Diel Variation of Viral Production in a Coastal Subtropical Marine System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Incubation Procedure
2.2. Enumeration of Virus and Host Density by Flow Cytometry (FCM)
2.3. Calculation of Viral Production
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Dynamics of Virus-Like Particles in Three Replicates of Incubation
References
- Weitz, J.S.; Wilhelm, S.W. Ocean viruses and their effects on microbial communities and biogeochemical cycles. Biol. Rep. 2012, 4, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Wigington, C.H.; Sonderegger, D.; Brussaard, C.P.D.; Buchan, A.; Finke, J.F.; Fuhrman, J.A.; Lennon, J.T.; Middelboe, M.; Suttle, C.A.; Stock, C.; et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 2016, 1, 15024. [Google Scholar] [CrossRef] [Green Version]
- Tsai, A.-Y.; Gong, G.-C.; Sanders, R.W.; Huang, J.-K. Contribution of viral lysis and nanoflagellate grazing to bacterial mortality in the inner and outer regions of the Changjiang River plume during summer. J. Plankton Res. 2013, 35, 1283–1293. [Google Scholar] [CrossRef] [Green Version]
- Tsai, A.-Y.; Gong, G.-C.; Hu, S.-L.; Chao, C.-F. The effect of grazing and viral lysis on the diel variations of Synechococcus spp. abundance in the East China Sea. Estuar. Coast. Shelf Sci. 2015, 163, 108–115. [Google Scholar] [CrossRef]
- Wells, L.E.; Deming, J.W. Significance of bacterivory and viral lysis in bottom waters of Franklin Bay, Canadian Arctic, during winter. Aquat. Microb. Ecol. 2006, 43, 209–221. [Google Scholar] [CrossRef]
- Middelboe, M.; Lyck, P.G. Regeneration of dissolved organic matter by viral lysis in marine microbial communities. Aquat. Microb. Ecol. 2002, 27, 187–194. [Google Scholar] [CrossRef]
- Shiah, F.K. Diel cycles of heterotrophic bacterioplankton abundance and production in the ocean surface waters. Aquat. Microb. Ecol. 1999, 17, 239–246. [Google Scholar] [CrossRef]
- Kuipers, B.; Van Noort, G.J.; Vosjan, J.; Herndl, G.J. Diel periodicity of bacterioplankton in the euphotic zone of the subtropical Atlantic Ocean. Mar. Ecol. Prog. Ser. 2000, 201, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Gasol, J.M.; Doval, M.D.; Pinhassi, J.; Calderón-Paz, J.I.; Guixa-Boixareu, N.; Vaqué, D.; Pedrós-Alió, C. Diel variations in bacterial heterotrophic activity and growth in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 1998, 164, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Liu, Y.; Chen, Y.; Zhan, Y.; Zeng, Q. Cyanobacterial viruses exhibit diurnal rhythms during infection. Proc. Natl. Acad. Sci. USA 2019, 116, 14077–14082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, C.; Herndl, G.J.; Weinbauer, M.G. Diel cycles in viral infection of bacterioplankton in the North Sea. Aquat. Microb. Ecol. 2004, 35, 207–216. [Google Scholar] [CrossRef]
- Winget, D.M.; Wommack, K.E. Diel and daily fluctuations in virioplankton production in coastal ecosystems. Environ. Microbiol. 2009, 11, 2904–2914. [Google Scholar] [CrossRef]
- Wilhelm, S.W.; Brigden, S.M.; Suttle, C.A. A dilution technique for the direct measurement of viral production: A comparison in stratified and tidally mixed coastal waters. Microb. Ecol. 2002, 43, 168–173. [Google Scholar] [CrossRef]
- Chao, C.F.; Tsai, A.Y.; Ishikawa, A.; Chiang, K.P. Seasonal dynamics of ciliate cysts and the impact of short-term change of salinity in a eutrophic coastal marine ecosystem. Terr. Atmos. Ocean. Sci. 2013, 24, 1051–1061. [Google Scholar] [CrossRef] [Green Version]
- Winget, D.M.; Williamson, K.E.; Helton, R.R.; Wommack, K.E. Tangential flow diafiltration: An improved technique for estimation of virioplankton production. Aquat. Microb. Ecol. 2005, 41, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, T.; Del Giorgio, P.A. Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ. Microbiol. 2007, 9, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Shelford, E.J.; Middelboe, M.; Møller, E.F.; Suttle, C.A. Virus-driven nitrogen cycling enhances phytoplankton growth. Aquat. Microb. Ecol. 2012, 66, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Brussaard, C.P.D. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microbiol. 2004, 70, 1506–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Lu, J.R.; Binder, B.J.; Liu, Y.C.; Hodson, R.E. Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR Gold. Appl. Environ. Microbiol. 2001, 67, 539–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammes, F.; Egli, T. Cytometric methods for measuring bacteria in water: Advantages, pitfalls and applications. Anal. Bioanal. Chem. 2010, 397, 1083–1095. [Google Scholar] [CrossRef]
- Mei, M.L.; Danovaro, R. Virus production and life strategies in aquatic sediments. Limnol. Oceanogr. 2004, 49, 459–470. [Google Scholar] [CrossRef]
- Luef, B.; Luef, F.; Peduzzi, P. Online program ‘VIPCAL’ for calculating lytic viral production and lysogenic cells based on a viral reduction approach. Environ. Microbiol. 2010, 1, 78–85. [Google Scholar] [CrossRef]
- Parada, V.; Herndl, G.J.; Weinbauer, M.G. Viral burst size of heterotrophic prokaryotes in aquatic systems. J. Mar. Biol. Assoc. 2006, 86, 613–621. [Google Scholar] [CrossRef]
- Bongiorni, L.; Magagnini, M.; Armeni, M.; Noble, R.; Danovaro, R. Viral production, decay rates, and life strategies along a trophic gradient in the north Adriatic sea. Appl. Environ. Microbiol. 2005, 71, 6644–6650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wei, W.; Wang, J.; Li, H.; Sun, J.; Ma, R.; Jiao, N.; Zhang, R. Tide driven microbial dynamics through virus-host interactions in the estuarine ecosystem. Water Res. 2019, 160, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Weinbauer, M.G.; Bonilla-Findji, O.; Chan, A.M.; Dolan, J.R.; Short, S.M.; Šimek, K.; Wilhelm, S.W.; Suttle, C.A. Synechococcus growth in the ocean may depend on the lysis of heterotrophic bacteria. J. Plankton Res. 2011, 33, 1465–1476. [Google Scholar] [CrossRef]
- Wommack, K.E.; Hill, R.T.; Muller, T.A.; Colwell, R.R. Effects of sunlight on bacteriophage viability and structure. Appl. Environ. Microbiol. 1996, 62, 1336–1341. [Google Scholar] [CrossRef] [Green Version]
- Aylward, F.O.; Boeuf, D.; Mende, D.R.; Wood-Charlson, E.M.; Vislova, A.; Eppley, J.M.; Romano, A.E.; DeLong, E.F. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc. Natl. Acad. Sci. USA 2017, 114, 11446–11451. [Google Scholar] [CrossRef]
- Tsai, A.-Y.; Gong, G.-C.; Hung, J. Seasonal variations of virus-and nanoflagellate-mediated mortality of heterotrophic bacteria in the coastal ecosystem of subtropical western Pacific. Biogeosciences 2013, 10, 3055–3065. [Google Scholar] [CrossRef] [Green Version]
- Weinbauer, M.G.; Peduzzi, P. Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes. Mar. Ecol. Prog. Ser. 1994, 108, 11–20. [Google Scholar] [CrossRef]
- Fagerbakke, K.M.; Heldal, M.; Norland, S. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat. Microb. Ecol. 1996, 10, 15–27. [Google Scholar] [CrossRef]
- Tsai, A.-Y.; Chiang, K.-P.; Chang, J.; Gong, G.-C. Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. Limnol. Oceanogr. 2005, 50, 1221–1231. [Google Scholar] [CrossRef]
- Tsai, A.Y.; Gong, G.C.; Huang, Y.W. Importance of the viral shunt in nitrogen cycling in Synechococcus spp. growth in subtropical Western Pacific coastal waters. Terr. Atmos. Ocean. Sci. 2014, 25, 839–846. [Google Scholar] [CrossRef] [Green Version]
Day | Field Heterotrophic Bacteria (105 cells mL−1) | Diluted Heterotrophic Bacteria (105 cells mL−1) |
09/02 | 5.99 ± 0.39 | 1.31 ± 0.13 |
09/08 | 3.28 ± 0.068 | 0.79 ± 0.11 |
Night | Field Heterotrophic Bacteria (105 cells mL−1) | Diluted Heterotrophic Bacteria (105 cells mL−1) |
09/02 | 4.78 ± 0.03 | 1.11 ± 0.04 |
09/08 | 3.40 ± 0.037 | 1.12 ± 0.19 |
Day | VP-L (106 viruses mL−1 h−1) | VP-M (106 viruses mL−1 h−1) | Blysis-L (105 bacteria mL−1 h−1) | Blysis-M (105 bacteria mL−1 h−1) | Rlysis-L (% h−1) | Rlysis-M (% h−1) |
09/02 | 2.61 * ± 0.41 | 2.37 ± 0.41 | 1.08 ± 0.17 | 0.99 ± 0.17 | 18.1 ± 2.2 | 16.5 ± 2.0 |
09/08 | 6.58 ± 0.84 | 14.64 ± 4.79 | 2.74 ± 0.35 | 6.10 ± 2.00 | 83.6 ± 9.0 | 186.0 ± 60.1 |
Night | VP-L (106 viruses mL−1 h−1) | VP-M (106 viruses mL−1 h−1) | Blysis-L (105 bacteria mL−1 h−1) | Blysis-M (105 bacteria mL−1 h−1) | Rlysis-L (% h−1) | Rlysis-M (% h−1) |
09/02 | 0.92 * ± 0.11 | 1.96 ± 0.60 | 0.38 ± 0.05 | 0.82 ± 0.24 | 8.0 ± 1.0 | 17.1 ± 5.1 |
09/08 | 0.05 ± 0.02 | 2.28 ± 1.23 | 0.02 ± 0.007 | 0.95 ± 0.51 | 0.6 ± 0.2 | 27.9 ± 15.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, P.-C.; Gong, G.-C.; Hsieh, C.-H.; Chen, P.W.-Y.; Tsai, A.-Y. Diel Variation of Viral Production in a Coastal Subtropical Marine System. Diversity 2021, 13, 426. https://doi.org/10.3390/d13090426
Ho P-C, Gong G-C, Hsieh C-H, Chen PW-Y, Tsai A-Y. Diel Variation of Viral Production in a Coastal Subtropical Marine System. Diversity. 2021; 13(9):426. https://doi.org/10.3390/d13090426
Chicago/Turabian StyleHo, Pei-Chi, Gwo-Ching Gong, Chih-Hao Hsieh, Patrichka Wei-Yi Chen, and An-Yi Tsai. 2021. "Diel Variation of Viral Production in a Coastal Subtropical Marine System" Diversity 13, no. 9: 426. https://doi.org/10.3390/d13090426
APA StyleHo, P. -C., Gong, G. -C., Hsieh, C. -H., Chen, P. W. -Y., & Tsai, A. -Y. (2021). Diel Variation of Viral Production in a Coastal Subtropical Marine System. Diversity, 13(9), 426. https://doi.org/10.3390/d13090426