Do Active and Passive Antipredator Defences in the Toad Epidalea calamita Differ between Males and Females from Natural Habitats and Agrosystems?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Toad Capture and Management
2.3. Coloration and Morphological Measurements
2.4. Sprint Speed Measurement
2.5. Statistics
3. Results
3.1. Parotoid Gland Area
3.2. Parotoid Gland Colour Saliency
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abrams, P.A. The evolution of predator–prey interactions: Theory and evidence. Ann. Rev. Ecol. Syst. 2000, 31, 79–105. [Google Scholar] [CrossRef]
- Creel, S.; Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 2008, 23, 194–201. [Google Scholar] [CrossRef]
- Lima, S.L. Putting predators back into behavioral predator–prey interactions. Trends Ecol. Evol. 2002, 17, 70–75. [Google Scholar] [CrossRef]
- Beauchamp, D.A.; Wahl, D.; Johnson, B.M. Predator–prey interactions. In Analysis and Interpretation of Inland Fisheries Data; Guy, C.S., Brown, M.J., Eds.; American Fisheries Society: Bethesda, MD, USA, 2007. [Google Scholar]
- Zamora-Camacho, F.J.; Aragón, P. Failed predator attacks have detrimental effects on antipredatory capabilities through developmental plasticity in Pelobates cultripes toads. Funct. Ecol. 2019, 33, 846–854. [Google Scholar] [CrossRef]
- Wirsing, A.J.; Heithaus, M.R.; Brown, J.S.; Kotler, B.P.; Schmitz, O.J. The context dependence of non-consumptive predator effects. Ecol. Lett. 2021, 24, 113–129. [Google Scholar] [CrossRef]
- Ding, G.H.; Lin, Z.H.; Zhao, L.H. Locomotion and survival of two sympatric larval anurans, Bufo gargarizans (Anura: Bufonidae) and Rana zhenhaiensis (Anura: Ranidae), after partial tail loss. Zoologia 2014, 31, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Archie, E.A. Wound healing in the wild: Stress, sociality and energetic costs affect wound healing in natural populations. Paras. Immunol. 2013, 35, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Bliss, M.M.; Cecala, K.K. Terrestrial salamanders alter antipredator behavior thresholds following tail autotomy. Herpetologica 2017, 73, 94–99. [Google Scholar] [CrossRef]
- Kishida, O.; Nishimura, K. Multiple inducible defences against multiple predators in the anuran tadpole, Rana pirica. Evol. Ecol. Res. 2005, 7, 619–631. [Google Scholar]
- Zvereva, E.L.; Kozlov, M.V. The costs and effectiveness of chemical defenses in herbivorous insects: A meta-analysis. Ecol. Monogr. 2016, 86, 107–124. [Google Scholar] [CrossRef]
- Creel, S.; Winnie, J.A.; Christianson, D.; Liley, S. Time and space in general models of antipredator response: Tests with wolves and elk. Anim. Behav. 2008, 76, 1139–1146. [Google Scholar] [CrossRef]
- Van Buskirk, J. The costs of an inducible defense in anuran larvae. Ecology 2000, 81, 2813–2821. [Google Scholar] [CrossRef]
- Watkins, T.B. Predator-mediated selection on burst swimming performance in tadpoles of the Pacific tree frog, Pseudacris regilla. Physiol. Zool. 1996, 69, 154–167. [Google Scholar] [CrossRef] [Green Version]
- McGee, M.R.; Julius, M.L.; Vajda, A.M.; Norris, D.O.; Barber, L.B.; Schoenfuss, H.L. Predator avoidance performance of larval fathead minnows (Pimephales promelas) following short-term exposure to estrogen mixtures. Aquat. Toxicol. 2009, 91, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Vernet, N.; Rospars, J.P. Maximum relative speeds of living organisms: Why do bacteria perform as fast as ostriches? Phys. Biol. 2016, 13, 066006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lailvaux, S.P.; Husak, J.F. Predicting life-history trade-offs with whole-organism performance. Integr. Comp. Biol. 2017, 57, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Kraskura, K.; Nelson, J.A. Hypoxia and sprint swimming performance of juvenile striped bass, Morone saxatilis. Physiol. Biochem. Zool. 2018, 91, 682–690. [Google Scholar] [CrossRef]
- Taylor, C.R.; Heglund, N.C.; McMahon, T.A.; Looney, T.R. Energetic cost of generating muscular force during running. A comparison of large and small animals. J. Exp. Biol. 1980, 86, 9–18. [Google Scholar] [CrossRef]
- Brijs, J.; Sandblom, E.; Sundh, H.; Gräns, A.; Hinchcliffe, J.; Ekström, A.; Sundell, K.; Olsson, C.; Axelsson, M.; Pichaud, N. Increased mitochondrial coupling and anaerobic capacity minimizes aerobic costs of trout in the sea. Sci. Rep. 2017, 7, 45778. [Google Scholar] [CrossRef] [Green Version]
- Fisher-Wellman, K.; Bloomer, R.J. Acute exercise and oxidative stress: A 30 year history. Dyn. Med. 2009, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Sorci, G.; Faivre, B. Inflammation and oxidative stress in vertebrate host–parasite systems. Philos. Trans. R. Soc. B 2009, 364, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Krause, J.; Godin, J.G.J. Predator preferences for attacking particular prey group sizes: Consequences for predator hunting success and prey predation risk. Anim. Behav. 1995, 50, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Geipel, I.; Kernan, C.E.; Litterer, A.S.; Carter, G.G.; Page, R.A.; ter Hofstede, H.M. Predation risks of signalling and searching: Bats prefer moving katydids. Biol. Lett. 2020, 16, 20190837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mebs, D. Toxicity in animals. Trends in evolution? Toxicon 2001, 39, 87–96. [Google Scholar] [CrossRef]
- Brodie, E.D., III. Toxins and venoms. Curr. Biol. 2009, 19, R931–R935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savitzky, A.H.; Mori, A.; Hutchinson, D.A.; Saporito, R.A.; Burghardt, G.M.; Lillywhite, H.B.; Meinwald, J. Sequestered defensive toxins in tetrapod vertebrates: Principles, patterns, and prospects for future studies. Chemoecology 2012, 22, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Bowers, M.D. The evolution of unpalatability and the cost of chemical defense in insects. In Insect Chemical Ecology: An Evolutionary Approach; Roitberg, B.D., Isman, M.B., Eds.; Chapman & Hall: New York, NY, USA, 1992. [Google Scholar]
- Zvereva, E.L.; Zverev, V.; Kruglova, O.Y.; Kozlov, M.V. Strategies of chemical anti-predator defences in leaf beetles: Is sequestration of plant toxins less costly than de novo synthesis? Oecologia 2017, 183, 93–106. [Google Scholar] [CrossRef]
- Saporito, R.A.; Zuercher, R.; Roberts, M.; Gerow, K.G.; Donnelly, M.A. Experimental evidence for aposematism in the Dendrobatid poison frog Oophaga pumilio. Copeia 2007, 2007, 1006–1011. [Google Scholar] [CrossRef] [Green Version]
- Ruxton, G.D.; Allen, W.L.; Sherratt, T.N.; Speed, M.P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry; Oxford University Press: New York, NY, USA, 2018. [Google Scholar]
- Skelhorn, J.; Rowe, C. Avian predators taste-reject aposematic prey on the basis of their chemical defence. Biol. Lett. 2006, 2, 348–350. [Google Scholar] [CrossRef] [Green Version]
- Prudic, K.L.; Skemp, A.K.; Papaj, D.R. Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behav. Ecol. 2007, 18, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Hill, G.E. Redness as a measure of the production cost of ornamental coloration. Ethol. Ecol. Evol. 1996, 8, 157–175. [Google Scholar] [CrossRef]
- Talloen, W.; Van Dyck, H.; Lens, L. The cost of melanization: Butterfly wing coloration under environmental stress. Evolution 2004, 58, 360–366. [Google Scholar] [CrossRef]
- Zamora-Camacho, F.J. Locomotor performance in a running toad: Roles of morphology, sex and agrosystem versus natural habitat. Biol. J. Linn. Soc. 2018, 123, 411–421. [Google Scholar] [CrossRef]
- Zechmeister, L. Progress in the Chemistry of Organic Natural Products; Springer: Cham, Switzerland, 1948. [Google Scholar]
- Llewelyn, J.; Bell, K.; Schwarzkopf, L.; Alford, R.A.; Shine, R. Ontogenetic shifts in a prey’s chemical defences influence feeding responses of a snake predator. Oecologia 2012, 169, 965–973. [Google Scholar] [CrossRef]
- Blennerhassett, R.A.; Bell-Anderson, K.; Shine, R.; Brown, G.P. The cost of chemical defence: The impact of toxin depletion on growth and behaviour of cane toads (Rhinella marina). Proc. R. Soc. B 2019, 286, 20190867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamora-Camacho, F.J. Sex and habitat differences in size and coloration of an amphibian’s poison glands match differential predator pressures. Integr. Zool. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Frétey, T.; Cam, E.; Le Garff, B.; Monnat, J.Y. Adult survival and temporary emigration in the common toad. Can. J. Zool. 2004, 82, 859–872. [Google Scholar] [CrossRef]
- Gomez-Mestre, I. Sapo corredor—Epidalea calamita (Laurenti, 1768). In Enciclopedia Virtual de los Vertebrados Españoles; Salvador, A., Marco, A., Eds.; Museo Nacional de Ciencias Naturales: Madrid, Spain, 2014; Available online: http://www.vertebradosibericos.org (accessed on 24 November 2021).
- Stawikowski, R.; Lüddecke, T. Description of defensive postures of the natterjack toad Epidalea calamita (Laurenti 1768) and notes on the release of toxic secretions. Herpetol. Notes 2019, 12, 443–445. [Google Scholar]
- Martínez, F.; Montero, G. The Pinus pinea L. woodlands along the coast of South-western Spain: Data for a new geobotanical interpretation. Plant Ecol. 2004, 175, 1–18. [Google Scholar] [CrossRef]
- Zamora-Camacho, F.J.; Comas, M. Beyond sexual dimorphism and habitat boundaries: Coloration correlates with morphology, age, and locomotor performance in a toad. Evol. Biol. 2019, 46, 60–70. [Google Scholar] [CrossRef]
- Montgomerie, R. Analyzing colors. In Bird Coloration Volume I: Mechanisms and Measurements; Hill, G.E., McGraw, K.J., Eds.; Harvard University Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Nguyen, L.P.; Nol, E.; Abraham, K.F. Using digital photographs to evaluate the effectiveness of plover egg crypsis. J. Wildl. Manag. 2007, 71, 2084–2089. [Google Scholar] [CrossRef]
- Moreno-Rueda, G.; González-Granda, L.G.; Reguera, S.; Zamora-Camacho, F.J.; Melero, E. Crypsis decreases with elevation in a lizard. Diversity 2019, 11, 236. [Google Scholar] [CrossRef] [Green Version]
- Walvoord, M.E. Cricket frogs maintain body hydration and temperature near levels allowing maximum jump performance. Physiol. Biochem. Zool. 2003, 76, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Prates, I.; Angilleta, M.J.; Wilson, R.S.; Niehaus, A.C.; Navas, C.A. Dehydration hardly slows hopping toads (Rhinella granulosa) from xeric and mesic environments. Physiol. Biochem. Zool. 2013, 86, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Preest, M.R.; Pough, F.H. Interaction of temperature and hydration on locomotion of toads. Funct. Ecol. 1989, 3, 693–699. [Google Scholar] [CrossRef] [Green Version]
- Vanhooydonck, B.; Measey, J.; Edwards, S.; Makhubo, B.; Tolley, K.A.; Herrel, A. The effects of substratum on locomotor performance in lacertid lizards. Biol. J. Linn. Soc. 2015, 115, 869–881. [Google Scholar] [CrossRef] [Green Version]
- Preest, M.R.; Pough, F.H. Effects of body temperature and hydration state on organismal performance of toads, Bufo americanus. Physiol. Biochem. Zool. 2003, 76, 229–239. [Google Scholar] [CrossRef]
- Martín, J.; López, P. Hindlimb asymmetry reduces escape performance in the lizard Psammodromus algirus. Physiol. Biochem. Zool. 2001, 74, 619–624. [Google Scholar] [CrossRef]
- Zamora-Camacho, F.J.; Reguera, S.; Rubiño-Hispán, M.V.; Moreno-Rueda, G. Effects of limb length, body mass, gender, gravidity, and elevation on escape speed in the lizard Psammodromus algirus. Evol. Biol. 2014, 41, 509–517. [Google Scholar] [CrossRef]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Zamora-Camacho, F.J.; Comas, M.; Moreno-Rueda, G. Immune challenge does not impair short-distance escape speed in a newt. Anim. Behav. 2020, 167, 101–109. [Google Scholar] [CrossRef]
- Wirsing, A.J.; Cameron, K.E.; Heithaus, M.R. Spatial responses to predators vary with prey escape mode. Anim. Behav. 2010, 79, 531–537. [Google Scholar] [CrossRef]
- Ben-Hamo, M.; Downs, C.J.; Burns, D.J.; Pinshow, B. House sparrows offset the physiological trade-off between immune response and feather growth by adjusting foraging behavior. J. Avian Biol. 2017, 48, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Yin, D.; Hou, M.; Zhang, J. Effects of food availability on the trade-off between growth and antioxidant responses in Caenorhabditis elegans exposed to sulfonamide antibiotics. Chemosphere 2018, 211, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Sinsch, U. Temporal spacing of breeding activity in the natterjack toad, Bufo calamita. Oecologia 1988, 76, 399–407. [Google Scholar] [CrossRef]
- Miaud, C.; Sanuy, D.; Avrillier, J.N. Terrestrial movements of the natterjack toad Bufo calamita (Amphibia, Anura) in a semi-arid, agricultural landscape. Amphib. Reptil. 2009, 21, 357–369. [Google Scholar]
- Lodé, T. Sexual dimorphism and trophic constraints: Prey selection in the European polecat (Mustela putorius). Écoscience 2003, 10, 17–23. [Google Scholar] [CrossRef]
- Maan, M.E.; Cummings, M.E. Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog. Proc. Nat. Acad. Sci. USA 2009, 106, 19072–19077. [Google Scholar] [CrossRef] [Green Version]
- Carlson, B.E.; McGinley, S.; Rowe, M.P. Meek males and fighting females: Sexually-dimorphic antipredator behavior and locomotor performance is explained by morphology in bark scorpions (Centruroides vittatus). PLoS ONE 2014, 9, e97648. [Google Scholar] [CrossRef] [Green Version]
- Gaynor, K.M.; Brown, J.S.; Middleton, A.D.; Power, M.E.; Brashares, J.S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 2019, 34, 355–368. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, A.R.; Townsend, C.R. Interpopulation variation in mayfly antipredator tactics: Differential effects of contrasting predatory fish. Ecology 1994, 75, 2078–2090. [Google Scholar] [CrossRef]
- Sirot, E. Adjustments in compound defensive strategies in response to variation in predation risk. Anim. Behav. 2019, 147, 53–60. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamora-Camacho, F.J. Do Active and Passive Antipredator Defences in the Toad Epidalea calamita Differ between Males and Females from Natural Habitats and Agrosystems? Diversity 2021, 13, 614. https://doi.org/10.3390/d13120614
Zamora-Camacho FJ. Do Active and Passive Antipredator Defences in the Toad Epidalea calamita Differ between Males and Females from Natural Habitats and Agrosystems? Diversity. 2021; 13(12):614. https://doi.org/10.3390/d13120614
Chicago/Turabian StyleZamora-Camacho, Francisco Javier. 2021. "Do Active and Passive Antipredator Defences in the Toad Epidalea calamita Differ between Males and Females from Natural Habitats and Agrosystems?" Diversity 13, no. 12: 614. https://doi.org/10.3390/d13120614
APA StyleZamora-Camacho, F. J. (2021). Do Active and Passive Antipredator Defences in the Toad Epidalea calamita Differ between Males and Females from Natural Habitats and Agrosystems? Diversity, 13(12), 614. https://doi.org/10.3390/d13120614