Advancing Genetic Methods in the Study of Parrot Biology and Conservation
Abstract
:1. Introduction
2. Short History of Advances in Genetic Studies of Parrots
3. Research Fields
3.1. Deeper Phylogeny and Historical Biogeography
3.2. Species- and Genus-Level Systematics and Taxonomy
3.3. Conservation Genetics and Genomics
3.4. Behavioural Ecology
3.5. Molecular Ecology and Landscape Genetics
3.6. Museomics and Historical DNA
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Glossary
Cryptic species | Morphologically often indistinguishable but genetically distinct species, following the evolutionary species concept. |
Effective population size (Ne) | The size of the ideal, panmictic population that would experience the same loss of genetic variation, through genetic drift, as the observed population. |
Gene flow | The exchange of genetic information between randomly mating populations through migration, measured in allele frequencies. |
Genetic diversity | The extent of genetic variation in a population, species, or across species, measured in heterozygosity, allelic diversity, or heritability. |
Genetic drift | Random changes in the genetic composition of a small population between generations. It results in loss of genetic diversity, random changes in allele frequencies, and diversification among populations. |
Genome | The complete genetic material of an organism, including nuclear and mitochondrial DNA. |
Inbreeding | The accumulation of deleterious mutations due to breeding among close relatives. |
Inbreeding depression | Reduction in reproduction, survival, or related characters due to inbreeding |
Management units (MUs) | Populations with significant divergence of allele frequencies at nuclear or mitochondrial loci, regardless of the phylogenetic distinctiveness of the alleles. |
Microsatellite | A locus with a short tandem repeat DNA sequence, typically showing variable number of repeats across individuals. Consequently, they are highly informative genetic markers. |
Minisatellite | Typically, between 6–100 bp section of DNA, repeated many times in a long string with no gaps between the repeats. These were the first type of DNA markers used in human identification and later in wildlife genetics. |
Next generation sequencing (NGS) | Includes technologies that use short-read, massively parallel, high-throughput sequencing of the genetic material (e.g., Illumina, Ion Torrent). |
Outbreeding depression | Reduction in reproductive fitness due to crossing of two populations, sub-species, or species. |
Polymerase chain reaction (PCR) | A method to replicate copies (amplify) of specific segments of DNA, with thermostable Taq polymerase enzyme in a thermocycler. |
Population viability analysis (PVA) | A model to predict the extinction risk of a population by using information about population size and structure, birth and death rates, risks and severity of catastrophes, levels of inbreeding depression, rate of habitat loss, etc. PVA can be used as a management tool to examine different management op-tions to recover threatened species. |
Single nucleotide polymorphism (SNP) | A nucleotide site (base pair) in a DNA sequence that is polymorphic in a population and can be used as a marker to assess genetic variation within and among populations. |
Wildlife forensics | Application of science to the law, including detection of illegal wildlife trade with DNA-based methods. |
References
- Kosman, E.; Burgio, K.R.; Presley, S.J.; Willig, M.R.; Scheiner, S.M. Conservation prioritization based on trait-based metrics illustrated with global parrot distributions. Divers. Distrib. 2019, 25, 1156–1165. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, J.M.; Hiraldo, F.; Romero, M.Á.; Tella, J.L. When does agriculture enter into conflict with wildlife? A global assessment of parrot–agriculture conflicts and their conservation effects. Divers. Distrib. 2021, 27, 4–17. [Google Scholar] [CrossRef]
- Olah, G.; Butchart, S.H.M.; Symes, A.; Guzmán, I.M.; Cunningham, R.; Brightsmith, D.J.; Heinsohn, R. Ecological and socio-economic factors affecting extinction risk in parrots. Biodivers. Conserv. 2016, 25, 205–223. [Google Scholar] [CrossRef]
- Vergara-Tabares, D.L.; Cordier, J.M.; Landi, M.A.; Olah, G.; Nori, J. Global trends of habitat destruction and consequences for parrot conservation. Glob. Change Biol. 2020, 26, 4251–4262. [Google Scholar] [CrossRef]
- Berkunsky, I.; Quillfeldt, P.; Brightsmith, D.J.; Abbud, M.C.; Aguilar, J.M.R.E.; Alemán-Zelaya, U.; Aramburú, R.M.; Arce Arias, A.; Balas McNab, R.; Balsby, T.J.S.; et al. Current threats faced by Neotropical parrot populations. Biol. Conserv. 2017, 214, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.O.; Senni, C.; D’Cruze, N.C. Trade in wild-sourced African grey parrots: Insights via social media. Glob. Ecol. Conserv. 2018, 15, e00429. [Google Scholar] [CrossRef]
- Martin, R.O.; Perrin, M.R.; Boyes, R.S.; Abebe, Y.D.; Annorbah, N.D.; Asamoah, A.; Bizimana, D.; Bobo, K.S.; Bunbury, N.; Brouwer, J.; et al. Research and conservation of the larger parrots of Africa and Madagascar: A review of knowledge gaps and opportunities. Ostrich 2014, 85, 205–233. [Google Scholar] [CrossRef]
- Olah, G.; Theuerkauf, J.; Legault, A.; Gula, R.; Stein, J.; Butchart, S.; O’Brien, M.; Heinsohn, R. Parrots of Oceania—A comparative study of extinction risk. Emu-Austral Ornithol. 2018, 118, 94–112. [Google Scholar] [CrossRef]
- Calzada Preston, C.E.; Pruett-Jones, S. The number and distribution of introduced and naturalized parrots. Diversity 2021, 13, 412. [Google Scholar] [CrossRef]
- Cardador, L.; Abellán, P.; Anadón, J.D.; Carrete, M.; Tella, J.L. The World Parrot Trade. In Naturalized Parrots of the World: Distribution, Ecology, and Impacts of the World’s Most Colorful Colonizers; Princeton University Press: Princeton, NJ, USA, 2021; ISBN 0-691-20441-1. [Google Scholar]
- Provost, K.L.; Joseph, L.; Smith, B.T. Resolving a phylogenetic hypothesis for parrots: Implications from systematics to conservation. Emu-Austral Ornithol. 2018, 118, 7–21. [Google Scholar] [CrossRef]
- Wright, T.F.; Schirtzinger, E.E.; Matsumoto, T.; Eberhard, J.R.; Graves, G.R.; Sanchez, J.J.; Capelli, S.; Müller, H.; Scharpegge, J.; Chambers, G.K.; et al. A multilocus molecular phylogeny of the parrots (Psittaciformes): Support for a Gondwanan origin during the Cretaceous. Mol. Biol. Evol. 2008, 25, 2141–2156. [Google Scholar] [CrossRef]
- Schweizer, M.; Seehausen, O.; Güntert, M.; Hertwig, S.T. The evolutionary diversification of parrots supports a taxon pulse model with multiple trans-oceanic dispersal events and local radiations. Mol. Phylogenet. Evol. 2010, 54, 984–994. [Google Scholar] [CrossRef]
- Brock, M.K.; White, B.N. Application of DNA fingerprinting to the recovery program of the endangered Puerto Rican Parrot. Proc. Natl. Acad. Sci. USA 1992, 89, 11121–11125. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.C.; Lambert, D.M.; Millar, C.D.; Robertson, B.C.; Minot, E.O. Minisatellite DNA profiling detects lineages and parentage in the endangered Kakapo (Strigops habroptilus) despite low microsatellite DNA variation. Conserv. Genet. 2003, 4, 265–274. [Google Scholar] [CrossRef]
- Raisin, C.; Frantz, A.C.; Kundu, S.; Greenwood, A.G.; Jones, C.G.; Zuel, N.; Groombridge, J.J. Genetic consequences of intensive conservation management for the Mauritius Parakeet. Conserv. Genet. 2012, 13, 707–715. [Google Scholar] [CrossRef]
- Masello, J.F.; Sramkova, A.; Quillfeldt, P.; Epplen, J.T.; Lubjuhn, T. Genetic monogamy in Burrowing Parrots Cyanoliseus patagonus? J. Avian Biol. 2002, 33, 99–103. [Google Scholar] [CrossRef]
- Raidal, S.R.; Peters, A. Psittacine Beak and Feather Disease: Ecology and implications for conservation. Emu-Austral Ornithol. 2018, 118, 80–93. [Google Scholar] [CrossRef]
- Gelabert, P.; Sandoval-Velasco, M.; Serres, A.; De Manuel, M.; Renom, P.; Margaryan, A.; Stiller, J.; De-Dios, T.; Fang, Q.; Feng, S.; et al. Evolutionary history, genomic adaptation to toxic diet, and extinction of the Carolina Parakeet. Curr. Biol. 2020, 30, 108–114.e5. [Google Scholar] [CrossRef] [Green Version]
- Johansson, U.S.; Ericson, P.G.P.; Blom, M.P.K.; Irestedt, M. The phylogenetic position of the extinct Cuban Macaw Ara tricolor based on complete mitochondrial genome sequences. IBIS 2018, 160, 666–672. [Google Scholar] [CrossRef]
- Smith, B.T.; Gehara, M.; Harvey, M.G. The demography of extinction in eastern North American birds. Proc. R. Soc. B Biol. Sci. 2021, 288, 20201945. [Google Scholar] [CrossRef]
- Poczai, P.; Bell, N.; Hyvönen, J. Imre Festetics and the Sheep Breeders’ Society of Moravia: Mendel’s forgotten “research network”. PLoS Biol. 2014, 12, e1001772. [Google Scholar] [CrossRef] [Green Version]
- Weiling, F. Historical study: Johann Gregor Mendel 1822-1884. Am. J. Med. Genet. 1991, 40, 1–25. [Google Scholar] [CrossRef]
- Watson, J.D.; Crick, F.H.C. Molecular structure of nucleic acids: A structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561–563. [Google Scholar] [CrossRef]
- Adams, M.; Baverstock, P.; Saunders, D.; Schodde, R.; Smith, G. Biochemical systematics of the Australian cockatoos (Psittaciformes: Cacatuinae). Aust. J. Zool. 1984, 32, 363. [Google Scholar] [CrossRef]
- Christidis, L.; Schodde, R.; Shaw, D.D.; Mayness, S.F. Relationships among the Australo-Papuan parrots, lorikeets, and cockatoos (Aves: Psittaciformes): Protein evidence. Condor 1991, 93, 302–317. [Google Scholar] [CrossRef]
- Christidis, L.; Shaw, D.D.; Schodde, R. Chromosomal evolution in parrots, lorikeets and cockatoos (Aves: Psittaciformes). Hereditas 1991, 114, 47–56. [Google Scholar] [CrossRef]
- Joseph, L.; Hope, R. Aspects of genetic relationships and variation in parrots of the Crimson Rosella Platycercus elegans complex (Aves: Psittacidae). Trans. R. Soc. S. Aust. 1984, 108, 77–84. [Google Scholar]
- Miyaki, C.Y.; Wajntal, A. Sex identification of South American parrots (Psittacidae, Aves) using the human minisatellite probe 33.15. The Auk 1997, 114, 516–520. [Google Scholar] [CrossRef] [Green Version]
- De Kloet, R.S.; De Kloet, S.R. The evolution of the spindlin gene in birds: Sequence analysis of an intron of the spindlin W and Z gene reveals four major divisions of the Psittaciformes. Mol. Phylogenet. Evol. 2005, 36, 706–721. [Google Scholar] [CrossRef] [PubMed]
- Tavares, E.S.; Baker, A.J.; Pereira, S.L.; Miyaki, C.Y. Phylogenetic relationships and historical biogeography of Neotropical parrots (Psittaciformes: Psittacidae: Arini) inferred from mitochondrial and nuclear DNA sequences. Syst. Biol. 2006, 55, 454–470. [Google Scholar] [CrossRef] [Green Version]
- Caparroz, R.; Seixas, G.H.F.; Berkunsky, I.; Collevatti, R.G. The role of demography and climatic events in shaping the phylogeography of Amazona aestiva (Psittaciformes, Aves) and definition of management units for conservation. Divers. Distrib. 2009, 15, 459–468. [Google Scholar] [CrossRef]
- Dolman, G.; Joseph, L. Evolutionary history of birds across southern Australia: Structure, history and taxonomic implications of mitochondrial DNA diversity in an ecologically diverse suite of species. Emu-Austral Ornithol. 2015, 115, 35–48. [Google Scholar] [CrossRef]
- Rocha, A.V.; Rivera, L.O.; Martinez, J.; Prestes, N.P.; Caparroz, R. Biogeography of speciation of two sister species of Neotropical Amazona (Aves, Psittaciformes) based on mitochondrial sequence data. PLoS ONE 2014, 9, e108096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, B.T.; Ribas, C.C.; Whitney, B.M.; Hernández-Baños, B.E.; Klicka, J. Identifying biases at different spatial and temporal scales of diversification: A case study in the Neotropical parrotlet genus Forpus. Mol. Ecol. 2013, 22, 483–494. [Google Scholar] [CrossRef]
- Caparroz, R.; Guedes, N.M.R.; Bianchi, C.A.; Wajntal, A. Analisis of the genetic variability and breeding behaviour of wild populations of two macaw species (Psittaciformes, Aves) by DNA fingerprinting. Ararajuba 2001, 9, 43–49. [Google Scholar]
- Caparroz, R.; Miyaki, C.Y.; Bampi, M.I.; Wajntal, A. Analysis of the genetic variability in a sample of the remaining group of Spix’s Macaw (Cyanopsitta spixii, Psittaciformes: Aves) by DNA fingerprinting. Biol. Conserv. 2001, 99, 307–311. [Google Scholar] [CrossRef]
- Nader, W.; Werner, D.; Wink, M. Genetic diversity of Scarlet Macaws Ara macao in reintroduction studies for threatened populations in Costa Rica. Biol. Conserv. 1999, 87, 269–272. [Google Scholar] [CrossRef]
- Murphy, S.; Legge, S.; Heinsohn, R. The breeding biology of Palm Cockatoos (Probosciger aterrimus): A case of a slow life history. J. Zool. 2003, 261, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Afanador, Y.; Velez-Valentín, J.; Valentín de la Rosa, R.; Martínez-Cruzado, J.-C.; VonHoldt, B.; Oleksyk, T.K. Isolation and characterization of microsatellite loci in the critically endangered Puerto Rican Parrot (Amazona vittata). Conserv. Genet. Resour. 2014, 6, 885–889. [Google Scholar] [CrossRef]
- Caparroz, R.; Miyaki, C.Y.; Baker, A.J. Characterization of microsatellite loci in the Blue-and-gold Macaw, Ara ararauna (Psittaciformes: Aves). Mol. Ecol. Notes 2003, 3, 441–443. [Google Scholar] [CrossRef]
- Chan, C.; Ballantyne, K.N.; Lambert, D.M.; Chambers, G.K. Characterization of variable microsatellite loci in Forbes’ Parakeet (Cyanoramphus forbesi) and their use in other parrots. Conserv. Genet. 2005, 6, 651–654. [Google Scholar] [CrossRef]
- Olah, G.; Heinsohn, R.G.; Espinoza, J.R.; Brightsmith, D.J.; Peakall, R. An evaluation of primers for microsatellite markers in Scarlet Macaw (Ara macao) and their performance in a Peruvian wild population. Conserv. Genet. Resour. 2015, 7, 157–159. [Google Scholar] [CrossRef]
- Russello, M.; Calcagnotto, D.; DeSalle, R.; Amato, G. Characterization of microsatellite loci in the endangered St. Vincent Parrot, Amazona guildingii. Mol. Ecol. Notes 2002, 1, 162–164. [Google Scholar] [CrossRef]
- Taylor, T.D.; Parkin, D.T. Characterization of 12 microsatellite primer pairs for the African Grey Parrot, Psittacus erithacus and their conservation across the Psittaciformes. Mol. Ecol. Notes 2006, 7, 163–167. [Google Scholar] [CrossRef]
- Russello, M.A.; Saranathan, V.; Buhrman-Deever, S.; Eberhard, J.; Caccone, A. Characterization of polymorphic microsatellite loci for the invasive Monk Parakeet (Myiopsitta monachus). Mol. Ecol. Notes 2007, 7, 990–992. [Google Scholar] [CrossRef]
- Klauke, N.; Schaefer, H.M.; Bauer, M.; Segelbacher, G. Limited dispersal and significant fine-scale genetic structure in a tropical montane parrot species. PLoS ONE 2016, 11, e0169165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klauke, N.; Segelbacher, G.; Schaefer, H.M. Reproductive success depends on the quality of helpers in the endangered, cooperative El Oro parakeet (Pyrrhura orcesi). Mol. Ecol. 2013, 22, 2011–2027. [Google Scholar] [CrossRef]
- Theuerkauf, J.; Rouys, S.; Mériot, J.M.; Gula, R.; Kuehn, R. Cooperative breeding, mate guarding, and nest sharing in two parrot species of New Caledonia. J. Ornithol. 2009, 150, 791–797. [Google Scholar] [CrossRef]
- Harrison, G.L.A. Four new avian mitochondrial genomes help get to basic evolutionary questions in the Late Cretaceous. Mol. Biol. Evol. 2004, 21, 974–983. [Google Scholar] [CrossRef]
- Urantowka, A.D. Complete mitochondrial genome of Blue-headed Macaw (Primolius couloni): Its comparison with mitogenome of Blue-throated Macaw (Ara glaucogularis). Mitochondrial DNA 2014, 27, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Urantowka, A.D.; Kroczak, A.M.; Strzała, T. Complete mitochondrial genome of endangered Socorro Conure (Aratinga brevipes): Taxonomic position of the species and its relationship with Green Conure. Mitochondrial DNA 2014, 25, 365–367. [Google Scholar] [CrossRef]
- Oleksyk, T.K.; Pombert, J.-F.; Siu, D.; Mazo-Vargas, A.; Ramos, B.; Guiblet, W.; Afanador, Y.; Ruiz-Rodriguez, C.T.; Nickerson, M.L.; Logue, D.M.; et al. A locally funded Puerto Rican Parrot (Amazona vittata) genome sequencing project increases avian data and advances young researcher education. GigaScience 2012, 1, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seabury, C.M.; Dowd, S.E.; Seabury, P.M.; Raudsepp, T.; Brightsmith, D.J.; Liboriussen, P.; Halley, Y.; Fisher, C.A.; Owens, E.; Viswanathan, G.; et al. A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao). PLoS ONE 2013, 8, e62415. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.D.; Good, R.T.; Coleman, R.A.; Lancaster, M.L.; Weeks, A.R. Microsatellite loci and the complete mitochondrial DNA sequence characterized through next generation sequencing and de novo genome assembly for the critically endangered Orange-bellied Parrot, Neophema chrysogaster. Mol. Biol. Rep. 2013, 40, 35–42. [Google Scholar] [CrossRef]
- Koepfli, K.-P.; Paten, B.; O’Brien, S.J. The Genome 10K Project: A way forward. Annu. Rev. Anim. Biosci. 2015, 3, 57–111. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Stiller, J.; Deng, Y.; Armstrong, J.; Fang, Q.; Reeve, A.H.; Xie, D.; Chen, G.; Guo, C.; Faircloth, B.C.; et al. Dense sampling of bird diversity increases power of comparative genomics. Nature 2020, 587, 252–257. [Google Scholar] [CrossRef]
- Zhang, G. Bird sequencing project takes off. Nature 2015, 522, 34. [Google Scholar] [CrossRef]
- Brandies, P.; Peel, E.; Hogg, C.J.; Belov, K. The value of reference genomes in the conservation of threatened species. Genes 2019, 10, 846. [Google Scholar] [CrossRef] [Green Version]
- Andrews, K.R.; Good, J.M.; Miller, M.R.; Luikart, G.; Hohenlohe, P.A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 2016, 17, 81–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M.L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011, 12, 499–510. [Google Scholar] [CrossRef]
- Suchan, T.; Pitteloud, C.; Gerasimova, N.S.; Kostikova, A.; Schmid, S.; Arrigo, N.; Pajkovic, M.; Ronikier, M.; Alvarez, N. Hybridization capture using RAD probes (hyRAD), a new tool for performing genomic analyses on collection specimens. PLoS ONE 2016, 11, e0151651. [Google Scholar] [CrossRef] [Green Version]
- Andrews, K.R.; Luikart, G. Recent novel approaches for population genomics data analysis. Mol. Ecol. 2014, 23, 1661–1667. [Google Scholar] [CrossRef]
- Allendorf, F.W.; Hohenlohe, P.A.; Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 2010, 11, 697–709. [Google Scholar] [CrossRef]
- He, X.; Johansson, M.L.; Heath, D.D. Role of genomics and transcriptomics in selection of reintroduction source populations. Conserv. Biol. 2016, 30, 1010–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, M.; Olsen, H.E.; Paten, B.; Akeson, M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 2016, 17, 239. [Google Scholar] [CrossRef] [Green Version]
- Liang, F.; Zhang, P. Nanopore DNA sequencing: Are we there yet? Sci. Bull. 2015, 60, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Pomerantz, A.; Peñafiel, N.; Arteaga, A.; Bustamante, L.; Pichardo, F.; Coloma, L.A.; Barrio-Amorós, C.L.; Salazar-Valenzuela, D.; Prost, S. Real-time DNA barcoding in a rainforest using Nanopore sequencing: Opportunities for rapid biodiversity assessments and local capacity building. GigaScience 2018, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Monge, O.; Dumas, D.; Baus, I. Environmental DNA from avian residual saliva in fruits and its potential uses in population genetics. Conserv. Genet. Resour. 2020, 12, 131–139. [Google Scholar] [CrossRef]
- Olah, G.; Heinsohn, R.G.; Brightsmith, D.J.; Peakall, R. The application of non-invasive genetic tagging reveals new insights into the clay lick use by macaws in the Peruvian Amazon. Conserv. Genet. 2017, 18, 1037–1046. [Google Scholar] [CrossRef]
- Spitzer, R.; Norman, A.J.; Königsson, H.; Schiffthaler, B.; Spong, G. De novo discovery of SNPs for genotyping endangered Sun Parakeets (Aratinga solstitialis) in Guyana. Conserv. Genet. Resour. 2020, 12, 631–641. [Google Scholar] [CrossRef]
- Andersen, K.; Bird, K.L.; Rasmussen, M.; Haile, J.; Breuning-Madsen, H.; Kjaer, K.H.; Orlando, L.; Gilbert, M.T.P.; Willerslev, E. Meta-barcoding of ‘dirt’ DNA from soil reflects vertebrate biodiversity. Mol. Ecol. 2012, 21, 1966–1979. [Google Scholar] [CrossRef]
- Ji, Y.; Ashton, L.; Pedley, S.M.; Edwards, D.P.; Tang, Y.; Nakamura, A.; Kitching, R.; Dolman, P.M.; Woodcock, P.; Edwards, F.A.; et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 2013, 16, 1245–1257. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, S.L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M.E.; Gouil, Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020, 21, 30. [Google Scholar] [CrossRef] [Green Version]
- Sibley, C.G.; Ahlquist, J.E. Phylogeny and Classification of Birds: A Study in Molecular Evolution; Yale University Press: New Haven, CT, USA, 1990; ISBN 0-300-04085-7. [Google Scholar]
- Miyaki, C.Y.; Matioli, S.R.; Burke, T.; Wajntal, A. Parrot evolution and paleogeographical events: Mitochondrial DNA evidence. Mol. Biol. Evol. 1998, 15, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Russello, M.A.; Amato, G. A molecular phylogeny of Amazona: Implications for Neotropical parrot biogeography, taxonomy, and conservation. Mol. Phylogenet. Evol. 2004, 30, 421–437. [Google Scholar] [CrossRef]
- Joseph, L.; Toon, A.; Schirtzinger, E.E.; Wright, T.F. Molecular systematics of two enigmatic genera Psittacella and Pezoporus illuminate the ecological radiation of Australo-Papuan parrots (Aves: Psittaciformes). Mol. Phylogenet. Evol. 2011, 59, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, M.; Güntert, M.; Hertwig, S.T. Out of the Bassian province: Historical biogeography of the Australasian Platycercine parrots (Aves, Psittaciformes). Zool. Scr. 2013, 42, 13–27. [Google Scholar] [CrossRef]
- Shipham, A.; Schmidt, D.J.; Joseph, L.; Hughes, J.M. Phylogenetic analysis of the Australian rosella parrots (Platycercus) reveals discordance among molecules and plumage. Mol. Phylogenet. Evol. 2015, 91, 150–159. [Google Scholar] [CrossRef]
- White, N.E.; Phillips, M.J.; Gilbert, M.T.P.; Alfaro-Núñez, A.; Willerslev, E.; Mawson, P.R.; Spencer, P.B.S.; Bunce, M. The evolutionary history of cockatoos (Aves: Psittaciformes: Cacatuidae). Mol. Phylogenet. Evol. 2011, 59, 615–622. [Google Scholar] [CrossRef] [Green Version]
- Irestedt, M.; Ericson, P.G.P.; Johansson, U.S.; Oliver, P.; Joseph, L.; Blom, M.P.K. No signs of genetic erosion in a 19th century genome of the extinct Paradise Parrot (Psephotellus pulcherrimus). Diversity 2019, 11, 58. [Google Scholar] [CrossRef] [Green Version]
- Hackett, S.J.; Kimball, R.T.; Reddy, S.; Bowie, R.C.K.; Braun, E.L.; Braun, M.J.; Chojnowski, J.L.; Cox, W.A.; Han, K.-L.; Harshman, J.; et al. A phylogenomic study of birds reveals their evolutionary history. Science 2008, 320, 1763–1768. [Google Scholar] [CrossRef]
- Jarvis, E.D.; Mirarab, S.; Aberer, A.J.; Li, B.; Houde, P.; Li, C.; Ho, S.Y.W.; Faircloth, B.C.; Nabholz, B.; Howard, J.T.; et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 2014, 346, 1320–1331. [Google Scholar] [CrossRef] [Green Version]
- McCormack, J.E.; Harvey, M.G.; Faircloth, B.C.; Crawford, N.G.; Glenn, T.C.; Brumfield, R.T. A phylogeny of birds based on over 1500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE 2013, 8, e54848. [Google Scholar] [CrossRef] [Green Version]
- Suh, A.; Paus, M.; Kiefmann, M.; Churakov, G.; Franke, F.A.; Brosius, J.; Kriegs, J.O.; Schmitz, J. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat. Commun. 2011, 2, 443. [Google Scholar] [CrossRef]
- Astuti, D.; Azuma, N.; Suzuki, H.; Higashi, S. Phylogenetic relationships within parrots (Psittacidae) inferred from mitochondrial cytochrome-b gene sequences. Zoolog. Sci. 2006, 23, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Claramunt, S.; Cracraft, J. A new time tree reveals Earth history’s imprint on the evolution of modern birds. Sci. Adv. 2015, 1, e1501005. [Google Scholar] [CrossRef] [Green Version]
- Cracraft, J. Avian evolution, Gondwana biogeography and the Cretaceous–Tertiary mass extinction event. Proc. R. Soc. Lond. B Biol. Sci. 2001, 268, 459–469. [Google Scholar] [CrossRef]
- Waterhouse, D.M. Parrots in a nutshell: The fossil record of Psittaciformes (Aves). Hist. Biol. 2006, 18, 227–238. [Google Scholar] [CrossRef]
- Toft, C.A.; Wright, T.F. Parrots of the Wild: A Natural History of the World’s Most Captivating Birds; University of California Press: Berkeley, CA, USA, 2015; ISBN 978-0-520-96264-4. [Google Scholar]
- Schweizer, M.; Seehausen, O.; Hertwig, S.T. Macroevolutionary patterns in the diversification of parrots: Effects of climate change, geological events and key innovations. J. Biogeogr. 2011, 38, 2176–2194. [Google Scholar] [CrossRef] [Green Version]
- Kimball, R.T.; Oliveros, C.H.; Wang, N.; White, N.D.; Barker, F.K.; Field, D.J.; Ksepka, D.T.; Chesser, R.T.; Moyle, R.G.; Braun, M.J.; et al. A phylogenomic supertree of birds. Diversity 2019, 11, 109. [Google Scholar] [CrossRef] [Green Version]
- Joseph, L.; Toon, A.; Schirtzinger, E.E.; Wright, T.F.; Schodde, R. A revised nomenclature and classification for family-group taxa of parrots (Psittaciformes). Zootaxa 2012, 3205, 26. [Google Scholar] [CrossRef]
- Rheindt, F.E.; Christidis, L.; Kuhn, S.; De Kloet, S.; Norman, J.A.; Fidler, A. The timing of diversification within the most divergent parrot clade. J. Avian Biol. 2014, 45, 140–148. [Google Scholar] [CrossRef]
- Worthy, T.H.; De Pietri, V.L.; Scofield, R.P. Recent advances in avian palaeobiology in New Zealand with implications for understanding New Zealand’s geological, climatic and evolutionary histories. N. Z. J. Zool. 2017, 44, 177–211. [Google Scholar] [CrossRef]
- Schweizer, M.; Hertwig, S.T.; Seehausen, O. Diversity versus disparity and the role of ecological opportunity in a continental bird radiation. J. Biogeogr. 2014, 41, 1301–1312. [Google Scholar] [CrossRef]
- Ribas, C.C.; Miyaki, C.Y. Molecular systematics in Aratinga parakeets: Species limits and historical biogeography in the ‘solstitialis’ group, and the systematic position of Nandayus nenday. Mol. Phylogenet. Evol. 2004, 30, 663–675. [Google Scholar] [CrossRef]
- Ribas, C.C.; Gaban-Lima, R.; Miyaki, C.Y.; Cracraft, J. Historical biogeography and diversification within the Neotropical parrot genus Pionopsitta (Aves: Psittacidae). J. Biogeogr. 2005, 32, 1409–1427. [Google Scholar] [CrossRef]
- Eberhard, J.R.; Bermingham, E. Phylogeny and comparative biogeography of Pionopsitta parrots and Pteroglossus toucans. Mol. Phylogenet. Evol. 2005, 36, 288–304. [Google Scholar] [CrossRef]
- Ribas, C.C.; Moyle, R.G.; Miyaki, C.Y.; Cracraft, J. The assembly of montane biotas: Linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proc. R. Soc. B Biol. Sci. 2007, 274, 2399–2408. [Google Scholar] [CrossRef] [Green Version]
- Ribas, C.C.; Miyaki, C.Y.; Cracraft, J. Phylogenetic relationships, diversification and biogeography in Neotropical Brotogeris parakeets. J. Biogeogr. 2009, 36, 1712–1729. [Google Scholar] [CrossRef]
- Boon, W.M.; Kearvell, J.C.; Daugherty, C.H.; Chambers, G.K. Molecular systematics of New Zealand Cyanoramphus parakeets: Conservation of Orange-fronted and Forbes’ Parakeets. Bird Conserv. Int. 2000, 10, 211–239. [Google Scholar] [CrossRef] [Green Version]
- Braun, M.P.; Reinschmidt, M.; Datzmann, T.; Waugh, D.; Zamora, R.; Häbich, A.; Neves, L.; Gerlach, H.; Arndt, T.; Mettke-Hofmann, C.; et al. Influences of oceanic islands and the Pleistocene on the biogeography and evolution of two groups of Australasian parrots (Aves: Psittaciformes: Eclectus roratus, Trichoglossus haematodus complex). Rapid evolution and implications for taxonomy and conservation. Eur. J. Ecol. 2016, 3, 47–66. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.T.; Mauck, W.M.; Benz, B.W.; Andersen, M.J. Uneven missing data skew phylogenomic relationships within the lories and lorikeets. Genome Biol. Evol. 2020, 12, 1131–1147. [Google Scholar] [CrossRef]
- Jackson, H.; Jones, C.G.; Agapow, P.-M.; Tatayah, V.; Groombridge, J.J. Micro-evolutionary diversification among Indian Ocean parrots: Temporal and spatial changes in phylogenetic diversity as a consequence of extinction and invasion. IBIS 2015, 157, 496–510. [Google Scholar] [CrossRef] [Green Version]
- Ribas, C.C.; Tavares, E.S.; Yoshihara, C.; Miyaki, C.Y. Phylogeny and biogeography of Yellow-headed and Blue-fronted Parrots (Amazona ochrocephala and Amazona aestiva) with special reference to the South American taxa. IBIS 2007, 149, 564–574. [Google Scholar] [CrossRef]
- Wenner, T.J.; Russello, M.A.; Wright, T.F. Cryptic species in a Neotropical parrot: Genetic variation within the Amazona farinosa species complex and its conservation implications. Conserv. Genet. 2012, 13, 1427–1432. [Google Scholar] [CrossRef]
- Murphy, S.A.; Joseph, L.; Burbidge, A.H.; Austin, J. A cryptic and critically endangered species revealed by mitochondrial DNA analyses: The Western Ground Parrot. Conserv. Genet. 2011, 12, 595–600. [Google Scholar] [CrossRef]
- McElroy, K.; Beattie, K.; Symonds, M.R.E.; Joseph, L. Mitogenomic and nuclear diversity in the Mulga Parrot of the Australian arid zone: Cryptic subspecies and tests for selection. Emu-Austral Ornithol. 2018, 118, 22–35. [Google Scholar] [CrossRef]
- Silva, T.; Guzmán, A.; Urantówka, A.D.; Mackiewicz, P. A new parrot taxon from the Yucatán Peninsula, Mexico: Its position within genus Amazona based on morphology and molecular phylogeny. PeerJ 2017, 5, e3475. [Google Scholar] [CrossRef] [Green Version]
- Escalante, P.; Arteaga-Rojas, A.E.; Gutiérrez-Sánchez-Rüed, M. A new species of Mexican parrot? Reasonable doubt on the status of Amazona gomezgarzai (Psittaciformes: Psittacidae). Zootaxa 2018, 4420, 139. [Google Scholar] [CrossRef]
- Moritz, C. Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol. Evol. 1994, 9, 373–375. [Google Scholar] [CrossRef]
- Russello, M.A.; Stahala, C.; Lalonde, D.; Schmidt, K.L.; Amato, G. Cryptic diversity and conservation units in the Bahama Parrot. Conserv. Genet. 2010, 11, 1809–1821. [Google Scholar] [CrossRef]
- Hellmich, D.L.; Saidenberg, A.B.S.; Wright, T.F. Genetic, but not behavioral, evidence supports the distinctiveness of the Mealy Amazon parrot in the Brazilian Atlantic Forest. Diversity 2021, 13, 273. [Google Scholar] [CrossRef]
- Rivera-Ortíz, F.A.; Solórzano, S.; Arizmendi, M. del C.; Dávila-Aranda, P.; Oyama, K. Genetic diversity and structure of the Military Macaw (Ara militaris) in Mexico. Trop. Conserv. Sci. 2017, 10, 194008291668434. [Google Scholar] [CrossRef] [Green Version]
- Melo, M.; O’Ryan, C. Genetic differentiation between Príncipe Island and mainland populations of the Grey Parrot (Psittacus erithacus), and implications for conservation. Mol. Ecol. 2007, 16, 1673–1685. [Google Scholar] [CrossRef]
- Coetzer, W.G.; Downs, C.T.; Perrin, M.R.; Willows-Munro, S. Molecular systematics of the Cape Parrot (Poicephalus robustus): Implications for taxonomy and conservation. PLoS ONE 2015, 10, e0133376. [Google Scholar] [CrossRef]
- Clements, J.F.; Schulenberg, T.S.; Iliff, M.J.; Billerman, S.M.; Fredericks, T.A.; Sullivan, B.L.; Wood, C.L. The eBird/Clements Checklist of Birds of the World, 2019th ed.; IBIS Publishing: Vista, CA, USA, 2019. [Google Scholar]
- Gill, F.; Donsker, D.; Rasmussen, P. (Eds.) IOC World Bird List (v 11.1); IOC: Lausanne, Switzerland, 2021. [Google Scholar] [CrossRef]
- Perrin, M. Parrots of Africa, Madagascar and the Mascarene Islands: Biology, Ecology and Conservation; Wits University Press: Johannesburg, South Africa, 2012. [Google Scholar]
- Padilla-Jacobo, G.; Monterrubio-Rico, T.C.; Camacho, H.C.; Zavala-Páramo, M.G. Use of phylogenetic analysis to identify evolutionarily significant units for the Orange-fronted Parakeet (Eupsittula canicularis) in Mexico. Ornitol. Neotrop. 2016, 26, 325–335. [Google Scholar]
- Ewart, K.M.; Lo, N.; Ogden, R.; Joseph, L.; Ho, S.Y.W.; Frankham, G.J.; Eldridge, M.D.B.; Schodde, R.; Johnson, R.N. Phylogeography of the iconic Australian Red-tailed Black-Cockatoo (Calyptorhynchus banksii) and implications for its conservation. Heredity 2020, 125, 85–100. [Google Scholar] [CrossRef]
- Ewart, K.M.; Johnson, R.N.; Joseph, L.; Ogden, R.; Frankham, G.J.; Lo, N. Phylogeography of the iconic Australian Pink Cockatoo, Lophochroa leadbeateri. Biol. J. Linn. Soc. 2021, 132, 704–723. [Google Scholar] [CrossRef]
- Dussex, N.; Sainsbury, J.; Moorhouse, R.; Jamieson, I.G.; Robertson, B.C. Evidence for Bergmann’s rule and not allopatric subspeciation in the threatened Kaka (Nestor meridionalis). J. Hered. 2015, 106, 679–691. [Google Scholar] [CrossRef] [Green Version]
- Dussex, N.; Wegmann, D.; Robertson, B.C. Postglacial expansion and not human influence best explains the population structure in the endangered Kea (Nestor notabilis). Mol. Ecol. 2014, 23, 2193–2209. [Google Scholar] [CrossRef]
- Frankham, R.; Briscoe, D.A.; Ballou, J.D. Introduction to Conservation Genetics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-0-521-70271-3. [Google Scholar]
- Chan, K.; Glover, D.R.; Ramage, C.M.; Harrison, D.K. Low genetic diversity in the Ground Parrot (Pezoporus wallicus) revealed by randomly amplified DNA fingerprinting. Ann. Zool. Fenn. 2008, 45, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Faria, P.J.; Guedes, N.M.R.; Yamashita, C.; Martuscelli, P.; Miyaki, C.Y. Genetic variation and population structure of the endangered Hyacinth Macaw (Anodorhynchus hyacinthinus): Implications for conservation. Biodivers. Conserv. 2008, 17, 765–779. [Google Scholar] [CrossRef]
- Taylor, T.D.; Parkin, D.Y. Preliminary insights into the level of genetic variation retained in the endangered Echo Parakeet (Psittacula eques) towards assisting its conservation management. Afr. Zool. 2010, 45, 189–194. [Google Scholar] [CrossRef]
- Stojanovic, D.; Olah, G.; Webb, M.; Peakall, R.; Heinsohn, R. Genetic evidence confirms severe extinction risk for critically endangered swift parrots: Implications for conservation management. Anim. Conserv. 2018, 21, 313–323. [Google Scholar] [CrossRef]
- Olah, G.; Stojanovic, D.; Webb, M.H.; Waples, R.S.; Heinsohn, R. Comparison of three techniques for genetic estimation of effective population size in a critically endangered parrot. Anim. Conserv. 2021, 24, 491–498. [Google Scholar] [CrossRef]
- Miller, M.P.; Bianchi, C.A.; Mullins, T.D.; Haig, S.M. Associations between forest fragmentation patterns and genetic structure in Pfrimer’s Parakeet (Pyrrhura pfrimeri), an endangered endemic to central Brazil’s dry forests. Conserv. Genet. 2013, 14, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Monge, O.; Schmidt, K.; Vaughan, C.; Gutiérrez-Espeleta, G. Genetic patterns and conservation of the Scarlet Macaw (Ara macao) in Costa Rica. Conserv. Genet. 2016, 17, 745–750. [Google Scholar] [CrossRef]
- Schmidt, K.L.; Aardema, M.L.; Amato, G. Genetic analysis reveals strong phylogeographical divergences within the Scarlet Macaw Ara macao. IBIS 2020, 162, 735–748. [Google Scholar] [CrossRef]
- Keighley, M.V.; Heinsohn, R.; Langmore, N.E.; Murphy, S.A.; Peñalba, J.V. Genomic population structure aligns with vocal dialects in Palm Cockatoos (Probosciger aterrimus); evidence for refugial late-Quaternary distribution? Emu-Austral Ornithol. 2019, 119, 24–37. [Google Scholar] [CrossRef]
- Keighley, M.V.; Haslett, S.; Zdenek, C.N.; Heinsohn, R. Slow breeding rates and low population connectivity indicate Australian Palm Cockatoos are in severe decline. Biol. Conserv. 2021, 253, 108865. [Google Scholar] [CrossRef]
- Ringler, E. The use of cross-species testing of microsatellite markers and sibship analysis in ex situ population management. Conserv. Genet. Resour. 2012, 4, 815–819. [Google Scholar] [CrossRef]
- Ihle, M.; Kempenaers, B.; Forstmeier, W. Fitness benefits of mate choice for compatibility in a socially monogamous species. PLoS Biol. 2015, 13, e1002248. [Google Scholar] [CrossRef] [Green Version]
- Fox, R.A.; Millam, J.R. Personality traits of pair members predict pair compatibility and reproductive success in a socially monogamous parrot breeding in captivity. Zoo Biol. 2014, 33, 166–172. [Google Scholar] [CrossRef]
- Spoon, T.R.; Millam, J.R.; Owings, D.H. The importance of mate behavioural compatibility in parenting and reproductive success by Cockatiels, Nymphicus hollandicus. Anim. Behav. 2006, 71, 315–326. [Google Scholar] [CrossRef]
- Daniell, A.; Murray, N.D. Effects of inbreeding in the Budgerigar Melopsittacus undulatus (Aves: Psittacidae). Zoo Biol. 1986, 5, 233–238. [Google Scholar] [CrossRef]
- Caparroz, R.; Martuscelli, P.; Scherer-Neto, P.; Miyaki, C.Y.; Wajntal, A. Genetic variability in the Red-tailed Amazon (Amazona brasiliensis, Psittaciformes) assessed by DNA fingerprinting. Rev. Bras. Ornitol. 2006, 14, 15–19. [Google Scholar]
- Dussex, N.; van der Valk, T.; Morales, H.E.; Wheat, C.W.; Díez-del-Molino, D.; von Seth, J.; Foster, Y.; Kutschera, V.E.; Guschanski, K.; Rhie, A.; et al. Population genomics of the critically endangered Kākāpō. Cell Genom. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Campos, C.I.; Martinez, M.A.; Acosta, D.; Diaz-Luque, J.A.; Berkunsky, I.; Lamberski, N.L.; Cruz-Nieto, J.; Russello, M.A.; Wright, T.F. Genetic diversity and population structure of two endangered neotropical parrots inform in situ and ex situ conservation strategies. Diversity 2021, 13, 386. [Google Scholar] [CrossRef]
- Morrison, C.E.; Hogg, C.J.; Gales, R.; Johnson, R.N.; Grueber, C.E. Low innate immune-gene diversity in the critically endangered Orange-bellied Parrot (Neophema chrysogaster). Emu-Austral Ornithol. 2020, 120, 56–64. [Google Scholar] [CrossRef]
- Peters, A.; Patterson, E.I.; Baker, B.G.B.; Holdsworth, M.; Sarker, S.; Ghorashi, S.A.; Raidal, S.R. Evidence of Psittacine Beak and Feather Disease Virus spillover into wild critically endangered Orange-bellied Parrots (Neophema chrysogaster). J. Wildl. Dis. 2014, 50, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Ashby, E. Parrakeets moutling. Emu-Austral Ornithol. 1907, 6, 193–194. [Google Scholar] [CrossRef]
- Ritchie, B.W.; Niagro, F.D.; Lukert, P.D.; Steffens, W.L.; Latimer, K.S. Characterization of a new virus from cockatoos with psittacine beak and feather disease. Virology 1989, 171, 83–88. [Google Scholar] [CrossRef]
- Ogawa, H.; Yamaguchi, T.; Fukushi, H. Duplex shuttle PCR for differential diagnosis of Budgerigar Fledgling Disease and Psittacine Beak and Feather Disease. Microbiol. Immunol. 2005, 49, 227–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ypelaar, I.; Bassami, M.R.; Wilcox, G.E.; Raidal, S.R. A universal polymerase chain reaction for the detection of psittacine beak and feather disease virus. Vet. Microbiol. 1999, 68, 141–148. [Google Scholar] [CrossRef]
- Australian Government; Department of Agriculture, Water and the Environment. Psittacine Beak and Feather Disease and Other Identified Threats to Australian Threatened Parrots; Department of the Environment: Canberra, Australia, 2015.
- Morrison, C.E.; Johnson, R.N.; Grueber, C.E.; Hogg, C.J. Genetic impacts of conservation management actions in a critically endangered parrot species. Conserv. Genet. 2020, 21, 869–877. [Google Scholar] [CrossRef]
- Kaspers, B.; Schat, K.A. Avian Immunology; Elsevier Science: Amsterdam, The Netherlands, 2012; ISBN 978-0-12-397272-9. [Google Scholar]
- Edwards, S.V.; Hess, C.M.; Gasper, J.; Garrigan, D. Toward an evolutionary genomics of the avian MHC. Immunol. Rev. 1999, 167, 119–132. [Google Scholar] [CrossRef]
- Hughes, C.R.; Miles, S.; Walbroehl, J.M. Support for the minimal essential MHC hypothesis: A parrot with a single, highly polymorphic MHC class II B gene. Immunogenetics 2008, 60, 219–231. [Google Scholar] [CrossRef]
- Knafler, G.J.; Jamieson, I.G. Primers for the amplification of major histocompatibility complex class I and II loci in the recovering Red-crowned Parakeet. Conserv. Genet. Resour. 2014, 6, 37–39. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, J.D.; Eldridge, M.D.B.; Lacy, R.C.; Ralls, K.; Dudash, M.R.; Fenster, C.B. Predicting the probability of outbreeding depression. Conserv. Biol. 2011, 25, 465–475. [Google Scholar] [CrossRef]
- Huff, D.D.; Miller, L.M.; Chizinski, C.J.; Vondracek, B. Mixed-source reintroductions lead to outbreeding depression in second-generation descendents of a native North American fish. Mol. Ecol. 2011, 20, 4246–4258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ralls, K.; Sunnucks, P.; Lacy, R.C.; Frankham, R. Genetic rescue: A critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol. Conserv. 2020, 251, 108784. [Google Scholar] [CrossRef]
- Grant, P.R.; Grant, B.R. Hybridization of bird species. Science 1992, 256, 193–197. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, E.M. Handbook of Avian Hybrids of the World; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Chan, C.-H.; Ballantyne, K.N.; Aikman, H.; Fastier, D.; Daugherty, C.H.; Chambers, G.K. Genetic analysis of interspecific hybridisation in the world’s only Forbes’ Parakeet (Cyanoramphus forbesi) natural population. Conserv. Genet. 2006, 7, 493–506. [Google Scholar] [CrossRef]
- Shipham, A.; Joseph, L.; Schmidt, D.J.; Drew, A.; Mason, I.; Hughes, J.M. Dissection by genomic and plumage variation of a geographically complex hybrid zone between two Australian non-sister parrot species, Platycercus adscitus and Platycercus eximius. Heredity 2019, 122, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Miyaki, C.Y.; Faria, P.J.; Griffiths, R.; Araújo, J.C.C.; Barros, Y.M. The last wild Spix’s Macaw and an Illiger’s Macaw produced a hybrid. Conserv. Genet. 2001, 2, 53–55. [Google Scholar] [CrossRef]
- White, N.E.; Dawson, R.; Coghlan, M.L.; Tridico, S.R.; Mawson, P.R.; Haile, J.; Bunce, M. Application of STR markers in wildlife forensic casework involving Australian black-cockatoos (Calyptorhynchus spp.). Forensic Sci. Int. Genet. 2012, 6, 664–670. [Google Scholar] [CrossRef] [Green Version]
- Coghlan, M.L.; White, N.E.; Parkinson, L.; Haile, J.; Spencer, P.B.S.; Bunce, M. Egg forensics: An appraisal of DNA sequencing to assist in species identification of illegally smuggled eggs. Forensic Sci. Int. Genet. 2012, 6, 268–273. [Google Scholar] [CrossRef]
- Gonçalves, P.F.M.; Oliveira-Marques, A.R.; Matsumoto, T.E.; Miyaki, C.Y. DNA barcoding identifies illegal parrot trade. J. Hered. 2015, 106, 560–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formentão, L.; Saraiva, A.S.; Marrero, A.R. DNA barcoding exposes the need to control the illegal trade of eggs of non-threatened parrots in Brazil. Conserv. Genet. Resour. 2021, 13, 275–281. [Google Scholar] [CrossRef]
- Lee, J. A Forensic Toolkit for the Examination of Wildlife Crime Using the Glossy Black-Cockatoo as a Model Species. Ph.D. Thesis, University of Canberra, Canberra, Australia, 2013. [Google Scholar]
- Coetzer, W.G.; Downs, C.T.; Perrin, M.R.; Willows-Munro, S. Testing of microsatellite multiplexes for individual identification of Cape Parrots (Poicephalus robustus): Paternity testing and monitoring trade. PeerJ 2017, 5, e2900. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Ortíz, F.A.; Juan-Espinosa, J.; Solórzano, S.; Contreras-González, A.M.; Arizmendi, M.D.C. Genetic assignment tests to identify the probable geographic origin of a captive specimen of Military Macaw (Ara militaris) in Mexico: Implications for conservation. Diversity 2021, 13, 245. [Google Scholar] [CrossRef]
- Fernandes, G.A.; Caparroz, R. DNA sequence analysis to guide the release of Blue-and-yellow Macaws (Ara ararauna, Psittaciformes, Aves) from the illegal trade back into the wild. Mol. Biol. Rep. 2013, 40, 2757–2762. [Google Scholar] [CrossRef] [PubMed]
- Wirthlin, M.; Lima, N.C.B.; Guedes, R.L.M.; Soares, A.E.R.; Almeida, L.G.P.; Cavaleiro, N.P.; de Morais, G.L.; Chaves, A.V.; Howard, J.T.; de Melo Teixeira, M.; et al. Parrot genomes and the evolution of heightened longevity and cognition. Curr. Biol. 2018, 28, 4001–4008.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, C.; Magat, M. The evolution of lateralized foot use in parrots: A phylogenetic approach. Behav. Ecol. 2011, 22, 1201–1208. [Google Scholar] [CrossRef] [Green Version]
- Friedmann, H.; Davis, M. “Left-handedness” in parrots. Auk 1938, 55, 478–480. [Google Scholar] [CrossRef]
- Harris, L.J. Footedness in parrots: Three centuries of research, theory, and mere surmise. Can. J. Psychol. Can. Psychol. 1989, 43, 369–396. [Google Scholar] [CrossRef]
- Benavidez, A.; Palacio, F.X.; Rivera, L.O.; Echevarria, A.L.; Politi, N. Diet of Neotropical parrots is independent of phylogeny but correlates with body size and geographical range. IBIS 2018, 160, 742–754. [Google Scholar] [CrossRef]
- Caparroz, R.; Miyaki, C.Y.; Baker, A.J. Genetic evaluation of the mating system in the Blue-and-yellow Macaw (Ara ararauna, Aves, Psittacidae) by DNA fingerprinting. Genet. Mol. Biol. 2010, 34, 161–164. [Google Scholar] [CrossRef]
- Caparroz, R.; Miyaki, C.Y.; Baker, A.J. Contrasting phylogeographic patterns in mitochondrial DNA and microsatellites: Evidence of female philopatry and male-biased gene flow among regional populations of the Blue-and-yellow Macaw (Psittaciformes: Ara ararauna) in Brazil. Auk 2009, 126, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Heinsohn, R.; Ebert, D.; Legge, S.; Peakall, R. Genetic evidence for cooperative polyandry in reverse dichromatic Eclectus Parrots. Anim. Behav. 2007, 74, 1047–1054. [Google Scholar] [CrossRef]
- Ekstrom, J.M.M.; Burke, T.; Randrianaina, L.; Birkhead, T.R. Unusual sex roles in a highly promiscuous parrot: The Greater Vasa Parrot Caracopsis vasa. IBIS 2007, 149, 313–320. [Google Scholar] [CrossRef]
- Heinsohn, R.; Olah, G.; Webb, M.; Peakall, R.; Stojanovic, D. Sex ratio bias and shared paternity reduce individual fitness and population viability in a critically endangered parrot. J. Anim. Ecol. 2019, 88, 502–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinsohn, R.; Au, J.; Kokko, H.; Webb, M.H.; Deans, R.M.; Crates, R.; Stojanovic, D. Can an introduced predator select for adaptive sex allocation? Proc. R. Soc. B Biol. Sci. 2021, 288, 20210093. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.D.; Parkin, D.T. Preliminary evidence suggests extra-pair mating in the endangered echo parakeet, Psittacula eques. Afr. Zool. 2009, 44, 71–74. [Google Scholar] [CrossRef]
- Da Silva, A.G.; Eberhard, J.R.; Wright, T.F.; Avery, M.L.; Russello, M.A. Genetic evidence for high propagule pressure and long-distance dispersal in Monk Parakeet (Myiopsitta monachus) invasive populations. Mol. Ecol. 2010, 19, 3336–3350. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.J.; De Aranzamendi, M.C.; Masello, J.F.; Bucher, E.H. Genetic evidence of extra-pair paternity and intraspecific brood parasitism in the monk parakeet. Front. Zool. 2013, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Dawson Pell, F.S.E.; Senar, J.C.; Franks, D.W.; Hatchwell, B.J. Fine-scale genetic structure reflects limited and coordinated dispersal in the colonial Monk Parakeet, Myiopsitta monachus. Mol. Ecol. 2021, 30, 1531–1544. [Google Scholar] [CrossRef]
- Lee, J.; Pedler, L.; Sarre, S.D.; Robertson, J.; Joseph, L. Male sex-ratio bias in the endangered South Australian Glossy Black-Cockatoo Calyptorhynchus lathami halmaturinus. Emu-Austral Ornithol. 2015, 115, 356–359. [Google Scholar] [CrossRef]
- Wright, T.F.; Rodriguez, A.M.; Fleischer, R.C. Vocal dialects, sex-biased dispersal, and microsatellite population structure in the parrot Amazona auropalliata. Mol. Ecol. 2005, 14, 1197–1205. [Google Scholar] [CrossRef]
- Wright, T.F.; Wilkinson, G.S. Population genetic structure and vocal dialects in an Amazon parrot. Proc. R. Soc. Lond. B Biol. Sci. 2001, 268, 609–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, T.F.; Dahlin, C.R. Vocal dialects in parrots: Patterns and processes of cultural evolution. Emu-Austral Ornithol. 2018, 118, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Hara, E.; Perez, J.M.; Whitney, O.; Chen, Q.; White, S.A.; Wright, T.F. Neural FoxP2 and FoxP1 expression in the Budgerigar, an avian species with adult vocal learning. Behav. Brain Res. 2015, 283, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Whitney, O.; Voyles, T.; Hara, E.; Chen, Q.; White, S.A.; Wright, T.F. Differential FoxP2 and FoxP1 expression in a vocal learning nucleus of the developing Budgerigar. Dev. Neurobiol. 2015, 75, 778–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russello, M.A.; Smith-Vidaurre, G.; Wright, T.F. Genetics of invasive parrot populations. In Naturalized Parrots of the World: Distribution, Ecology, and Impacts of the World’s Most Colorful Colonizers; Princeton University Press: Princeton, NJ, USA, 2021; ISBN 0-691-20441-1. [Google Scholar]
- Russello, M.A.; Avery, M.L.; Wright, T.F. Genetic evidence links invasive Monk Parakeet populations in the United States to the international pet trade. BMC Evol. Biol. 2008, 8, 217. [Google Scholar] [CrossRef] [Green Version]
- Edelaar, P.; Roques, S.; Hobson, E.A.; Gonçalves Da Silva, A.; Avery, M.L.; Russello, M.A.; Senar, J.C.; Wright, T.F.; Carrete, M.; Tella, J.L. Shared genetic diversity across the global invasive range of the Monk Parakeet suggests a common restricted geographic origin and the possibility of convergent selection. Mol. Ecol. 2015, 24, 2164–2176. [Google Scholar] [CrossRef] [Green Version]
- Le Gros, A.; Samadi, S.; Zuccon, D.; Cornette, R.; Braun, M.P.; Senar, J.C.; Clergeau, P. Rapid morphological changes, admixture and invasive success in populations of Ring-necked Parakeets (Psittacula krameri) established in Europe. Biol. Invasions 2016, 18, 1581–1598. [Google Scholar] [CrossRef] [Green Version]
- Olah, G.; Heinsohn, R.G.; Brightsmith, D.J.; Espinoza, J.R.; Peakall, R. Validation of non-invasive genetic tagging in two large macaw species (Ara macao and A. chloropterus) of the Peruvian Amazon. Conserv. Genet. Resour. 2016, 8, 499–509. [Google Scholar] [CrossRef]
- Presti, F.T.; Meyer, J.; Antas, P.T.Z.; Guedes, N.M.R.; Miyaki, C.Y. Non-invasive genetic sampling for molecular sexing and microsatellite genotyping of Hyacinth Macaw (Anodorhynchus hyacinthinus). Genet. Mol. Biol. 2013, 36, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Olah, G.; Smith, A.L.; Asner, G.P.; Brightsmith, D.J.; Heinsohn, R.G.; Peakall, R. Exploring dispersal barriers using landscape genetic resistance modelling in Scarlet Macaws of the Peruvian Amazon. Landsc. Ecol. 2017, 32, 445–456. [Google Scholar] [CrossRef]
- Masello, J.F.; Montano, V.; Quillfeldt, P.; Nuhlíčková, S.; Wikelski, M.; Moodley, Y. The interplay of spatial and climatic landscapes in the genetic distribution of a South American parrot. J. Biogeogr. 2015, 42, 1077–1090. [Google Scholar] [CrossRef] [Green Version]
- Keighley, M.V.; Langmore, N.E.; Peñalba, J.V.; Heinsohn, R. Modelling dispersal in a large parrot: A comparison of landscape resistance models with population genetics and vocal dialect patterns. Landsc. Ecol. 2020, 35, 129–144. [Google Scholar] [CrossRef]
- Blanco, G.; Morinha, F.; Roques, S.; Hiraldo, F.; Rojas, A.; Tella, J.L. Fine-scale genetic structure in the critically endangered Red-fronted Macaw in the absence of geographic and ecological barriers. Sci. Rep. 2021, 11, 556. [Google Scholar] [CrossRef] [PubMed]
- Joseph, L.; Dolman, G.; Donnellan, S.; Saint, K.M.; Berg, M.L.; Bennett, A.T.D. Where and when does a ring start and end? Testing the ring-species hypothesis in a species complex of Australian parrots. Proc. R. Soc. B Biol. Sci. 2008, 275, 2431–2440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, D.; Dussex, N.; Robertson, B.C.; Gemmell, N.J.; Knapp, M. Evolution of the “world’s only alpine parrot”: Genomic adaptation or phenotypic plasticity, behaviour and ecology? Mol. Ecol. 2021. [Google Scholar] [CrossRef]
- Bi, K.; Linderoth, T.; Vanderpool, D.; Good, J.M.; Nielsen, R.; Moritz, C. Unlocking the vault: Next-generation museum population genomics. Mol. Ecol. 2013, 22, 6018–6032. [Google Scholar] [CrossRef] [Green Version]
- Rowe, K.C.; Singhal, S.; Macmanes, M.D.; Ayroles, J.F.; Morelli, T.L.; Rubidge, E.M.; Bi, K.E.; Moritz, C.C. Museum genomics: Low-cost and high-accuracy genetic data from historical specimens. Mol. Ecol. Resour. 2011, 11, 1082–1092. [Google Scholar] [CrossRef]
- Billerman, S.M.; Walsh, J. Historical DNA as a tool to address key questions in avian biology and evolution: A review of methods, challenges, applications, and future directions. Mol. Ecol. Resour. 2019, 19, 1115–1130. [Google Scholar] [CrossRef]
- Murphy, S.A.; Double, M.C.; Legge, S.M. The phylogeography of Palm Cockatoos, Probosciger aterrimus, in the dynamic Australo-Papuan region. J. Biogeogr. 2007, 34, 1534–1545. [Google Scholar] [CrossRef]
- Ewart, K.M.; Johnson, R.N.; Ogden, R.; Joseph, L.; Frankham, G.J.; Lo, N. Museum specimens provide reliable SNP data for population genomic analysis of a widely distributed but threatened cockatoo species. Mol. Ecol. Resour. 2019, 19, 1578–1592. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Jones, C.G.; Prys-Jones, R.P.; Groombridge, J.J. The evolution of the Indian Ocean parrots (Psittaciformes): Extinction, adaptive radiation and eustacy. Mol. Phylogenet. Evol. 2012, 62, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlowski, L.; Gamauf, A.; Töpfer, T. Revising the phylogenetic position of the extinct Mascarene Parrot Mascarinus mascarin (Linnaeus 1771) (Aves: Psittaciformes: Psittacidae). Mol. Phylogenet. Evol. 2017, 107, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Kirchman, J.J.; Schirtzinger, E.E.; Wright, T.F. Phylogenetic relationships of the extinct Carolina Parakeet (Conuropsis carolinensis) inferred from DNA sequence data. Auk 2012, 129, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Burgio, K.R.; Carlson, C.J.; Bond, A.L.; Rubega, M.A.; Tingley, M.W. The two extinctions of the Carolina Parakeet Conuropsis carolinensis. Bird Conserv. Int. 2021. [Google Scholar] [CrossRef]
- Anmarkrud, J.A.; Lifjeld, J.T. Complete mitochondrial genomes of eleven extinct or possibly extinct bird species. Mol. Ecol. Resour. 2017, 17, 334–341. [Google Scholar] [CrossRef] [Green Version]
- Bergner, L.M.; Dussex, N.; Jamieson, I.G.; Robertson, B.C. European colonization, not Polynesian arrival, impacted population size and genetic diversity in the critically endangered New Zealand Kākāpō. J. Hered. 2016, 107, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Dussex, N.; Von Seth, J.; Robertson, B.; Dalén, L. Full mitogenomes in the critically endangered Kākāpō reveal major post-glacial and anthropogenic effects on neutral genetic diversity. Genes 2018, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Boehrer, B.T. Parrot Culture: Our 2500-Year-Long Fascination with the World’s Most Talkative Bird; University of Pennsylvania Press: Philadelphia, PA, USA, 2004; ISBN 0-8122-3793-5. [Google Scholar]
- Watson, A.S.; Plog, S.; Culleton, B.J.; Gilman, P.A.; Leblanc, S.A.; Whiteley, P.M.; Claramunt, S.; Kennett, D.J. Early procurement of Scarlet Macaws and the emergence of social complexity in Chaco Canyon, NM. Proc. Natl. Acad. Sci. USA 2015, 112, 8238–8243. [Google Scholar] [CrossRef] [Green Version]
- George, R.J.; Plog, S.; Watson, A.S.; Schmidt, K.L.; Culleton, B.J.; Harper, T.K.; Gilman, P.A.; LeBlanc, S.A.; Amato, G.; Whiteley, P.; et al. Archaeogenomic evidence from the southwestern US points to a pre-Hispanic Scarlet Macaw breeding colony. Proc. Natl. Acad. Sci. USA 2018, 115, 8740–8745. [Google Scholar] [CrossRef] [Green Version]
- Bover, P.; Llamas, B.; Heiniger, H.; Olah, G.; Segura, R.; Shimada, I. Ancient DNA Analysis of Feathers from Funerary Bundles at the Pre-Hispanic Religious Center of Pachacamac (Perú). In Proceedings of the 9th International Symposium on Biomolecular Archaeology, ISBA9, Toulouse, France, 1–4 June 2021. [Google Scholar]
- Capriles, J.M.; Santoro, C.M.; George, R.J.; Flores Bedregal, E.; Kennett, D.J.; Kistler, L.; Rothhammer, F. Pre-Columbian transregional captive rearing of Amazonian parrots in the Atacama Desert. Proc. Natl. Acad. Sci. USA 2021, 118, e2020020118. [Google Scholar] [CrossRef] [PubMed]
- Crates, R.; Olah, G.; Adamski, M.; Aitken, N.; Banks, S.; Ingwersen, D.; Ranjard, L.; Rayner, L.; Stojanovic, D.; Suchan, T.; et al. Genomic impact of severe population decline in a nomadic songbird. PLoS ONE 2019, 14, e0223953. [Google Scholar] [CrossRef]
- Groth, D.M.; Coates, D.; Wetherall, J.D.; Mell, D.; Hall, G.P. A Study of the genetic diversity and relatedness in the parrot, Naretha Blue Bonnet Northiella haematogaster narethae. Conservation biology in Australia and Oceania at the University of Queensland, Brisbane, Australia, 30 September–4 October 1991; p. 85. [Google Scholar]
- Mell, D.; Wetherall, J. To catch a thief. Landscope 1992, 7, 28–32. [Google Scholar]
- Shipham, A.; Schmidt, D.J.; Joseph, L.; Hughes, J.M. A genomic approach reinforces a hypothesis of mitochondrial capture in Eastern Australian Rosellas. Auk 2017, 134, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Faircloth, B.C.; Mccormack, J.E.; Crawford, N.G.; Harvey, M.G.; Brumfield, R.T.; Glenn, T.C. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 2012, 61, 717–726. [Google Scholar] [CrossRef]
- Benestan, L.M.; Ferchaud, A.-L.; Hohenlohe, P.A.; Garner, B.A.; Naylor, G.J.P.; Baums, I.B.; Schwartz, M.K.; Kelley, J.L.; Luikart, G. Conservation genomics of natural and managed populations: Building a conceptual and practical framework. Mol. Ecol. 2016, 25, 2967–2977. [Google Scholar] [CrossRef] [PubMed]
- Garner, B.A.; Hand, B.K.; Amish, S.J.; Bernatchez, L.; Foster, J.T.; Miller, K.M.; Morin, P.A.; Narum, S.R.; O’Brien, S.J.; Roffler, G.; et al. Genomics in conservation: Case studies and bridging the gap between data and application. Trends Ecol. Evol. 2016, 31, 81–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deakin, J.E.; Potter, S.; O’Neill, R.; Ruiz-Herrera, A.; Cioffi, M.B.; Eldridge, M.D.B.; Fukui, K.; Marshall Graves, J.A.; Griffin, D.; Grutzner, F.; et al. Chromosomics: Bridging the gap between genomes and chromosomes. Genes 2019, 10, 627. [Google Scholar] [CrossRef] [Green Version]
- Eizenga, J.M.; Novak, A.M.; Sibbesen, J.A.; Heumos, S.; Ghaffaari, A.; Hickey, G.; Chang, X.; Seaman, J.D.; Rounthwaite, R.; Ebler, J.; et al. Pangenome graphs. Annu. Rev. Genom. Hum. Genet. 2020, 21, 139–162. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olah, G.; Smith, B.T.; Joseph, L.; Banks, S.C.; Heinsohn, R. Advancing Genetic Methods in the Study of Parrot Biology and Conservation. Diversity 2021, 13, 521. https://doi.org/10.3390/d13110521
Olah G, Smith BT, Joseph L, Banks SC, Heinsohn R. Advancing Genetic Methods in the Study of Parrot Biology and Conservation. Diversity. 2021; 13(11):521. https://doi.org/10.3390/d13110521
Chicago/Turabian StyleOlah, George, Brian Tilston Smith, Leo Joseph, Samuel C. Banks, and Robert Heinsohn. 2021. "Advancing Genetic Methods in the Study of Parrot Biology and Conservation" Diversity 13, no. 11: 521. https://doi.org/10.3390/d13110521
APA StyleOlah, G., Smith, B. T., Joseph, L., Banks, S. C., & Heinsohn, R. (2021). Advancing Genetic Methods in the Study of Parrot Biology and Conservation. Diversity, 13(11), 521. https://doi.org/10.3390/d13110521