villiers, S.; Kanyenji, B.M.; Mwongera, N.; Traore, P.C.S.; et al. Local scale patterns of gene flow and genetic diversity in a crop-wild-weedy complex of sorghum (Sorghum bicolor (L.) Moench) under traditional agricultural field conditions in Kenya. Conserv. Genet. 2012, 13, 1059–1071. [Google Scholar] [CrossRef] [Green Version]
- Magomere, T.O.; Obukosia, S.D.; Shibairo, S.I.; Ngugi, E.K.; Mutitu, E. Evaluation of relative competitive ability and fitness of Sorghum bicolor × Sorghum halepense and Sorghum bicolor × Sorghum sudanense F1 hybrids. J. Biol. Sci. 2015, 15, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tuinstra, M.R.; Al-Khatib, K. Acetolactate Synthase Herbicide Resistant Sorghum. U.S. Patent Application 20080216187, 4 September 2008. [Google Scholar]
- Schilling, E.E. Helianthus. In Flora of North America; Flora of North America Editorial Committee, Ed.; Oxford University Press: New York, NY, USA; Oxford, UK, 2006; Volume 21, pp. 141–169. [Google Scholar]
- Stebbins, J.C.; Winchell, C.J.; Constable, J.V.H. Helianthus winteri (Asteraceae), a new perennial species from the southern Sierra Nevada foothills, California. Aliso 2013, 31, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Timme, R.E.; Simpson, B.B.; Linder, C.R. High-resolution phylogeny for Helianthus (Asteraceae) using the 18S–26S ribosomal DNA external transcribed spacer. Am. J. Bot. 2007, 94, 1837–1852. [Google Scholar] [CrossRef] [PubMed]
- Heiser, C.B., Jr. Taxonomy of Helianthus and origin of domesticated sunflower. In Sunflower Science and Technology; Carter, J.F., Ed.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 1978; Agronomy Monographs; Volume 19, pp. 31–53. [Google Scholar]
- Heiser, C.B., Jr. Variation and subspeciation in the common sunflower, Helianthus annuus. Am. Midl. Nat. 1954, 51, 287–305. [Google Scholar] [CrossRef]
- Cantamutto, M.; Poverene, M. The transgenic sunflower. In Genetics, Genomics and Breeding of Sunflower; Hu, J.G., Seiler, G., Kole, C., Eds.; Science Publishers: Enfield, CT, USA, 2010; pp. 279–312. [Google Scholar]
- Muller, M.H.; Delieux, F.; Fernandez-Martinez, J.M.; Garric, B.; Lecomte, V.; Anglade, G.; Leflon, M.; Motard, C.; Segura, R. Occurrence, distribution and distinctive morphological traits of weedy Helianthus annuus L. populations in Spain and France. Genet. Resour. Crop Evol. 2009, 56, 869–877. [Google Scholar] [CrossRef]
- Muller, M.H.; Latreille, M.; Tollon, C. The origin and evolution of a recent agricultural weed: Population genetic diversity of weedy populations of sunflower (Helianthus annuus L.) in Spain and France. Evol. Appl. 2011, 4, 499–514. [Google Scholar] [CrossRef]
- Presotto, A.; Hernández, F.; Díaz, M.; Fernández-Moroni, I.; Pandolfo, C.; Basualdo, J.; Cuppari, S.; Cantamutto, M.; Poverene, M. Crop-wild sunflower hybridization can mediate weediness throughout growth-stress tolerance trade-offs. Agric. Ecosyst. Environ. 2017, 249, 12–21. [Google Scholar] [CrossRef]
- Lincoln, R.J.; Boxshall, G.A.; Clarck, P.F. A Dictionary of Ecology, Evolution and Systematics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Cantamutto, M.; Torres, L.; Presotto, A.; Gutierrez, A.; Ureta, S.; Poverene, M. Migration pattern suggested by terrestrial proximity as possible origin of wild annual Helianthus populations in central Argentina. Biol. Invasions 2010, 12, 541–551. [Google Scholar] [CrossRef]
- Poverene, M.; Cantamutto, M.; Seiler, G.J. Ecological characterization of wild Helianthus annuus and Helianthus petiolaris germplasm in Argentina. Plant Genet. Resour. 2009, 7, 42–49. [Google Scholar] [CrossRef]
- Burke, J.M.; Gardner, K.A.; Rieseberg, L.H. The potential for gene flow between cultivated and wild sunflower (Helianthus annuus) in the United States. Am. J. Bot. 2002, 89, 1550–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantamutto, M.; Presotto, A.; Moroni, I.F.; Alvarez, D.; Poverene, M.; Seiler, G. High infraspecific diversity of wild sunflowers (Helianthus annuus L.) naturally developed in central Argentina. Flora 2010, 205, 306–312. [Google Scholar] [CrossRef]
- Kane, N.C.; Rieseberg, L.H. Genetics and evolution of weedy Helianthus annuus populations: Adaptation of an agricultural weed. Mol. Ecol. 2008, 17, 384–394. [Google Scholar] [CrossRef]
- Alexander, H.M.; Schrag, A.M. Role of soil seed banks and newly dispersed seeds in population dynamics of the annual sunflower, Helianthus annuus. J. Ecol. 2003, 91, 987–998. [Google Scholar] [CrossRef]
- Moody-Weis, J.; Alexander, H.M. The mechanisms and consequences of seed bank formation in wild sunflowers (Helianthus annuus). J. Ecol. 2007, 95, 851–864. [Google Scholar] [CrossRef]
- Mercer, K.L.; Wyse, D.L.; Shaw, R.G. Effects of competition on the fitness of wild and crop-wild hybrid sunflower from a diversity of wild populations and crop lines. Evolution 2006, 60, 2044–2055. [Google Scholar] [CrossRef]
- Vrbnicanin, S.P.; Bozic, D.M.; Pavlovic, D.M.; Saric-Krsmanovic, M.M.; Stojicevic, D.; Uludag, A. Fitness studies on invasive weedy sunflower populations from Serbia. Rom. Biotechnol. Lett. 2017, 22, 12464–12472. [Google Scholar]
- Falkenberg, N.R.; Cogdill, T.J.; Rister, M.E.; Chandler, J.M. Economic evaluation of common sunflower (Helianthus annuus) competition in field corn. Weed Technol. 2012, 26, 137–144. [Google Scholar] [CrossRef]
- Geier, P.W.; Maddux, L.D.; Moshier, L.J.; Stalman, P.W. Common sunflower (Helianthus annuus) interference in soybean (Glycine max). Weed Technol. 1996, 16, 787–791. [Google Scholar] [CrossRef]
- Irons, S.M.; Burnside, O.C. Competitive and allelopathic effects of sunflower (Helianthus annuus). Weed Sci. 1982, 30, 372–377. [Google Scholar] [CrossRef]
- Mesbah, A.O.; Miller, S.D.; Koetz, P.J. Common sunflower (Helianthus annuus) and green foxtail (Setaria viridis) interference in dry bean. Weed Technol. 2004, 18, 902–907. [Google Scholar] [CrossRef]
- Schweizer, E.E.; Bridge, L.D. Sunflower (Helianthus annuus) and velvetleaf (Abutilon theophrasti) interference in sugarbeets (Beta vulgaris). Weed Sci. 1982, 30, 514–519. [Google Scholar] [CrossRef]
- Rosales-Robles, E.; Salinas-García, J.R.; Sánchez-de-la-Cruz, R.; Rodríguez-del-Bosque, L.A.; Esqueda-Esquivel, V. Interference and control of wild sunflower (Helianthus annuus L.) in spring wheat (Triticum aestivum L.) in northeastern México. Cereal Res. Commun. 2002, 30, 439–446. [Google Scholar] [CrossRef]
- Poverene, M.; Cantamutto, M. A comparative study of invasive Helianthus annuus populations in their natural habitats of Argentina and Spain. Helia 2010, 33, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Vischi, M.; Cagiotti, M.E.; Cenci, C.A.; Seiler, G.J.; Olivieri, A.M. Dispersal of wild sunflower by seed and persistant basal stalks in some areas of Central Italy. Helia 2006, 29, 89–94. [Google Scholar] [CrossRef]
- Saulic, M.; Stojicevic, D.; Matkovic, A.; Bozic, D.; Vrbnicanin, S. Population variability of weedy sunflower as invasive species. In Proceedings of the 4th ESENIAS Workshop: International Workshop on IAS in Agricultural and Non-Agricultural Areas in ESENIAS Region, Çanakkale, Turkey, 16–17 December 2013; Uludağ, A., Trichkova, T., Tomov, R., Eds.; Çanakkale Onsekiz Mart University, Turkey—East and South European Network for Invasive Alien Species (ESENIAS)—Institute of Biodiversity and Ecosystem Research, BAS, Bulgaria: Çanakkale, Turkey, 2013; pp. 79–85. [Google Scholar]
- Bozic, D.; Pavlovic, D.; Bregola, V.; Di Loreto, A.; Bosi, S.; Vrbnicanin, S. Gene flow from herbicide-resistant sunflower hybrids to weedy sunflower. J. Plant Dis. Prot. 2015, 122, 183–188. [Google Scholar] [CrossRef]
- Holec, J.; Soukup, J.; Cerovska, M.; Novakova, K. Common sunflower (Helianthus annuus var. annuus)—Potential threat to coexistence of sunflower crops in Central Europe. In Proceedings of the 2nd European Conference on Co-Existence between GM and Non-GM Based Agricultural Supply Chain, Montpellier, France, 14–15 November 2005; Messean, S., Ed.; Agropolis Productions: Montpellier, France, 2005; pp. 271–272. [Google Scholar]
- Al-Khatib, K.; Baumgartner, J.R.; Peterson, D.E.; Currie, R.S. Imazethapyr resistance in common sunflower (Helianthus annuus). Weed Sci. 1998, 46, 403–407. [Google Scholar] [CrossRef]
- Baumgartner, J.R.; Al-Khatib, K.; Currie, R.S. Cross-resistance of imazethapyr-resistant common sunflower (Helianthus annuus) to selected imidazolinone, sulfonylurea, and triazolopyrimidine herbicides. Weed Technol. 1999, 13, 489–493. [Google Scholar] [CrossRef]
- Allen, J.R.; Johnson, W.G.; Smeda, R.J.; Wiebold, W.J.; Massey, R.E. Management of acetolactate synthase (ALS)–resistant common sunflower (Helianthus annuus L.) in soybean (Glycine max). Weed Technol. 2001, 15, 571–575. [Google Scholar] [CrossRef]
- White, A.D.; Owen, M.D.; Hartzler, R.G.; Cardina, J. Common sunflower resistance to acetolactate synthase-inhibiting herbicides. Weed Sci. 2002, 50, 432–437. [Google Scholar] [CrossRef]
- Singh, V.; Etheredge, L.; McGinty, J.; Morgan, G.; Bagavathiannan, M. First case of glyphosate resistance in weedy sunflower (Helianthus annuus). Pest Manag. Sci. 2020, 76, 3685–3692. [Google Scholar] [CrossRef]
- Tan, S.; Evans, R.R.; Dahmer, M.L.; Singh, B.K.; Shaner, D.L. Imidazolinone-tolerant crops: History, current status and future. Pest Manag. Sci. 2005, 61, 246–257. [Google Scholar] [CrossRef]
- Massinga, R.A.; Al-Khatib, K.; Amand, P.S.; Miller, J.F. Gene flow from imidazolinone-resistant domesticated sunflower to wild relatives. Weed Sci. 2003, 51, 854–862. [Google Scholar] [CrossRef]
- Gazoulis, I.; Kanatas, P.; Papastylianou, P.; Tataridas, A.; Alexopoulou, E.; Travlos, I. Weed management practices to improve establishment of selected lignocellulosic crops. Energies 2021, 14, 2478. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Ward, S.M.; Shaw, D.R.; Llewellyn, R.S.; Nichols, R.L.; Webster, T.; Bradley, K.; Frisvold, G.; Powles, S.; Burgos, N.R.; et al. Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Sci. 2012, 60, 31–62. [Google Scholar] [CrossRef] [Green Version]
- Roumet, M.; Noilhan, C.; Latreille, M.; David, J.; Muller, M.-H. How to escape from crop-to-weed gene flow: Phonological variation and isolation-by-time within weedy sunflower population. New Phytol. 2013, 197, 642–654. [Google Scholar] [CrossRef] [PubMed]
- Kanatas, P.; Antonopoulos, N.; Gazoulis, I.; Travlos, I.S. Screening glyphosate-alternative weed control options in important perennial crops. Weed Sci. 2021, 1–15. [Google Scholar] [CrossRef]
- Reeves, D.W. Cover crops and rotations. In Crops Residue Management (Advances in Soil Science), 1st ed.; Hatfield, J.L., Stewart, B.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1994; pp. 125–172. [Google Scholar]
- Kanatas, P. Mini-Review: The role of crop rotation, intercropping, sowing dates and increased crop density towards a sustainable crop and weed management in arable crops. Agraarteadus 2020, 31, 22–27. [Google Scholar]
- Anderson, R.L. Crop sequence and no-till reduce seedling emergence of common sunflower (Helianthus annuus) in following years. Weed Technol. 2007, 21, 355–358. [Google Scholar] [CrossRef]
- Whalen, D.M.; Shergill, L.S.; Kinne, L.P.; Bish, M.D.; Bradley, K.W. Integration of residual herbicides with cover crop termination in soybean. Weed Technol. 2020, 34, 11–18. [Google Scholar] [CrossRef]
- Soti, P.; Racelis, A. Cover crops for weed suppression in organic vegetable systems in semiarid subtropical Texas. Org. Agric. 2020, 10, 429–436. [Google Scholar] [CrossRef]
- Kanatas, P.J.; Gazoulis, I. The integration of increased seeding rates, mechanical weed control and herbicide application for weed management in chickpea (Cicer arietinum L.). Phytoparasitica 2021, 1–13. [Google Scholar] [CrossRef]
- Kanatas, P.; Gazoulis, I.; Travlos, I. Irrigation timing as a practice of effective weed management in established alfalfa (Medicago sativa L.) crop. Agronomy 2021, 11, 550. [Google Scholar] [CrossRef]
- Kanatas, P.; Travlos, I.; Kakabouki, I.; Papastylianou, P.; Gazoulis, I. Yield of organically grown maize hybrids as affected by two green manure crops in Greece. Chil. J. Agric. Res. 2020, 80, 334–341. [Google Scholar] [CrossRef]
- Iqbal, N.; Manalil, S.; Chauhan, B.S.; Adkins, S.W. Effect of narrow row-spacing and weed crop competition duration on cotton productivity. Arch. Agron. Soil Sci. 2020, 1–13. [Google Scholar] [CrossRef]
- Rad, S.V.; Valadabadi, S.A.R.; Pouryousef, M.; Saifzadeh, S.; Zakrin, H.R.; Mastinu, A. Quantitative and qualitative evaluation of Sorghum bicolor L. under intercropping with legumes and different weed control methods. Horticulturae 2020, 6, 78. [Google Scholar] [CrossRef]
- Travlos, I.; Gazoulis, I.; Kanatas, P.; Tsekoura, A.; Zannopoulos, S.; Papastylianou, P. Key factors affecting weed seeds’ germination, weed emergence, and their possible role for the efficacy of false seedbed technique as weed management practice. Front. Agron. 2020, 2, 1. [Google Scholar] [CrossRef]
- Del Pino, A.M.; Pannacci, E.; Di Michele, A.; Bravi, E.; Marconi, O.; Tei, F.; Palmerini, C.A. Selective inhibition of wild sunflower reproduction with mugwort aqueous extract, tested on cytosolic Ca2+ and germination of the pollen grains. Plants 2021, 10, 1364. [Google Scholar] [CrossRef] [PubMed]
- Kanatas, P.; Travlos, I.; Papastylianou, P.; Gazoulis, I.; Kakabouki, I.; Tsekoura, A. Yield, quality and weed control in soybean crop as affected by several cultural and weed management practices. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Burnside, O.C. Shattercane control in narrow-row soybeans. Agron. J. 1980, 72, 753–757. [Google Scholar] [CrossRef]
- Muller, M.H.; Lecomte, V.; Garric, B.; Jouffret, P.; Leflon, M.; Pourageaux, F.; Ségura, R. Weedy sunflowers in France: Prevalence and first inferences on their origin. In Proceedings of the 17th International Sunflower Conference, Cordoba, Spain, 8–12 June 2008; pp. 685–690. [Google Scholar]
- Donald, W.W. Control of both winter annual and summer annual weeds in no-till corn with between-row mowing systems. Weed Technol. 2007, 21, 591–601. [Google Scholar] [CrossRef]
Crop | Shattercane Density | Yield Loss | Reference |
---|---|---|---|
Grain Sorghum | 5.6 Plants m−2 | 73–82% | [61] |
Maize | 13–20 Plants m−1 of Row | 22% | [49] |
Maize | 20 Plants m−2 | 43–85% | [51] |
Maize | 6.6 Plants m−2 | 19% | [26] |
Maize | 40 Plants m−2 | 34% | [62] |
Soybean | 3.3 Plants m−1 of Row | 60% | [63] |
Soybean | 12 Plants m−2 | 57% | [27] |
Crop | Herbicide | Mode of Action | Chemical Family | Reference |
---|---|---|---|---|
Maize | Primisulfuron–Methyl | ALS Inhibitor | Sulfonylurea | [72] |
Maize | Primisulfuron–Methyl | ALS Inhibitor | Sulfonylurea | [73] |
Nicosulfuron | ALS Inhibitor | Sulfonylurea | ||
Imazethapyr | ALS Inhibitor | Imidazolinone | ||
Maize–Soybean Rotation | Primisulfuron–Methyl | ALS Inhibitor | Sulfonylurea | [74] |
Nicosulfuron | ALS Inhibitor | Sulfonylurea | ||
Imazethapyr | ALS Inhibitor | Imidazolinone | ||
Maize | Imazethapyr | ALS Inhibitor | Imidazolinone | [75] |
Maize | Nicosulfuron | ALS Inhibitor | Sulfonylurea | [64] |
Imazethapyr | ALS Inhibitor | Imidazolinone | ||
Imazapyr | ALS Inhibitor | Imidazolinone | ||
Maize–Soybean Rotation | Nicosulfuron | ALS Inhibitor | Sulfonylurea | [76] |
Imazethapyr | ALS Inhibitor | Imidazolinone |
Crop | Herbicide | Mode of Action | Chemical Family | Reference |
---|---|---|---|---|
Soybean | Imazethapyr | ALS Inhibitor | Imidazolinone | [110] |
Soybean | Imazethapyr | ALS Inhibitor | Imidazolinone | [111] |
Imazamox | ALS Inhibitor | Imidazolinone | ||
Thifensulfuron–Methyl | ALS Inhibitor | Sulfonylurea | ||
Chlorimuron–Ethyl | ALS Inhibitor | Sulfonylurea | ||
Soybean | Imazethapyr | ALS Inhibitor | Imidazolinone | [112] |
Imazaquin | ALS Inhibitor | Imidazolinone | ||
Imazamox | ALS Inhibitor | Imidazolinone | ||
Chlorimuron–Ethyl | ALS Inhibitor | Sulfonylurea | ||
Cloransulam–Methyl | ALS Inhibitor | Triazolopyrimidine | ||
Flumetsulam | ALS Inhibitor | Triazolopyrimidine | ||
Soybean | Imazethapyr | ALS Inhibitor | Imidazolinone | [113] |
Chlorimuron–Ethyl | ALS Inhibitor | Sulfonylurea | ||
Soybean | Imazethapyr | ALS Inhibitor | Imidazolinone | [75] |
Chlorimuron–Ethyl | ALS Inhibitor | Sulfonylurea | ||
Maize | Glyphosate | EPSPS Inhibitor | Glycine | [114] |
Sunflower | Imazamox | ALS Inhibitor | Imidazolinone | [30] |
Sunflower | Imazapyr | ALS Inhibitor | Imidazolinone | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanatas, P.; Gazoulis, I.; Zannopoulos, S.; Tataridas, A.; Tsekoura, A.; Antonopoulos, N.; Travlos, I. Shattercane (Sorghum bicolor (L.) Moench Subsp. Drummondii) and Weedy Sunflower (Helianthus annuus L.)—Crop Wild Relatives (CWRs) as Weeds in Agriculture. Diversity 2021, 13, 463. https://doi.org/10.3390/d13100463
Kanatas P, Gazoulis I, Zannopoulos S, Tataridas A, Tsekoura A, Antonopoulos N, Travlos I. Shattercane (Sorghum bicolor (L.) Moench Subsp. Drummondii) and Weedy Sunflower (Helianthus annuus L.)—Crop Wild Relatives (CWRs) as Weeds in Agriculture. Diversity. 2021; 13(10):463. https://doi.org/10.3390/d13100463
Chicago/Turabian StyleKanatas, Panagiotis, Ioannis Gazoulis, Stavros Zannopoulos, Alexandros Tataridas, Anastasia Tsekoura, Nikolaos Antonopoulos, and Ilias Travlos. 2021. "Shattercane (Sorghum bicolor (L.) Moench Subsp. Drummondii) and Weedy Sunflower (Helianthus annuus L.)—Crop Wild Relatives (CWRs) as Weeds in Agriculture" Diversity 13, no. 10: 463. https://doi.org/10.3390/d13100463
APA StyleKanatas, P., Gazoulis, I., Zannopoulos, S., Tataridas, A., Tsekoura, A., Antonopoulos, N., & Travlos, I. (2021). Shattercane (Sorghum bicolor (L.) Moench Subsp. Drummondii) and Weedy Sunflower (Helianthus annuus L.)—Crop Wild Relatives (CWRs) as Weeds in Agriculture. Diversity, 13(10), 463. https://doi.org/10.3390/d13100463