Comparative Analysis of Apopellia endiviifolia Plastomes Reveals a Strikingly High Level of Differentiation between Its Terrestrial and Water Form
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characteristics of Newly Sequenced Apopellia Chloroplast Genomes
3.2. Barcoding and Molecular Identification of Apopellia Cryptic Species
3.3. Ecological, Geographical and Morphological Differentiation
3.4. Apopellia Chloroplast Genomes Variation at Infraspecific Level
3.5. Genes Undergoing Positive Selection
3.6. Phylogeny
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Therrien, J.P.; Crandall-Stotler, B.J.; Stotler, R.E. Morphological and Genetic Variation in Porella platyphylla and P. Platyphylloidea and Their Systematic Implications. Bryologist 1998, 101, 1–19. [Google Scholar] [CrossRef]
- Heinrichs, J.; Hentschel, J.; Bombosch, A.; Fiebig, A.; Reise, J.; Edelmann, M.; Kreier, H.-P.; Schäfer-Verwimp, A.; Caspari, S.; Schmidt, A.R.; et al. One Species or at Least Eight? Delimitation and Distribution of Frullania tamarisci (L.) Dumort. s. l. (Jungermanniopsida, Porellales) Inferred from Nuclear and Chloroplast DNA Markers. Mol. Phylogenet. Evol. 2010, 56, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Szweykowski, J.; Buczkowska, K.; Odrzykoski, I.J. Conocephalum salebrosum (Marchantiopsida, Conocephalaceae)—A New Holarctic Liverwort Species. Plant Syst. Evol. 2005, 253, 133–158. [Google Scholar] [CrossRef]
- Bączkiewicz, A.; Sawicki, J.; Buczkowska, K.; Polok, K.; Zieliński, R. Application of Different DNA Markers in Studies on Cryptic Species of Aneura pinguis (Jungermanniopsida, Metzgeriales). Cryptogam. Bryol. 2008, 29, 3–21. [Google Scholar]
- Wachowiak, W.; Bączkiewicz, A.; Chudzińska, E.; Buczkowska, K. Cryptic Speciation in Liverworts—A Case Study in the Aneura pinguis Complex. Bot. J. Linn. Soc. 2007, 155, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Bakalin, V.A.; Vilnet, A.A.; Choi, S.S.; Nguyen, V.S. Blepharostoma trichophyllum SL (Marchantiophyta): The Complex of Sibling Species and Hybrids. Plants 2020, 9, 1423. [Google Scholar] [CrossRef]
- Buczkowska, K.; Bakalin, V.; Bączkiewicz, A.; Aguero, B.; Gonera, P.; Ślipiko, M.; Szczecińska, M.; Sawicki, J. Does Calypogeia azurea (Calypogeiaceae, Marchantiophyta) Occur Outside Europe? Molecular and Morphological Evidence. PLoS ONE 2018, 13, e0204561. [Google Scholar] [CrossRef]
- Lorbeer, G. Die Zytologie Der Lebermoose Mit Besonderer Berücksichtigung Allgemeiner Chromosomenfragen: Tl 1. Ja. Bot. 1934, 80, 567–818. [Google Scholar]
- Krzakowa, M. Evolution and Speciation in Pellia, with Special Reference to the Pellia megaspora-endiviifolia Complex (Metzgeriales), IV. Isozyme Investigations. J. Bryol. 1981, 11, 447–450. [Google Scholar] [CrossRef]
- Zieliński, R. Interpretation of Electrophoretic Patterns in Population Genetics of Bryophytes: VI. Genetic Variation and Evolution of the Liverwort Genus Pellia with Special Reference to Central European Territory. Lindbergia 1987, 12, 87–96. [Google Scholar]
- Polok, K.; Sawicki, J.; Kubiak, K.; Szczecinska, M.; Korzekwa, K.; Szandar, K.; Zielinski, R. Evolutionary Divergence within Pellia endiviifolia [Dicks.] Dum. from Poland. Ser. Biol. Uniw. Adama Mickiewicza Pozn. 2005, 72, 241–252. [Google Scholar]
- Pacak, A.; Fiedorow, P.; Dabert, J.; Szweykowska-Kulińska, Z. RAPD Technique for Taxonomic Studies of Pellia epiphylla-complex (Hepaticae, Metzgeriales). Genetica 1998, 104, 179–187. [Google Scholar] [CrossRef]
- Szweykowska-Kulińska, Z.; Pacak, A.; Jankowiak, K. New DNA Markers for Discrimination between Closely-Related Species and for the Reconstruction of Historical Events; an Example Using Liverworts. Cell. Mol. Biol. Lett. 2002, 7, 403–416. [Google Scholar]
- Schütz, N.; Quandt, D.; Nebel, M. The Position of the Genus Apopellia Stat. Nov. within the Pelliales (Marchantiophytina: Jungermanniopsida). Taxon 2016, 65, 221–234. [Google Scholar] [CrossRef]
- Abdullah; Mehmood, F.; Rahim, A.; Heidari, P.; Ahmed, I.; Poczai, P. Comparative Plastome Analysis of Blumea, with Implications for Genome Evolution and Phylogeny of Asteroideae. Ecol. Evol. 2021, 11, 7810–7826. [Google Scholar] [CrossRef]
- Huang, B.; Ruess, H.; Liang, Q.; Colleoni, C.; Spooner, D.M. Analyses of 202 Plastid Genomes Elucidate the Phylogeny of Solanum Section Petota. Sci. Rep. 2019, 9, 4454. [Google Scholar] [CrossRef]
- Krawczyk, K.; Nobis, M.; Myszczyński, K.; Klichowska, E.; Sawicki, J. Plastid Super-Barcodes as a Tool for Species Discrimination in Feather Grasses (Poaceae: Stipa). Sci. Rep. 2018, 8, 1924. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Sun, Y.; Liu, J.; Xu, C.; Zou, X.; Chen, X.; Liu, Y.; Wu, P.; Yang, X.; Zhou, S. DNA Barcoding of Oryza: Conventional, Specific, and Super Barcodes. Plant Mol. Biol. 2021, 105, 215–228. [Google Scholar] [CrossRef]
- Szczecińska, M.; Sawicki, J. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae. Int. J. Mol. Sci. 2015, 16, 22258–22279. [Google Scholar] [CrossRef] [Green Version]
- Nevill, P.G.; Howell, K.A.; Cross, A.T.; Williams, A.V.; Zhong, X.; Tonti-Filippini, J.; Boykin, L.M.; Dixon, K.W.; Small, I. Plastome-Wide Rearrangements and Gene Losses in Carnivorous Droseraceae. Genome Biol. Evol. 2019, 11, 472–485. [Google Scholar] [CrossRef] [Green Version]
- Forrest, L.L.; Wickett, N.J.; Cox, C.J.; Goffinet, B. Deep Sequencing of Ptilidium (Ptilidiaceae) Suggests Evolutionary Stasis in Liverwort Plastid Genome Structure. Plant Ecol. Evol. 2011, 144, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Myszczyński, K.; Górski, P.; Ślipiko, M.; Sawicki, J. Sequencing of Organellar Genomes of Gymnomitrion concinnatum (Jungermanniales) Revealed the First Exception in the Structure and Gene Order of Evolutionary Stable Liverworts Mitogenomes. BMC Plant Biol. 2018, 18, 321. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, J.-B.; Ma, W.-Z.; Pressel, S.; Liu, H.-M.; Wu, Y.-H.; Schneider, H. Chloroplast Phylogenomics of Liverworts: A Reappraisal of the Backbone Phylogeny of Liverworts with Emphasis on Ptilidiales. Cladistics 2020, 36, 184–193. [Google Scholar] [CrossRef]
- Villarreal, A.J.C.; Crandall-Stotler, B.J.; Hart, M.L.; Long, D.G.; Forrest, L.L. Divergence Times and the Evolution of Morphological Complexity in an Early Land Plant Lineage (Marchantiopsida) with a Slow Molecular Rate. New Phytol. 2016, 209, 1734–1746. [Google Scholar] [CrossRef] [PubMed]
- Grosche, C.; Funk, H.T.; Maier, U.G.; Zauner, S. The Chloroplast Genome of Pellia endiviifolia: Gene Content, RNA-Editing Pattern, and the Origin of Chloroplast Editing. Genome Biol. Evol. 2012, 4, 1349–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myszczyński, K.; Bączkiewicz, A.; Buczkowska, K.; Ślipiko, M.; Szczecińska, M.; Sawicki, J. The Extraordinary Variation of the Organellar Genomes of the Aneura pinguis Revealed Advanced Cryptic Speciation of the Early Land Plants. Sci. Rep. 2017, 7, 9804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawicki, J.; Bączkiewicz, A.; Buczkowska, K.; Górski, P.; Krawczyk, K.; Mizia, P.; Myszczyński, K.; Ślipiko, M.; Szczecińska, M. The Increase of Simple Sequence Repeats during Diversification of Marchantiidae, An Early Land Plant Lineage, Leads to the First Known Expansion of Inverted Repeats in the Evolutionarily-Stable Structure of Liverwort Plastomes. Genes 2020, 11, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawicki, J.; Krawczyk, K.; Ślipiko, M.; Szczecińska, M. Sequencing of Organellar Genomes of Nowellia curvifolia (Cephaloziaceae Jungermanniales) Revealed the Smallest Plastome with Complete Gene Set and High Intraspecific Variation Suggesting Cryptic Speciation. Diversity 2021, 13, 81. [Google Scholar] [CrossRef]
- Sawicki, J.; Szczecinska, M. A Comparison of PCR-Based Markers for the Molecular Identification of Sphagnum Species of the Section Acutifolia. Acta Soc. Bot. Pol. 2011, 80, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De Novo Assembly of Organelle Genomes from Whole Genome Data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq –Versatile and Accurate Annotation of Organelle Genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) Version 1.3.1: Expanded Toolkit for the Graphical Visualization of Organellar Genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brudno, M.; Poliakov, A.; Minovitsky, S.; Ratnere, I.; Dubchak, I. Multiple Whole Genome Alignments and Novel Biomedical Applications at the VISTA Portal. Nucleic Acids Res. 2007, 35, W669–W674. [Google Scholar] [CrossRef] [PubMed]
- Brudno, M.; Do, C.B.; Cooper, G.M.; Kim, M.F.; Davydov, E.; Green, E.D.; Sidow, A.; Batzoglou, S. NISC Comparative Sequencing Program LAGAN and Multi-LAGAN: Efficient Tools for Large-Scale Multiple Alignment of Genomic DNA. Genome Res. 2003, 13, 721–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, S.D.; Collins, R.A.; Boyer, S.; Lefort, M.; Malubres-Olarte, J.; Vink, C.J.; Cruickshank, R.H. Spider: An R Package for the Analysis of Species Identity and Evolution, with Particular Reference to DNA Barcoding. Mol. Ecol. Resour. 2012, 12, 562–565. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A Multiple Sequence Alignment Method with Reduced Time and Space Complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef] [Green Version]
- Jörger, K.M.; Schrödl, M. How to Describe a Cryptic Species? Practical Challenges of Molecular Taxonomy. Front. Zool. 2013, 10, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Merckelbach, L.M.; Borges, L.M. Make Every Species Count: Fastachar Software for Rapid Determination of Molecular Diagnostic Characters to Describe Species. Mol. Ecol. Resour. 2020, 20, 1761–1768. [Google Scholar] [CrossRef]
- Kapli, P.; Lutteropp, S.; Zhang, J.; Kobert, K.; Pavlidis, P.; Stamatakis, A.; Flouri, T. Multi-Rate Poisson Tree Processes for Single-Locus Species Delimitation under Maximum Likelihood and Markov Chain Monte Carlo. Bioinformatics 2017, 33, 1630–1638. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Murrell, B.; Wertheim, J.O.; Moola, S.; Weighill, T.; Scheffler, K.; Kosakovsky Pond, S.L. Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genet. 2012, 8, e1002764. [Google Scholar] [CrossRef] [Green Version]
- Murrell, B.; Weaver, S.; Smith, M.D.; Wertheim, J.O.; Murrell, S.; Aylward, A.; Eren, K.; Pollner, T.; Martin, D.P.; Smith, D.M. Gene-Wide Identification of Episodic Selection. Mol. Biol. Evol. 2015, 32, 1365–1371. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.D.; Wertheim, J.O.; Weaver, S.; Murrell, B.; Scheffler, K.; Kosakovsky Pond, S.L. Less Is More: An Adaptive Branch-Site Random Effects Model for Efficient Detection of Episodic Diversifying Selection. Mol. Biol. Evol. 2015, 32, 1342–1353. [Google Scholar] [CrossRef] [Green Version]
- Weaver, S.; Shank, S.D.; Spielman, S.J.; Li, M.; Muse, S.V.; Kosakovsky Pond, S.L. Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. Mol. Biol. Evol. 2018, 35, 773–777. [Google Scholar] [CrossRef] [Green Version]
- Wickett, N.J.; Zhang, Y.; Hansen, S.K.; Roper, J.M.; Kuehl, J.V.; Plock, S.A.; Wolf, P.G.; Depamphilis, C.W.; Boore, J.L.; Goffinet, B. Functional Gene Losses Occur with Minimal Size Reduction in the Plastid Genome of the Parasitic Liverwort Aneura Mirabilis. Mol. Biol. Evol. 2008, 25, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Ślipiko, M.; Myszczyński, K.; Buczkowska, K.; Bączkiewicz, A.; Szczecińska, M.; Sawicki, J. Molecular Delimitation of European Leafy Liverworts of the Genus Calypogeia Based on Plastid Super-Barcodes. BMC Plant Biol. 2020, 20, 243. [Google Scholar] [CrossRef]
- Dong, W.; Xu, C.; Li, C.; Sun, J.; Zuo, Y.; Shi, S.; Cheng, T.; Guo, J.; Zhou, S. Ycf1, the Most Promising Plastid DNA Barcode of Land Plants. Sci. Rep. 2015, 5, 8348. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Chen, H.; He, S.; Wang, L.; Chen, A.J.; Liu, C. Sequencing, Characterization, and Comparative Analyses of the Plastome of Caragana rosea car. rosea. Int. J. Mol. Sci. 2018, 19, 1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeSalle, R.; Egan, M.G.; Siddall, M. The Unholy Trinity: Taxonomy, Species Delimitation and DNA Barcoding. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1905–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, I.N.; Planet, P.J.; Desalle, R. CAOS Software for Use in Character-based DNA Barcoding. Mol. Ecol. Resour. 2008, 8, 1256–1259. [Google Scholar] [CrossRef] [PubMed]
- Kühn, A.L.; Haase, M. QUIDDICH: QUick IDentification of DIagnostic CHaracters. J. Zool. Syst. Evol. Res. 2020, 58, 22–26. [Google Scholar] [CrossRef]
- Wu, L.; Wu, M.; Cui, N.; Xiang, L.; Li, Y.; Li, X.; Chen, S. Plant Super-Barcode: A Case Study on Genome-Based Identification for Closely Related Species of Fritillaria. Chin. Med. 2021, 16, 52. [Google Scholar] [CrossRef]
- Liu, Z.-F.; Ma, H.; Ci, X.-Q.; Li, L.; Song, Y.; Liu, B.; Li, H.-W.; Wang, S.-L.; Qu, X.-J.; Hu, J.-L.; et al. Can Plastid Genome Sequencing Be Used for Species Identification in Lauraceae? Bot. J. Linn. Soc. 2021, 197, 1–14. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, X.; Zhang, D. Comparison of the Abilities of Universal, Super, and Specific DNA Barcodes to Discriminate among the Original Species of Fritillariae cirrhosae bulbus and Its Adulterants. PLoS ONE 2020, 15, e0229181. [Google Scholar] [CrossRef]
- Szczecińska, M.; Sawicki, J.; Polok, K.; Hołdyński, C.; Zieliński, R. Comparison of Three Polygonatum Species from Poland Based on DNA Markers. Ann. Bot. Fennici 2006, 43, 379–388. [Google Scholar]
- Szweykowski, J. An Annotated Checklist of Polish Liverworts and Hornworts; Polish Academy of Sciences, W Szafer Institute of Botany: Kraków, Poland, 2006; ISBN 83-89648-33-4. [Google Scholar]
- Schuster, R.M. Evolution and Speciation in Pellia, with Special Reference to the Pellia megaspora-endiviifolia Complex (Metzgeriales), I. Taxonomy and Distribution. J. Bryol. 1981, 11, 411–431. [Google Scholar] [CrossRef]
- Bączkiewicz, A.; Szczecińska, M.; Sawicki, J.; Stebel, A.; Buczkowska, K. DNA Barcoding, Ecology and Geography of the Cryptic Species of Aneura pinguis and Their Relationships with Aneura maxima and Aneura mirabilis (Metzgeriales, Marchantiophyta). PLoS ONE 2017, 12, e0188837. [Google Scholar] [CrossRef] [Green Version]
- Wawrzyniak, R.; Wasiak, W.; Bączkiewicz, A.; Buczkowska, K. Volatile Compounds in Cryptic Species of the Aneura pinguis Complex and Aneura maxima (Marchantiophyta, Metzgeriidae). Phytochemistry 2014, 105, 115–122. [Google Scholar] [CrossRef]
- Diatta, J.; Bączkiewicz, A.; Drapikowska, M.; Rodkiewicz, P.; Sawicki, J.; Szczecińska, M.; Buczkowska, K. Geochemical Alkalinity and Acidity as Preferential Site-Specific for Three Liverwort Lineages of Aneura pinguis Cryptic Species A. Sci. Rep. 2021, 11, 4334. [Google Scholar]
- Choi, S.S.; Kwon, W.; Park, J. The Complete Chloroplast Genome of Scapania ampliata Steph., 1897 (Scapaniaceae, Jungermanniales). Mitochondrial DNA Part B 2020, 5, 2890–2892. [Google Scholar] [CrossRef]
- Kwon, W.; Kim, Y.; Park, J. The Complete Chloroplast Genome Sequence of Dumortiera hirsuta (Sw.) Nees (Marchantiophyta, Dumortieraceae). Mitochondrial DNA Part B 2019, 4, 318–319. [Google Scholar] [CrossRef] [Green Version]
- Kwon, W.; Kim, Y.; Park, J. The Complete Chloroplast Genome of Korean Marchantia polymorpha subsp. ruderalis Bischl. & Boisselier: Low Genetic Diversity between Korea and Japan. . Mitochondrial DNA Part B 2019, 4, 959–960. [Google Scholar]
- Cho, M.-S.; Kim, J.H.; Yamada, T.; Maki, M.; Kim, S.-C. Plastome Characterization and Comparative Analyses of Wild Crabapples (Malus baccata and M. Toringo): Insights into Infraspecific Plastome Variation and Phylogenetic Relationships. Tree Genet. Genomes 2021, 17, 41. [Google Scholar] [CrossRef]
- Park, S.; An, B.; Park, S. Reconfiguration of the Plastid Genome in Lamprocapnos Spectabilis: IR Boundary Shifting, Inversion, and Intraspecific Variation. Sci. Rep. 2018, 8, 13568. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhou, T.; Bai, G.; Zhao, Y. Complete Chloroplast Genome Sequence of Fagopyrum dibotrys: Genome Features, Comparative Analysis and Phylogenetic Relationships. Sci. Rep. 2018, 8, 12379. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-H.; Ma, X.; Wang, D.-Y.; Li, Y.-X.; Wang, C.-W.; Jin, X.-H. Evolution of Plastid Genomes of Holcoglossum (Orchidaceae) with Recent Radiation. BMC Evol. Biol. 2019, 19, 63. [Google Scholar] [CrossRef]
- Zhou, J.; Jiao, Z.; Guo, J.; Wang, B.S.; Zheng, J. Complete Chloroplast Genome Sequencing of Five Salix Species and Its Application in the Phylogeny and Taxonomy of the Genus. Mitochondrial DNA Part B 2021, 6, 2348–2352. [Google Scholar] [CrossRef]
- Xie, Z.; Merchant, S. The Plastid-Encoded CcsA Gene Is Required for Heme Attachment to Chloroplast c-Type Cytochromes (∗). J. Biol. Chem. 1996, 271, 4632–4639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Sablok, G.; Wang, B.; Qu, D.; Barbaro, E.; Viola, R.; Li, M.; Varotto, C. Plastome Organization and Evolution of Chloroplast Genes in Cardamine Species Adapted to Contrasting Habitats. BMC Genom. 2015, 16, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawicki, J.; Krawczyk, K.; Ślipiko, M.; Szandar, K.; Szczecińska, M. Comparative Analysis of Apopellia endiviifolia Plastomes Reveals a Strikingly High Level of Differentiation between Its Terrestrial and Water Form. Diversity 2021, 13, 674. https://doi.org/10.3390/d13120674
Sawicki J, Krawczyk K, Ślipiko M, Szandar K, Szczecińska M. Comparative Analysis of Apopellia endiviifolia Plastomes Reveals a Strikingly High Level of Differentiation between Its Terrestrial and Water Form. Diversity. 2021; 13(12):674. https://doi.org/10.3390/d13120674
Chicago/Turabian StyleSawicki, Jakub, Katarzyna Krawczyk, Monika Ślipiko, Kamil Szandar, and Monika Szczecińska. 2021. "Comparative Analysis of Apopellia endiviifolia Plastomes Reveals a Strikingly High Level of Differentiation between Its Terrestrial and Water Form" Diversity 13, no. 12: 674. https://doi.org/10.3390/d13120674
APA StyleSawicki, J., Krawczyk, K., Ślipiko, M., Szandar, K., & Szczecińska, M. (2021). Comparative Analysis of Apopellia endiviifolia Plastomes Reveals a Strikingly High Level of Differentiation between Its Terrestrial and Water Form. Diversity, 13(12), 674. https://doi.org/10.3390/d13120674