A Comparative Analyzing of Zooplankton Community Diversity in Surface Layer Water of Reservoir Via eDNA Metabarcoding and Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Sampling, and Microscope-Assisted Identification
2.2. eDNA Extraction and Analytical Procedures
3. Results
3.1. Environmental Variables of Sampling Sites
3.2. Comparative Community Analysis with eDNA Metabarcoding and MSI
3.3. Characterization of Zooplankton Communities and Their Relationships with the Sampling Methods
4. Discussion
4.1. Limitations and Effectiveness of eDNA Metabarcoding
4.2. Comparison of Zooplankton Community Structure According to Sampling Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Gene | 12s rRNA | 16s rRNA | 18s rRNA | COI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Genus | Species | Total | Genus | Species | Total | Genus | Species | Total | Genus | Species | ||
Number of NCBI registrations | 281,812 | 18,982 | 51,602 | 544,387 | 36,070 | 108,443 | 1,290,909 | 46,397 | 162,665 | 3,530,058 | 47,139 | 172,650 | |
Number of NCBI registrations of Korean organism | 4404 | 1547 | 401 | 7600 | 2330 | 630 | 8966 | 3045 | 816 | 9411 | 2298 | 513 | |
No. | Phytoplankton | 13 | 13 | 12 | 251 | 152 | 88 | 651 | 274 | 128 | 278 | 121 | 67 |
Zooplankton | 143 | 90 | 43 | 338 | 207 | 79 | 869 | 467 | 139 | 456 | 235 | 65 | |
Macroinvertebrate | 976 | 433 | 116 | 1717 | 653 | 144 | 1636 | 689 | 159 | 1940 | 698 | 150 | |
Fish | 712 | 222 | 45 | 688 | 221 | 45 | 245 | 132 | 34 | 692 | 221 | 45 | |
% | Phytoplankton | 1.2 | 3.6 | 8.3 | 22.7 | 42.6 | 61.1 | 64.5 | 84.6 | 92.8 | 25.1 | 33.9 | 46.5 |
Zooplankton | 9.3 | 14.8 | 27.7 | 22 | 34.1 | 51 | 56.6 | 76.9 | 89.7 | 29.7 | 38.7 | 41.9 | |
Macroinvertebrate | 33.5 | 49.1 | 65.9 | 58.9 | 74 | 81.8 | 56.1 | 78.1 | 90.3 | 66.6 | 79.1 | 85.2 | |
Fish | 94.9 | 98.7 | 95.7 | 91.7 | 98.2 | 95.7 | 32.7 | 58.7 | 72.3 | 92.3 | 98.2 | 95.7 |
References
- Oh, H.-J.; Chae, Y.-J.; Choi, Y.; Ku, D.; Heo, Y.-J.; Kwak, I.-S.; Jo, H.; Park, Y.-S.; Chang, K.-H.; Kim, H.-W. Review and Suggestions for Applying DNA Sequencing to Zooplankton Researches: From Taxonomic Approaches to Biological Interaction Analysis. Korean J. Ecol. Environ. 2021, 54, 156–169. [Google Scholar] [CrossRef]
- Schminke, H.K. Entomology for the copepodologist. J. Plankton Res. 2007, 29, i149–i162. [Google Scholar] [CrossRef]
- Bucklin, A.; Lindeque, P.K.; Rodriguez-Ezpeleta, N.; Albaina, A.; Lehtiniemi, M. Metabarcoding of marine zooplankton: Prospects, progress and pitfalls. J. Plankton Res. 2016, 38, 393–400. [Google Scholar] [CrossRef]
- Ruppert, K.M.; Kline, R.J.; Rahman, M.S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 2019, 17, e00547. [Google Scholar] [CrossRef]
- Rourke, M.L.; Fowler, A.M.; Hughes, J.M.; Broadhurst, M.K.; DiBattista, J.D.; Fielder, S.; Walburn, J.W.; Furlan, E.M. Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environ. DNA 2022, 4, 9–33. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Lodge, D.M.; Turner, C.R.; Jerde, C.L.; Barnes, M.A.; Chadderton, L.; Egan, S.P.; Feder, J.L.; Mahon, A.R.; Pfrender, M.E. Conservation in a cup of water: Estimating biodiversity and population abundance from environmental DNA. Mol. Ecol. 2012, 21, 2555–2558. [Google Scholar] [CrossRef]
- Rees, H.C.; Maddison, B.C.; Middleditch, D.J.; Patmore, J.R.; Gough, K.C. Review: The detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 2014, 51, 1450–1459. [Google Scholar] [CrossRef]
- Xie, R.; Zhao, G.; Yang, J.; Wang, Z.; Xu, Y.; Zhang, X.; Wang, Z. eDNA metabarcoding revealed differential structures of aquatic communities in a dynamic freshwater ecosystem shaped by habitat heterogeneity. Environ. Res. 2021, 201, 111602. [Google Scholar] [CrossRef]
- Kim, D.K.; Park, K.; Jo, H.; Kwak, I.S. Comparison of Water Sampling between Environmental DNA Metabarcoding and Conventional Microscopic Identification: A Case Study in Gwangyang Bay, South Korea. Appl. Sci. 2019, 9, 3272. [Google Scholar] [CrossRef] [Green Version]
- Mächler, E.; Little, C.J.; Wüthrich, R.; Alther, R.; Fronhofer, E.A.; Gounand, I.; Harvey, E.; Hürlemann, S.; Walser, J.C.; Altermatt, F. Assessing different components of diversity across a river network using eDNA. Environ. DNA 2019, 1, 290–301. [Google Scholar] [CrossRef]
- Heine, P.; Hausen, J.; Ottermanns, R.; Ross-Nickoll, M. Comparing eDNA metabarcoding with morphological analyses: Fungal species richness and community composition of differently managed stages along a forest conversion of Norway spruce towards European beech in Germany. For. Ecol. Manag. 2021, 496, 119429. [Google Scholar] [CrossRef]
- Valentini, A.; Taberlet, P.; Miaud, C.; Civade, R.; Herder, J.; Thomsen, P.F.; Bellemain, E.; Besnard, A.; Coissac, E.; Boyer, F.; et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 2016, 25, 929–942. [Google Scholar] [CrossRef]
- Fujii, K.; Doi, H.; Matsuoka, S.; Nagano, M.; Sato, H.; Yamanaka, H. Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods. PLoS ONE 2019, 14, e0210357. [Google Scholar] [CrossRef]
- Djurhuus, A.; Pitz, K.; Sawaya, N.A.; Rojas-Márquez, J.; Michaud, B.; Montes, E.; Muller-Karger, F.; Breitbart, M. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnol. Oceanogr. Methods 2018, 16, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Bourque, D. Time Series Experiments Reveal that Environmental DNA Tracks Zooplankton Population Dynamics in Large Mesocosms. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2019. [Google Scholar]
- Keck, F.; Blackman, R.C.; Bossart, R.; Brantschen, J.; Couton, M.; Hürlemann, S.; Kirschner, D.; Locher, N.; Zhang, H.; Altermatt, F. Meta-analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment. Mol. Ecol. 2022, 31, 1820–1835. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.L.D.; Lin, Y.; Sato, M.; Hsieh, C.; Shiah, F.; Machida, R.J. Using metatranscriptomics to estimate the diversity and composition of zooplankton communities. Mol. Ecol. Resour. 2022, 22, 638–652. [Google Scholar] [CrossRef]
- Harvey, J.B.; Johnson, S.B.; Fisher, J.L.; Peterson, W.T.; Vrijenhoek, R.C. Comparison of morphological and next generation DNA sequencing methods for assessing zooplankton assemblages. J. Exp. Mar. Biol. Ecol. 2017, 487, 113–126. [Google Scholar] [CrossRef]
- Jo, H.; Kim, D.-K.; Park, K.; Kwak, I.-S. Discrimination of Spatial Distribution of Aquatic Organisms in a Coastal Ecosystem Using eDNA. Appl. Sci. 2019, 9, 3450. [Google Scholar] [CrossRef]
- Tang, C.Q.; Leasi, F.; Obertegger, U.; Kieneke, A.; Barraclough, T.G.; Fontaneto, D. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proc. Natl. Acad. Sci. USA 2012, 109, 16208–16212. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, X. eDNA metabarcoding in zooplankton improves the ecological status assessment of aquatic ecosystems. Environ. Int. 2020, 134, 105230. [Google Scholar] [CrossRef] [PubMed]
- Einsle, U. Crustacea: Copepoda: Calanoida und Cyclopoida (Süsswasserfauna von Mitteleuropa); Schworbel, J., Zwick, P., Eds.; Fischer: Stuttgart, Germany, 1993. [Google Scholar]
- Mizuno, T.; Takahashi, E. An Illustrated Guide to Freshwater Zooplankton in Japan; Tokai University Press: Hiratsuka, Japan, 1991. [Google Scholar]
- Addiscott, T.; Thomas, D. Tillage, mineralization and leaching: Phosphate. Soil Tillage Res. 2000, 53, 255–273. [Google Scholar] [CrossRef]
- Djurhuus, A.; Port, J.; Closek, C.J.; Yamahara, K.M.; Romero-Maraccini, O.; Walz, K.R.; Goldsmith, D.B.; Michisaki, R.; Breitbart, M.; Boehm, A.B.; et al. Evaluation of Filtration and DNA Extraction Methods for Environmental DNA Biodiversity Assessments across Multiple Trophic Levels. Front. Mar. Sci. 2017, 4, 314. [Google Scholar] [CrossRef]
- Amaral-Zettler, L.A.; McCliment, E.A.; Ducklow, H.W.; Huse, S.M. A Method for Studying Protistan Diversity Using Massively Parallel Sequencing of V9 Hypervariable Regions of Small-Subunit Ribosomal RNA Genes. PLoS ONE 2009, 4, e6372. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Shannon, C.E. Prediction and Entropy of Printed English. Bell Syst. Tech. J. 1951, 30, 50–64. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Beals, E.W. Bray-Curtis Ordination: An Effective Strategy for Analysis of Multivariate Ecological Data. Adv. Ecol. Res. 1984, 14, 1–55. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Fleiss, J.L. Measuring nominal scale agreement among many raters. Psychol. Bull. 1971, 76, 378–382. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. (R Package Version 2.5–6). 2019. Available online: https://www.r-project.org/index.html (accessed on 1 May 2022).
- Wolak, M.; Wolak, M.M. Package ‘ICC’. Facilitating Estimation of the Intraclass Correlation Coefficient 2015. Available online: https://cran.r-project.org/web/packages/ICC/index.html (accessed on 1 May 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- National Institute of Biological Resources; Biodiversity on the Korean Peninsula. Available online: https://species.nibr.go.kr/ (accessed on 1 December 2021).
- Weigand, H.; Beermann, A.J.; Čiampor, F.; Costa, F.O.; Csabai, Z.; Duarte, S.; Geigerg, M.F.; Grabowski, M.; Rimet, F.; Rulik, B.; et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Total Environ. 2019, 678, 499–524. [Google Scholar] [CrossRef] [PubMed]
- Rivera, S.F.; Vasselon, V.; Ballorain, K.; Carpentier, A.; Wetzel, C.E.; Ector, L.; Bouchez, A.; Rimet, F. DNA metabarcoding and microscopic analyses of sea turtles biofilms: Complementary to understand turtle behavior. PLoS ONE 2018, 13, e0195770. [Google Scholar] [CrossRef] [PubMed]
- Vasselon, V.; Bouchez, A.; Rimet, F.; Jacquet, S.; Trobajo, R.; Corniquel, M.; Tapolczai, K.; Domaizon, I. Avoiding quantification bias in metabarcoding: Application of a cell biovolume correction factor in diatom molecular biomonitoring. Methods Ecol. Evol. 2018, 9, 1060–1069. [Google Scholar] [CrossRef]
- Keck, F.; Vasselon, V.; Tapolczai, K.; Rimet, F.; Bouchez, A. Freshwater biomonitoring in the Information Age. Front. Ecol. Environ. 2017, 15, 266–274. [Google Scholar] [CrossRef]
- Fleiss, J.L.; Levin, B.; Paik, M.C. Statistical Methods for Rates and Proportions; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Saint-Jean, L. The zooplankton. In Lake Chad; Springer: Boston, MA, USA, 1983; pp. 199–232. [Google Scholar]
- Bista, I.; Carvalho, G.R.; Walsh, K.; Seymour, M.; Hajibabaei, M.; Lallias, D.; Christmas, M.; Creer, S. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nat. Commun. 2017, 8, 14087. [Google Scholar] [CrossRef] [Green Version]
Month | Location | Temp. (°C) | DO (mg/L) | pH | Cond. (μS/cm) | Chl-a (μg/L) | TOC (mg/L) | TN (mg/L) | TP (mg/L) | SS (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|
3 | Inflow | 15.2 | 13.6 | 8.8 | 686 | 35.7 | 3.9 | 4.4 | 0.06 | 5.2 |
Reservoir | 12.7 | 14.0 | 8.0 | 796 | 14.3 | 3.6 | 6.6 | 0.03 | 2.2 | |
Outflow | 13.4 | 14.5 | 7.4 | 1,430 | 14.4 | 4.7 | 7.3 | 0.48 | 14.7 | |
4 | Inflow | 14.9 | 13.5 | 8.4 | 670 | 14.3 | 3.6 | 3.8 | 0.05 | 5.5 |
Reservoir | 14.7 | 11.4 | 7.6 | 745 | 8.0 | 4.3 | 5.6 | 0.03 | 0.8 | |
Outflow | 20.3 | 14.4 | 9.5 | 769 | 14.9 | 4.4 | 5.0 | 0.09 | 1.4 | |
5 | Inflow | 22.0 | 8.5 | 8.5 | 625 | 22.5 | 4.2 | 3.7 | 0.06 | 5.8 |
Reservoir | 20.3 | 9.5 | 7.6 | 708 | 10.4 | 4.6 | 6.2 | 0.02 | 2.4 | |
Outflow | 21.2 | 8.2 | 8.0 | 1,130 | 50.6 | 6.9 | 6.4 | 0.38 | 5.7 | |
6 | Inflow | 24.5 | 11.1 | 8.4 | 655 | 13.5 | 4.2 | 4.3 | 0.07 | 9.9 |
Reservoir | 25.4 | 10.5 | 9.1 | 632 | 19.5 | 4.7 | 4.6 | 0.04 | 1.2 | |
Outflow | 25.6 | 6.7 | 8.6 | 596 | 17.1 | 4.4 | 4.3 | 0.04 | 2.7 | |
7 | Inflow | 25.6 | 9.1 | 8.7 | 607 | 11.4 | 3.8 | 3.9 | 0.04 | 1.8 |
Reservoir | 28.8 | 13.6 | 8.2 | 520 | 22.2 | 4.2 | 4.4 | 0.04 | 8.6 | |
Outflow | 25.4 | 9.0 | 8.6 | 485 | 23.3 | 4.6 | 4.2 | 0.04 | 4.6 | |
8 | Inflow | 26.2 | 8.7 | 8.5 | 424 | 13.3 | 6.3 | 2.8 | 0.11 | 11.1 |
Reservoir | 29.6 | 8.7 | 8.3 | 652 | 43.6 | 5.2 | 5.9 | 0.04 | 15.3 | |
Outflow | 26.8 | 7.2 | 8.3 | 1,050 | 7.0 | 7.7 | 7.4 | 1.11 | 26.4 | |
9 | Inflow | 25.9 | 11.6 | 8.4 | 607 | 20.2 | 4.7 | 3.9 | 0.05 | 11.1 |
Reservoir | 26.0 | 10.7 | 8.4 | 546 | 16.5 | 4.3 | 3.6 | 0.02 | 7.7 | |
Outflow | 25.0 | 7.2 | 8.1 | 545 | 17.8 | 4.4 | 3.6 | 0.02 | 9.7 |
Order | Family | Genus | Relative Frequency (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
eDNA | MSI | Both | eDNA | MSI | Both | eDNA | MSI | Both | eDNA | MSI | |
Copepoda | 3 | 2 | 2 | 4 | 2 | 2 | 9 | 2 | 0 | 60.8 | 30.7 |
Cladocera | 1 | 2 | 1 | 2 | 4 | 2 | 6 | 6 | 3 | 0.9 | 18.8 |
Rotifera | 4 | 3 | 3 | 20 | 15 | 13 | 27 | 19 | 16 | 38.3 | 50.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, C.W.; Oh, H.-J.; Chang, K.-H.; Park, Y.-S.; Kwak, I.-S. A Comparative Analyzing of Zooplankton Community Diversity in Surface Layer Water of Reservoir Via eDNA Metabarcoding and Microscopy. Diversity 2022, 14, 797. https://doi.org/10.3390/d14100797
Ji CW, Oh H-J, Chang K-H, Park Y-S, Kwak I-S. A Comparative Analyzing of Zooplankton Community Diversity in Surface Layer Water of Reservoir Via eDNA Metabarcoding and Microscopy. Diversity. 2022; 14(10):797. https://doi.org/10.3390/d14100797
Chicago/Turabian StyleJi, Chang Woo, Hye-Ji Oh, Kwang-Hyeon Chang, Young-Seuk Park, and Ihn-Sil Kwak. 2022. "A Comparative Analyzing of Zooplankton Community Diversity in Surface Layer Water of Reservoir Via eDNA Metabarcoding and Microscopy" Diversity 14, no. 10: 797. https://doi.org/10.3390/d14100797
APA StyleJi, C. W., Oh, H. -J., Chang, K. -H., Park, Y. -S., & Kwak, I. -S. (2022). A Comparative Analyzing of Zooplankton Community Diversity in Surface Layer Water of Reservoir Via eDNA Metabarcoding and Microscopy. Diversity, 14(10), 797. https://doi.org/10.3390/d14100797