A Comparison of DNA Metabarcoding and Microscopy Methodologies for the Study of Aquatic Microbial Eukaryotes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leray, M.; Knowlton, N. Censusing marine eukaryotic diversity in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150331. [Google Scholar] [CrossRef] [PubMed]
- Teeling, H.; Fuchs, B.M.; Becher, D.; Klockow, C.; Gardebrecht, A.; Bennke, C.M.; Kassabgy, M.; Huang, S.; Mann, A.J.; Waldmann, J.; et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 2012, 336, 608–611. [Google Scholar] [CrossRef] [PubMed]
- Dadon-Pilosof, A.; Conley, K.R.; Jacobi, Y.; Haber, M.; Lombard, F.; Sutherland, K.R.; Steindler, L.; Tikochinski, Y.; Richter, M.; Glöckner, F.O.; et al. Surface properties of SAR11 bacteria facilitate grazing avoidance. Nat. Microbiol. 2017, 2, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, J.; Lejzerowicz, F.; Apotheloz-Perret-Gentil, L.; Visco, J.; Esling, P. Protist metabarcoding and environmental biomonitoring: Time for change. Eur. J. Protistol. 2016, 55, 12–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chust, G.; Vogt, M.; Benedetti, F.; Nakov, T.; Villéger, S.; Aubert, A.; Vallina, S.M.; Righetti, D.; Not, F.; Biard, T.; et al. Mare incognitum: A glimpse into future plankton diversity and ecology research. Front. Mar. Sci. 2017, 4, 68. [Google Scholar] [CrossRef] [Green Version]
- Edler, L.; Elbrächter, M. The Utermöhl method for quantitative phytoplankton analysis. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis Intergovernmental Oceanographic Commission Manuals and Guides; Karlson, B., Cusack, C., Brensan, E., Eds.; Intergovernmental Oceanographic Commission of UNESCO: Paris, France, 2010; p. 110. [Google Scholar]
- Manoylov, K.M. Taxonomic identification of algae (morphological and molecular): Species concepts, methodologies, and their implications for ecological bioassessment. J. Phycol. 2014, 50, 409–424. [Google Scholar] [CrossRef]
- Flynn, K.J.; Stoecker, D.K.; Mitra, A.; Raven, J.A.; Glibert, P.M.; Hansen, P.J.; Granéli, E.; Burkholder, J.M. Misuse of the phytoplankton-zooplankton dichotomy: The need to assign organisms as mixotrophs within plankton functional types. J. Plankton Res. 2013, 35, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Stoecker, D.K.; Hansen, P.J.; Caron, D.A.; Mitra, A. Mixotrophy in the Marine Plankton. Ann. Rev. Mar. Sci. 2017, 9, 311–335. [Google Scholar] [CrossRef] [Green Version]
- De Vargas, C.; Audic, S.; Henry, N.; Decelle, J.; Mahé, F.; Logares, R.; Lara, E.; Berney, Ć.; Le Bescot, N.; Probert, I.; et al. Eukaryotic plankton diversity in the sunlit ocean. Science 2015, 348, 1261605. [Google Scholar] [CrossRef] [Green Version]
- Giner, C.R.; Pernice, M.C.; Balagué, V.; Duarte, C.M.; Gasol, J.M.; Logares, R.; Massana, R. Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME J. 2020, 14, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Unrein, F.; Gasol, J.M.; Not, F.; Forn, I.; Massana, R. Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J. 2014, 8, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Brierley, B.; Carvalho, L.; Davies, S.; Krokowski, J. Guidance on the Quantitative Analysis of Phytoplankton in Freshwater Samples; UK Centre for Ecology and Hydrology: Edinburgh, UK, 2007. [Google Scholar]
- Ptacnik, R.; Başoğlu, D.; Beklioğlu, M. Standard Operating Protocol (SOP) on Sampling and Analysis of Phytoplankton. 2017. Available online: https://www.aquacosm.eu/download/Partners-Documentation/aquacosm/sops/AQUACOSM_SOP_1_Phytoplankton_20200527.pdf (accessed on 20 April 2021).
- HELCOM. Guidelines for Monitoring of Phytoplankton Species Composition, Abundance and Biomass; HELCOM: Helsinki, Finland, 2020. [Google Scholar]
- Karlson, B.; Cusack, C.; Bresnan, E. (Eds.) Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis; IOC Manual; UNESCO: Paris, France, 2010. [Google Scholar]
- Djurhuus, A.; Pitz, K.; Sawaya, N.A.; Rojas-Márquez, J.; Michaud, B.; Montes, E.; Muller-Karger, F.; Breitbart, M. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnol. Oceanogr. Methods 2018, 16, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Deagle, B.E.; Clarke, L.J.; Kitchener, J.A.; Polanowski, A.M.; Davidson, A.T. Genetic monitoring of open ocean biodiversity: An evaluation of DNA metabarcoding for processing continuous plankton recorder samples. Mol. Ecol. Resour. 2018, 18, 391–406. [Google Scholar] [CrossRef]
- Kim, D.K.; Park, K.; Jo, H.; Kwak, I.S. Comparison of water sampling between environmental DNA metabarcoding and conventional microscopic identification: A case study in Gwangyang Bay, South Korea. Appl. Sci. 2019, 9, 3272. [Google Scholar] [CrossRef] [Green Version]
- Lanzén, A.; Lekang, K.; Jonassen, I.; Thompson, E.M.; Troedsson, C.; Jonassen, I.; Lanzén, A. High-throughput metabarcoding of eukaryotic diversity for environmental monitoring of offshore oil-drilling activities. Mol. Ecol. 2016, 25, 4392–4406. [Google Scholar] [CrossRef]
- Groendahl, S.; Kahlert, M.; Fink, P. The best of both worlds: A combined approach for analyzing microalgal diversity via metabarcoding and morphology-based methods. PLoS ONE 2017, 12, e0172808. [Google Scholar] [CrossRef]
- Stoeck, T.; Breiner, H.W.; Filker, S.; Ostermaier, V.; Kammerlander, B.; Sonntag, B. A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ. Microbiol. 2014, 16, 430–444. [Google Scholar] [CrossRef] [Green Version]
- Abad, D.; Albaina, A.; Aguirre, M.; Laza-Martínez, A.; Uriarte, I.; Iriarte, A.; Villate, F.; Estonba, A. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Mar. Biol. 2016, 163, 149. [Google Scholar] [CrossRef]
- Zimmermann, J.; Glöckner, G.; Jahn, R.; Enke, N.; Gemeinholzer, B. Metabarcoding vs. morphological identification to assess diatom diversity in environmental studies. Mol. Ecol. Resour. 2015, 15, 526–542. [Google Scholar] [CrossRef]
- Piredda, R.; Tomasino, M.P.; D’Erchia, A.M.; Manzari, C.; Pesole, G.; Montresor, M.; Kooistra, W.H.C.F.; Sarno, D.; Zingone, A. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol. Ecol. 2017, 93, fiw200. [Google Scholar] [CrossRef] [Green Version]
- Gran-Stadniczeñko, S.; Egge, E.; Hostyeva, V.; Logares, R.; Eikrem, W.; Edvardsen, B.; Logares, R.; Edvardsen, B.; Gran-Stadniczeñko, S. Protist Diversity and Seasonal Dynamics in Skagerrak Plankton Communities as Revealed by Metabarcoding and Microscopy. J. Eukaryot. Microbiol. 2019, 66, 494–513. [Google Scholar] [CrossRef] [PubMed]
- Santi, I.; Tsiola, A.; Dimitriou, P.D.; Fodelianakis, S.; Kasapidis, P.; Papageorgiou, N.; Daffonchio, D.; Pitta, P.; Karakassis, I. Prokaryotic and eukaryotic microbial community responses to N and P nutrient addition in oligotrophic Mediterranean coastal waters: Novel insights from DNA metabarcoding and network analysis. Mar. Environ. Res. 2019, 150, 104752. [Google Scholar] [CrossRef] [PubMed]
- Santi, I.; Kasapidis, P.; Psarra, S.; Assimakopoulou, G.; Pavlidou, A.; Protopapa, M.; Tsiola, A.; Zeri, C.; Pitta, P. Composition and distribution patterns of eukaryotic microbial plankton in the ultra-oligotrophic Eastern Mediterranean Sea. Aquat. Microb. Ecol. 2020, 84, 155–173. [Google Scholar] [CrossRef]
- Olenina, I.; Hajdu, S.; Edler, L.; Andersson, A.; Wasmund, N.; Busch, S.; Göbel, J.; Gromisz, S.; Huseby, S.; Huttunen, M.; et al. Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Balt. Sea Environ. Proc. 2006, 160, 144. [Google Scholar]
- Hillebrand, H.; Dürselen, C.-D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume Calculation for Pelagic and Benthic Microalgae. J. Phycol. 1999, 35, 403–424. [Google Scholar] [CrossRef]
- Amaral-Zettler, L.A.; McCliment, E.A.; Ducklow, H.W.; Huse, S.M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes. PLoS ONE 2009, 4, e6372. [Google Scholar] [CrossRef]
- Shokralla, S.; Porter, T.M.; Gibson, J.F.; Dobosz, R.; Janzen, D.H.; Hallwachs, W.; Golding, G.B.; Hajibabaei, M. Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Sci. Rep. 2015, 5, 9687. [Google Scholar] [CrossRef] [Green Version]
- Boyer, F.; Mercier, C.; Bonin, A.; Le Bras, Y.; Taberlet, P.; Coissac, E. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 2016, 16, 176–182. [Google Scholar] [CrossRef]
- Mahé, F.; Rognes, T.; Quince, C.; de Vargas, C.; Dunthorn, M. Swarm v2: Highly-scalable and high-resolution amplicon clustering. PeerJ 2015, 3, e1420. [Google Scholar] [CrossRef] [Green Version]
- Ficetola, G.F.; Coissac, E.; Zundel, S.; Riaz, T.; Shehzad, W.; Bessière, J.; Taberlet, P.; Pompanon, F. An In silico approach for the evaluation of DNA barcodes. BMC Genom. 2010, 11, 434. [Google Scholar] [CrossRef] [Green Version]
- Wangensteen, O.S.; Turon, X. Metabarcoding Techniques for Assessing Biodiversity of Marine Animal Forests. In Marine Animal Forests; Rossi, S., Bramanti, L., Gori, A., Orejas, C., Eds.; Springer: Cham, Switzerland, 2016; pp. 1–29. ISBN 978-3-319-21011-7. [Google Scholar]
- Zhu, F.; Massana, R.; Not, F.; Marie, D.; Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 2005, 52, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Godhe, A.; Asplund, M.E.; Härnström, K.; Saravanan, V.; Tyagi, A.; Karunasagar, I. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Appl. Environ. Microbiol. 2008, 74, 7174–7182. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Lagendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package; 2017; R Package Version 2.4-4. Available online: https://github.com/vegandevs/vegan/releases/tag/v2.4-4 (accessed on 20 April 2021).
- Cribari-Neto, F.; Zeileis, A. Beta Regression in R. J. Stat. Softw. 2010, 34, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Pitta, P.; Giannakourou, A. Planktonic ciliates in the oligotrophic Eastern Mediterranean: Vertical, spatial distribution and mixotrophy. Mar. Ecol. Prog. Ser. 2000, 194, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Caron, D.A.; Countway, P.D.; Jones, A.C.; Kim, D.Y.; Schnetzer, A. Marine Protistan Diversity. Ann. Rev. Mar. Sci. 2012, 4, 467–493. [Google Scholar] [CrossRef] [Green Version]
- Massana, R.; Gobet, A.; Audic, S.; Bass, D.; Bittner, L.; Boutte, C.; Chambouvet, A.; Christen, R.; Claverie, J.M.; Decelle, J.; et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 2015, 17, 4035–4049. [Google Scholar] [CrossRef] [Green Version]
- Christaki, U.; Kormas, K.A.; Genitsaris, S.; Georges, C.; Sime-Ngando, T.; Viscogliosi, E.; Monchy, S. Winter-Summer Succession of Unicellular Eukaryotes in a Meso-eutrophic Coastal System. Microb. Ecol. 2014, 67, 13–23. [Google Scholar] [CrossRef]
- Filker, S.; Kühner, S.; Heckwolf, M.; Dierking, J.; Stoeck, T. A fundamental difference between macrobiota and microbial eukaryotes: Protistan plankton has a species maximum in the freshwater-marine transition zone of the Baltic Sea. Environ. Microbiol. 2019, 21, 603–617. [Google Scholar] [CrossRef]
- Ramond, P.; Rigaut-Jalabert, F.; Siano, R.; Romac, S.; Sourisseau, M.; de Vargas, C.; Henry, N.; Schmitt, S.; Simon, N. Coupling between taxonomic and functional diversity in protistan coastal communities. Environ. Microbiol. 2019, 21, 730–749. [Google Scholar] [CrossRef] [Green Version]
- Adl, S.M.; Bass, D.; Lane, C.E.; Lukeš, J.; Schoch, C.L.; Smirnov, A.; Agatha, S.; Berney, C.; Brown, M.W.; Burki, F.; et al. Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. J. Eukaryot. Microbiol. 2019, 66, 4–119. [Google Scholar] [CrossRef] [Green Version]
- Grossmann, L.; Jensen, M.; Heider, D.; Jost, S.; Glücksman, E.; Hartikainen, H.; Mahamdallie, S.S.; Gardner, M.; Hoffmann, D.; Bass, D.; et al. Protistan community analysis: Key findings of a large-scale molecular sampling. ISME J. 2016, 10, 2269–2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalier-Smith, T.; Chao, E.E.Y. Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista). J. Mol. Evol. 2006, 62, 388–420. [Google Scholar] [CrossRef] [PubMed]
- Colin, S.; Coelho, L.P.; Sunagawa, S.; Bowler, C.; Karsenti, E.; Bork, P.; Pepperkok, R.; de Vargas, C. Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. Elife 2017, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wintzingerode, F.V.; Göbel, U.B.; Stackebrandt, E. Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 1997, 21, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Díez, B.; Pedrós-Alió, C.; Massana, R. Study of Genetic Diversity of Eukaryotic Picoplankton in Different Oceanic Regions by Small-Subunit rRNA Gene Cloning and Sequencing. Appl. Environ. Microbiol. 2001, 67, 2932–2941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Microscopy Groups | Taxonomical Groups |
---|---|
Diatoms | Bacillariophyta (Stramenopiles) |
Dinoflagellates | Dinoflagellata (Alveolata) |
Ciliates | Ciliophora (Alveolata) |
Coccolithophorids | Prymnesiophyceae (Haptophytes, Haptista) |
Flagellated cells 1 | Bigyra/Cercozoa/Chlorophyta/Cryptophyta/Haptophyta/Hyphochytriomycota/Labyrinthulomycetes/Ochrophyta/Oomycota/Rhodophyta |
Sample Name | Project | Coordinates | Seawater Depth (m) | Sampling Date (DD/MM/YYYY) | Experimental Conditions |
---|---|---|---|---|---|
mes-1 | Mesocosm Experiment | 35.335° N 25.281° E | 2 | 03/10/2014 | No treatment |
mes-2 | 27/09/2014 | Initial conditions | |||
mes-3 | 09/10/2014 | High nutrient addition | |||
mes-4 | 27/09/2014 | Initial conditions | |||
mes-5 | 03/10/2014 | No treatment | |||
mes-6 | 09/10/2014 | Low nutrient addition | |||
mes-7 | 27/09/2014 | Initial conditions | |||
mes-8 | 03/10/2014 | Low nutrient addition | |||
mes-9 | 03/10/2014 | No treatment | |||
mes-10 | 09/10/2014 | High nutrient addition | |||
coa-1 | Coastal Sampling | 40.770° N 23.813° E | 20 | 5/7/2014 | |
coa-2 | 40.835° N 25.744° E | 20 | 4/7/2014 | ||
coa-3 | 37.931° N 23.684° E | 20 | 24/7/2014 | ||
coa-4 | 38.508° N 23.517° E | 10 | 22/7/2014 | ||
coa-5 | 40.915° N 24.566° E | 20 | 5/7/2014 | ||
coa-6 | 40.770° N 23.813° E | 2 | 5/7/2014 | ||
coa-7 | 40.835° N 25.744° E | 2 | 4/7/2014 | ||
coa-8 | 37.931° N 23.684° E | 2 | 24/7/2014 | ||
coa-9 | 38.508° N 23.517° E | 2 | 22/7/2014 | ||
oce-1 | Open Sea Sampling | 34.667° N 24.367° E | 5 | 15/4/2016 | |
oce-2 | 34.250° N 25.483° E | 50 | 14/4/2016 | ||
oce-3 | 34.433° N 26.383° E | 75 | 10/4/2016 | ||
oce-4 | 35.033° N 23.467° E | 5 | 17/4/2016 | ||
oce-5 | 34.250° N 25.483° E | 5 | 14/4/2016 | ||
oce-6 | 34.667° N 24.367° E | 50 | 15/4/2016 | ||
oce-7 | 34.250° N 25.483° E | 75 | 14/4/2016 | ||
oce-8 | 34.433° N 26.383° E | 5 | 10/4/2016 |
Estimate | Std. Error | z Value | p-Value | |
---|---|---|---|---|
(intercept) | −1.062 | 0.188 | −5.655 | <0.001 |
Method | −0.444 | 0.283 | −1.571 | 0.116 |
Mbc: Ciliophora | −1.457 | 0.293 | −4.972 | <0.001 |
Msp: Ciliophora | 0.645 | 0.290 | 2.227 | 0.026 |
Mbc: Dinofl. | 1.022 | 0.255 | 4.005 | <0.001 |
Msp: Dinofl. | 0.543 | 0.291 | 1.865 | 0.062 |
Mbc: Other Flag. | −0.088 | 0.264 | −0.334 | 0.739 |
Msp: Other Flag. | 0.170 | 0.306 | 0.556 | 0.578 |
phi coefficient of beta distribution | 5.242 | 0.587 | 8.93 | <0.001 |
Model R2: 0.390 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santi, I.; Kasapidis, P.; Karakassis, I.; Pitta, P. A Comparison of DNA Metabarcoding and Microscopy Methodologies for the Study of Aquatic Microbial Eukaryotes. Diversity 2021, 13, 180. https://doi.org/10.3390/d13050180
Santi I, Kasapidis P, Karakassis I, Pitta P. A Comparison of DNA Metabarcoding and Microscopy Methodologies for the Study of Aquatic Microbial Eukaryotes. Diversity. 2021; 13(5):180. https://doi.org/10.3390/d13050180
Chicago/Turabian StyleSanti, Ioulia, Panagiotis Kasapidis, Ioannis Karakassis, and Paraskevi Pitta. 2021. "A Comparison of DNA Metabarcoding and Microscopy Methodologies for the Study of Aquatic Microbial Eukaryotes" Diversity 13, no. 5: 180. https://doi.org/10.3390/d13050180
APA StyleSanti, I., Kasapidis, P., Karakassis, I., & Pitta, P. (2021). A Comparison of DNA Metabarcoding and Microscopy Methodologies for the Study of Aquatic Microbial Eukaryotes. Diversity, 13(5), 180. https://doi.org/10.3390/d13050180