Hotspots of Subterranean Biodiversity Redux
Author Contributions
Funding
Conflicts of Interest
References
- Gibert, J.; Deharveng, L. Subterranean ecosystems: A truncated functional diversity. Bioscience 2002, 52, 473–481. [Google Scholar] [CrossRef]
- Lamoreaux, J. Stygobites are more wide ranging than troglobites. J. Cave Karst Stud. 2004, 66, 18–19. [Google Scholar]
- Culver, D.C.; Pipan, T. The Biology of Caves and Other Subterranean Habitats, 2nd ed.; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Faille, A.; Ribera, I.; Deharveng, L.; Bourdeau, C.; Garnery, L.; Quéinnec, E.; Deuve, T. A molecular phylogeny shows the single origin of the Pyrenean subterranean Trechini ground beetles (Coleoptera: Carabidae). Molec. Phylog. Evol. 2010, 54, 97–106. [Google Scholar] [CrossRef]
- Culver, D.C.; Trontelj, P.; Zagmajster, M.; Pipan, T. Paving the way for standardized and comparable subterranean biodiversity studies. Subterr. Biol. 2012, 10, 43–50. [Google Scholar] [CrossRef]
- Jeannel, R. Les Fossiles Vivants des Cavernes; Gallimard: Paris, France, 1944. [Google Scholar]
- Barr, T.C. Cave ecology and the evolution of troglobites. Evol. Biol. 1968, 2, 35–105. [Google Scholar]
- Mitchell, R.W. A comparison of temperate and tropical cave communities. Southwest. Nat. 1969, 14, 73–88. [Google Scholar] [CrossRef]
- Howarth, F.G. Cavernicoles in lava tubes on the island of Hawaii. Science 1972, 175, 325–326. [Google Scholar] [CrossRef]
- Berti, R.; Messana, G. Subterranean fishes of Africa. In Biology of Subterranean Fishes; Trajano, E., Bichuette, M.E., Kapoor, B.G., Eds.; Science Publishers: Enfield, NH, USA, 2010; pp. 357–396. [Google Scholar]
- Ornelas-Garcia, C.P.; Pedraza-Lara, C. Phylogeny and evolutionary history of Astyanax mexicanus. In Biology and Evolution of the Mexican Cavefish; Keene, A.C., Yoshizawa, M., McGaugh, S.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 77–92. [Google Scholar]
- Gibert, J.; Culver, D.C. Assessing and conserving groundwater biodiversity: An introduction. Freshw. Biol. 2009, 54, 639–648. [Google Scholar] [CrossRef]
- Deharveng, L.; Bedos, A. Biodiversity in the tropics. In Encyclopedia of Caves, 3rd ed.; White, W.B., Culver, D.C., Pipan, T., Eds.; Academic Press: Waltham, MA, USA, 2019; pp. 146–162. [Google Scholar]
- Zagmajster, M.; Eme, D.; Fišer, C.; Galassi, D.; Marmonier, P.; Stoch, F.; Cornu, J.; Malard, F. Geographic variation in range size and beta diversity of groundwater crustaceans: Insights from habitats with low thermal seasonality. Glob. Ecol. Biogeogr. 2014, 23, 1135–1145. [Google Scholar] [CrossRef]
- Christman, M.C.; Doctor, D.H.; Niemiller, M.L.; Weary, D.J.; Young, J.A.; Zigler, K.S.; Culver, D.C. Predicting the occurrence of cave-inhabiting fauna based on features of the Earth surface environment. PLoS ONE 2016, 11, e0160408. [Google Scholar] [CrossRef]
- Culver, D.C.; Deharveng, L.; Bedos, A.; Lewis, J.J.; Madden, M.; Reddell, J.R.; Sket, B.; Trontelj, P.; White, D. The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 2006, 29, 120–128. [Google Scholar] [CrossRef]
- Niemiller, M.L.; Zigler, K.S. Patterns of cave biodiversity and endemism in the Appalachians and interior plateau of Tennessee. PLoS ONE 2013, 8, e64177. [Google Scholar] [CrossRef]
- Zagmajster, M.; Malard, F.; Eme, D.; Culver, D.C. Subterranean biodiversity patterns from global to regional scales. In Cave Ecology; Moldovan, O.T., Kováč, L., Halse, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 195–228. [Google Scholar]
- Culver, D.C.; Deharveng, L.; Pipan, T.; Bedos, A. An overview of subterranean biodiversity hotspots. Diversity 2021, 13, 487. [Google Scholar] [CrossRef]
- Malard, F.; Boutin, C.; Camacho, A.I.; Ferreira, D.; Michel, G.; Sket, B.; Stoch, F. Diversity patterns of stygobiotic crustaceans across multiple spatial scales in western Europe. Freshw. Biol. 2009, 54, 756–776. [Google Scholar] [CrossRef]
- Dole-Olivier, M.J.; Castellarini, F.; Coineau, N.; Galassi, D.M.P.; Martin, P.; Mori, N.; Valdecasas, A.; Gibert, J. Towards an optimal sampling strategy to assess groundwater biodiversity: Comparison across six regions of Europe. Freshw. Biol. 2009, 54, 777–796. [Google Scholar] [CrossRef]
- Culver, D.C.; Sket, B. Hotspots of subterranean biodiversity in caves and wells. J. Cave Karst Stud. 2000, 62, 11–17. [Google Scholar]
- Polak, S.; Pipan, T. The subterranean fauna of Križna jama, Slovenia. Diversity 2021, 13, 210. [Google Scholar] [CrossRef]
- Camacho, A.I.; Puch, C. Ojo Guareña, a hotspot of subterranean biodiversity in Spain. Diversity 2021, 13, 199. [Google Scholar] [CrossRef]
- Zagmajster, M.; Polak, S.; Fišer, C. Postojna Planina Cave System in Slovenia, a hotspot of subterranean biodiversity and a cradle of speleobiology. Diversity 2021, 13, 271. [Google Scholar] [CrossRef]
- Iliffe, T.M.; Calderón-Gutiérrez, F. Bermuda’s Walsingham Caves: A global hotspot for anchialine stygobionts. Diversity 2021, 13, 352. [Google Scholar] [CrossRef]
- Hutchins, B.T.; Gibson, J.R.; Diaz, P.H.; Schwartz, B.F. Stygobiont diversity in the San Marcos Artesian Well and Edwards Aquifer groundwater ecosystem, Texas, USA. Diversity 2021, 13, 234. [Google Scholar] [CrossRef]
- Trajano, E.; Gallão, J.E.; Bichuette, M.E. Spots of high diversity of troglobites in Brazil: The challenge of measuring subterranean diversity. Biodivers. Conserv. 2016, 25, 1805–1828. [Google Scholar] [CrossRef]
- Pipan, T.; Culver, D.C.; Deharveng, L. (Eds.) Hotspots of Subterranean Biodiversity; MDPI: Basel, Switzerland, 2021. [Google Scholar]
- Souza-Silva, M.; Cerqueira, R.; Pellegrini, T.G.; Ferreira, R.L. Habitat selection of cave-restricted fauna in a new hotspot of subterranean biodiversity in the tropica. Biodiv. Cons 2021, 30, 4223–4250. [Google Scholar] [CrossRef]
- Deharveng, L.; Bedos, A. Diversity of terrestrial invertebrates in subterranean habitats. In Cave Ecology; Moldovan, O.T., Kováč, L., Halse, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 107–172. [Google Scholar]
- Christiansen, K.A. Proposition pour la classification des animaux cavernicoles. Spelunca Mem. 1962, 2, 76–78. [Google Scholar]
- Christiansen, K.A. Morphological adaptation. In Encyclopedia of Caves, 2nd ed.; White, W.B., Culver, D.C., Eds.; Academic Press: Waltham, MA, USA, 2012; pp. 517–528. [Google Scholar]
- Culver, D.C.; Pipan, T. Shallow Subterranean Habitats. Ecology, Evolution, and Conservation; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deharveng, L.; Pipan, T.; Bedos, A.; Culver, D.C. Hotspots of Subterranean Biodiversity Redux. Diversity 2022, 14, 794. https://doi.org/10.3390/d14100794
Deharveng L, Pipan T, Bedos A, Culver DC. Hotspots of Subterranean Biodiversity Redux. Diversity. 2022; 14(10):794. https://doi.org/10.3390/d14100794
Chicago/Turabian StyleDeharveng, Louis, Tanja Pipan, Anne Bedos, and David C. Culver. 2022. "Hotspots of Subterranean Biodiversity Redux" Diversity 14, no. 10: 794. https://doi.org/10.3390/d14100794
APA StyleDeharveng, L., Pipan, T., Bedos, A., & Culver, D. C. (2022). Hotspots of Subterranean Biodiversity Redux. Diversity, 14(10), 794. https://doi.org/10.3390/d14100794