Detection of Fish Pathogens in Freshwater Aquaculture Using eDNA Methods
Abstract
:1. Introduction
2. Data Collection
3. eDNA in Fish Disease
3.1. Bacteria
3.2. Fungi
3.3. Parasites
3.4. Virus
Disease | Environment | Method | References |
---|---|---|---|
Virus | |||
Cyprinus Herpes Virus (CyHV-3) | Lake, Pond, River | PCR, qPCR | [20,21] |
Red seabream virus | Fish Farm (Seawater) | DNA metabarcoding | [22] |
Tilapia tilapinevirus | Pond water | qPCR | [23] |
Rana Virus | Lakes, Ponds | qPCR | [24,25] |
Salmon aplhavirus | Seawater | qPCR, ddPCR | [26,27] |
Parasite | |||
Gyrodactylus salaris | qPCR, ddPCR | [16] | |
Dactylogyrusspp. | Shipment water | qPCR | [17] |
Chilodonella hexasticha | Pond water | qPCR | [18] |
Ichthyophthirius multifiliis | Tank water | qPCR | [19] |
Myxobolus cerebralis | River water | qPCR | [28] |
Ceratonova shasta | River water | qPCR | [29,30] |
Parvicapsula minibicornis | River system | qPCR | [30] |
Tetracapsuloides bryosalmonae | River water | qPCR | [31,32,33] |
Neoparamoeba perurans | Sea water | qPCR | [34] |
Schistosoma mansoni | Tank water, water bodies | qPCR | [35] |
Fungi | |||
Flavobacterium psychrophilum | River, RAS | qPCR, ddPCR | [12,36] |
Bacteria | |||
Aeromonassp. | River, Pond | qPCR | [13,37] |
Saprolegnia parasitica | River water | qPCR | [14] |
Yersinia ruckeri | RAS | ddPCR | [37] |
4. eDNA Shedding and Degradation in Water
4.1. Temperature
4.2. Ultraviolet light (UV)
eDNA Type | Source | Environmental Factor | Decay Rate, (r) (day−1) | Reference |
---|---|---|---|---|
Intracellular | Common carp Cyprinus carpio | Microbial community *, pH | 2.52 | [42] |
Extracellular | Sediment sample Cyanobacterium Anabaena variabilis | Temperature *, microbial activity *, pH, light intensity | 0.0931–3.2706 | [47] |
Extracellular | Sediment and water samples | Based on simplified OECD endurance test | 0.009–0.133 | [51] |
Intracellular | Crustacean Daphnia magna | pH *, temperature, microbial activity, total dissolved nitrogen | Water derived 6.552–23.568 Biofilm derived 1.176–17.256 | [53] |
May fly Ephemera Danica | ||||
Eel Anguila anguilla | ||||
Intracellular | Ayu sweetfish Plecoglossus altivelis altivelis | Temperature *, microbial abundance | 0.48–7.2 | [54] |
Common carp Cyprinus carpio | ||||
Intracellular | Common carp Cyprinus carpio | Temperature *, trophic state * | 0.35–2.42 | [55] |
Intracellular | American bullfrog Lithobates catesbeianus | UV-B *, temperature *, pH | 0.243 | [56] |
4.3. pH
4.4. Environmental Parameters
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Pietramellara, G.; Ascher, J.; Borgogni, F.; Ceccherini, M.T.; Guerri, G.; Nannipieri, P. Extracellular DNA in Soil and Sediment: Fate and Ecological Relevance. Biol. Fertil. Soils 2009, 45, 219–235. [Google Scholar] [CrossRef]
- Ogram, A.; Sayler, G.S.; Barkay, T. The Extraction and Purification of Microbial DNA from Sediments. J. Microbiol. Methods 1987, 7, 57–66. [Google Scholar] [CrossRef]
- Haile, J.; Froese, D.; Macphee, R.; Roberts, R.; Arnold, L.; Reyes, A.; Rasmussen, M.; Nielsen, R.; Brook, B.; Robinson, S.; et al. Ancient DNA Reveals Late Survival of Mammoth and Horse in Interior Alaska. Proc. Natl. Acad. Sci. USA 2009, 106, 22352–22357. [Google Scholar] [CrossRef] [Green Version]
- Epp, L.S.; Boessenkool, S.; Bellemain, E.P.; Haile, J.; Esposito, A.; Riaz, T.; Erséus, C.; Gusarov, V.I.; Edwards, M.E.; Johnsen, A.; et al. New Environmental Metabarcodes for Analysing Soil DNA: Potential for Studying Past and Present Ecosystems. Mol. Ecol. 2012, 21, 1821–1833. [Google Scholar] [CrossRef]
- Bhadury, P.; Austen, M.; Bilton, D.; Lambshead, P.J.; Rogers, A. Molecular Detection of Marine Nematodes from Environmental Samples: Overcoming Eukaryotic Interference. Aquat. Microb. Ecol. 2006, 44, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Andersen, K.; Bird, K.L.; Rasmussen, M.; Haile, J.; Breuning-Madsen, H.; Kjaer, K.H.; Orlando, L.; Gilbert, M.T.P.; Willerslev, E. Meta-Barcoding of “dirt” DNA from Soil Reflects Vertebrate Biodiversity. Mol. Ecol. 2012, 21, 1966–1979. [Google Scholar] [CrossRef]
- Lednicky, J.A.; Lauzard, M.; Fan, Z.H.; Jutla, A.; Tilly, T.B.; Gangwar, M.; Usmani, M.; Shankar, S.N.; Mohamed, K.; Eiguren-Fernandez, A.; et al. Viable SARS-CoV-2 in the Air of a Hospital Room with COVID-19 Patients. Int. J. Infect. Dis. 2020, 100, 476–482. [Google Scholar] [CrossRef]
- Battista, J.R. Against All Odds: The Survival Strategies of Deinococcus Radiodurans. Annu. Rev. Microbiol. 1997, 51, 203–224. [Google Scholar] [CrossRef]
- Paget, E.; Simonet, P. On the Track of Natural Transformation in Soil. FEMS Microbiol. Ecol. 1994, 15, 109–117. [Google Scholar] [CrossRef]
- Lorenz, M.G.; Wackernagel, W. Bacterial Gene Transfer by Natural Genetic Transformation in the Environment. Microbiol. Rev. 1994, 58, 563–602. [Google Scholar] [CrossRef]
- DeFlaun, M.F.; Paul, J.H.; Davis, D. Simplified Method for Dissolved DNA Determination in Aquatic Environments. Appl. Environ. Microbiol. 1986, 52, 654–659. [Google Scholar] [CrossRef] [Green Version]
- Tenma, H.; Tsunekawa, K.; Fujiyoshi, R.; Takai, H.; Hirose, M.; Masai, N.; Sumi, K.; Takihana, Y.; Yanagisawa, S.; Tsuchida, K.; et al. Spatiotemporal Distribution of Flavobacterium Psychrophilum and Ayu Plecoglossus Altivelis in Rivers Revealed by Environmental DNA Analysis. Fish. Sci. 2021, 87, 321–330. [Google Scholar] [CrossRef]
- Sadique, A.; Neogi, S.B.; Bashar, T.; Sultana, M.; Johura, F.-T.; Islam, S.; Hasan, N.A.; Huq, A.; Colwell, R.R.; Alam, M. Dynamics, Diversity, and Virulence of Aeromonas Spp. in Homestead Pond Water in Coastal Bangladesh. Front. Public Health 2021, 9, 902. [Google Scholar] [CrossRef]
- Rocchi, S.; Tisserant, M.; Valot, B.; Laboissière, A.; Frossard, V.; Reboux, G. Quantification of Saprolegnia Parasitica in River Water Using Real-Time Quantitative PCR: From Massive Fish Mortality to Tap Drinking Water. Int. J. Environ. Health Res. 2017, 27, 1–10. [Google Scholar] [CrossRef]
- Gonzalez, R.; Curtis, K.; Bivins, A.; Bibby, K.; Weir, M.H.; Yetka, K.; Thompson, H.; Keeling, D.; Mitchell, J.; Gonzalez, D. COVID-19 Surveillance in Southeastern Virginia Using Wastewater-Based Epidemiology. Water Res. 2020, 186, 116296. [Google Scholar] [CrossRef]
- Rusch, J.C.; Hansen, H.; Strand, D.A.; Markussen, T.; Hytterød, S.; Vrålstad, T. Catching the Fish with the Worm: A Case Study on EDNA Detection of the Monogenean Parasite Gyrodactylus Salaris and Two of Its Hosts, Atlantic Salmon (Salmo Salar) and Rainbow Trout (Oncorhynchus Mykiss). Parasites Vectors 2018, 11, 333. [Google Scholar] [CrossRef]
- Trujillo-González, A.; Edmunds, R.C.; Becker, J.A.; Hutson, K.S. Parasite Detection in the Ornamental Fish Trade Using Environmental DNA. Sci. Rep. 2019, 9, 5173. [Google Scholar] [CrossRef] [Green Version]
- Bastos Gomes, G.; Hutson, K.S.; Domingos, J.A.; Chung, C.; Hayward, S.; Miller, T.L.; Jerry, D.R. Use of Environmental DNA (EDNA) and Water Quality Data to Predict Protozoan Parasites Outbreaks in Fish Farms. Aquaculture 2017, 479, 467–473. [Google Scholar] [CrossRef]
- Jousson, O.; Pretti, C.; Di Bello, D.; Cognetti-Varriale, A.M. Non-Invasive Detection and Quantification of the Parasitic Ciliate Ichthyophthirius Multifiliis by Real-Time PCR. Dis. Aquat. Organ. 2005, 65, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Minamoto, T.; Yamanaka, H.; Takahara, T.; Honjo, M.N.; Kawabata, Z. Surveillance of Fish Species Composition Using Environmental DNA. Limnology 2012, 13, 193–197. [Google Scholar] [CrossRef]
- Haramoto, E.; Kitajima, M.; Katayama, H.; Ohgaki, S. Detection of Koi Herpesvirus DNA in River Water in Japan. J. Fish Dis. 2007, 30, 59–61. [Google Scholar] [CrossRef]
- Kawato, M.; Yoshida, T.; Miya, M.; Tsuchida, S.; Nagano, Y.; Nomura, M.; Yabuki, A.; Fujiwara, Y.; Fujikura, K. Optimization of Environmental DNA Extraction and Amplification Methods for Metabarcoding of Deep-Sea Fish. MethodsX 2021, 8, 101238. [Google Scholar] [CrossRef]
- Taengphu, S.; Kayansamruaj, P.; Kawato, Y.; Delamare-Deboutteville, J.; Mohan, C.; Dong, H.; Senapin, S. Concentration and Quantification of Tilapia Tilapinevirus from Water Using a Simple Iron Flocculation Coupled with Probe-Based RT-QPCR. bioRxiv 2021. [Google Scholar] [CrossRef]
- Vilaça, S.T.; Grant, S.A.; Beaty, L.; Brunetti, C.R.; Congram, M.; Murray, D.L.; Wilson, C.C.; Kyle, C.J. Detection of Spatiotemporal Variation in Ranavirus Distribution Using EDNA. Environ. DNA 2020, 2, 210–220. [Google Scholar] [CrossRef]
- Miaud, C.; Arnal, V.; Poulain, M.; Valentini, A.; Dejean, T. EDNA Increases the Detectability of Ranavirus Infection in an Alpine Amphibian Population. Viruses 2019, 11, 526. [Google Scholar] [CrossRef] [Green Version]
- Weli, S.C.; Bernhardt, L.-V.; Qviller, L.; Myrmel, M.; Lillehaug, A. Development and Evaluation of a Method for Concentration and Detection of Salmonid Alphavirus from Seawater. J. Virol. Methods 2021, 287, 113990. [Google Scholar] [CrossRef]
- Bernhardt, L.-V.; Myrmel, M.; Lillehaug, A.; Qviller, L.; Chioma Weli, S. Filtration, Concentration and Detection of Salmonid Alphavirus in Seawater during a Post-Smolt Salmon (Salmo Salar) Cohabitant Challenge. Dis. Aquat. Organ. 2021, 144, 61–73. [Google Scholar] [CrossRef]
- Richey, C.A.; Kenelty, K.V.; Van Stone Hopkins, K.; Stevens, B.N.; Martínez-López, B.; Barnum, S.M.; Hallett, S.L.; Atkinson, S.D.; Bartholomew, J.L.; Soto, E. Distribution and Prevalence of Myxobolus Cerebralis in Postfire Areas of Plumas National Forest: Utility of Environmental DNA Sampling. J. Aquat. Anim. Health 2018, 30, 130–143. [Google Scholar] [CrossRef]
- Richey, C.A.; Kenelty, K.V.; Hopkins, K.V.S.; Stevens, B.N.; Martínez-López, B.; Hallett, S.L.; Atkinson, S.D.; Bartholomew, J.L.; Soto, E. Validation of Environmental DNA Sampling for Determination of Ceratonova Shasta (Cnidaria: Myxozoa) Distribution in Plumas National Forest, CA. Parasitol. Res. 2020, 119, 859–870. [Google Scholar] [CrossRef]
- Hallett, S.L.; Bartholomew, J.L. Application of a Real-Time PCR Assay to Detect and Quantify the Myxozoan Parasite Ceratomyxa Shasta in River Water Samples. Dis. Aquat. Organ. 2006, 71, 109–118. [Google Scholar] [CrossRef]
- Carraro, L.; Bertuzzo, E.; Mari, L.; Fontes, I.; Hartikainen, H.; Strepparava, N.; Schmidt-Posthaus, H.; Wahli, T.; Jokela, J.; Gatto, M.; et al. Integrated Field, Laboratory, and Theoretical Study of PKD Spread in a Swiss Prealpine River. Proc. Natl. Acad. Sci. USA 2017, 114, 11992–11997. [Google Scholar] [CrossRef] [Green Version]
- Carraro, L.; Hartikainen, H.; Jokela, J.; Bertuzzo, E.; Rinaldo, A. Estimating Species Distribution and Abundance in River Networks Using Environmental DNA. Proc. Natl. Acad. Sci. USA 2018, 115, 11724–11729. [Google Scholar] [CrossRef] [Green Version]
- Hutchins, P.R.; Sepulveda, A.J.; Martin, R.M.; Hopper, L.R. A Probe-Based Quantitative PCR Assay for Detecting Tetracapsuloides Bryosalmonae in Fish Tissue and Environmental DNA Water Samples. Conserv. Genet. Resour. 2018, 10, 317–319. [Google Scholar] [CrossRef]
- Bridle, A.R.; Crosbie, P.B.B.; Cadoret, K.; Nowak, B.F. Rapid Detection and Quantification of Neoparamoeba Perurans in the Marine Environment. Aquaculture 2010, 309, 56–61. [Google Scholar] [CrossRef]
- Alzaylaee, H.; Collins, R.A.; Shechonge, A.; Ngatunga, B.P.; Morgan, E.R.; Genner, M.J. Environmental DNA-Based Xenomonitoring for Determining Schistosoma Presence in Tropical Freshwaters. Parasites Vectors 2020, 13, 63. [Google Scholar] [CrossRef]
- Lewin, A.S.; Haugen, T.; Netzer, R.; Tøndervik, A.; Dahle, S.W.; Hageskal, G. Multiplex Droplet Digital PCR Assay for Detection of Flavobacterium Psychrophilum and Yersinia Ruckeri in Norwegian Aquaculture. J. Microbiol. Methods 2020, 177, 106044. [Google Scholar] [CrossRef]
- Fong, J.; Cho, H.J.; Park, M.S.; Lim, Y.W. Evaluating Seasonality and Pathogenicity of Aeromonas in Korea Using Environmental DNA. Asian J. Microbiol. Biotechnol. Environ. Sci. 2016, 18, 605–613. [Google Scholar]
- Thomsen, P.F.; Kielgast, J.; Iversen, L.L.; Møller, P.R.; Rasmussen, M.; Willerslev, E. Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples. PLoS ONE 2012, 7, e41732. [Google Scholar] [CrossRef]
- Pilliod, D.S.; Goldberg, C.S.; Arkle, R.S.; Waits, L.P. Factors Influencing Detection of EDNA from a Stream-Dwelling Amphibian. Mol. Ecol. Resour. 2014, 14, 109–116. [Google Scholar] [CrossRef]
- Takahara, T.; Minamoto, T.; Yamanaka, H.; Doi, H.; Kawabata, Z. Estimation of Fish Biomass Using Environmental DNA. PLoS ONE 2012, 7, e35868. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, A.; Nakamura, K.; Yamanaka, H.; Kondoh, M.; Minamoto, T. The Release Rate of Environmental DNA from Juvenile and Adult Fish. PLoS ONE 2014, 9, e114639. [Google Scholar] [CrossRef]
- Barnes, M.A.; Turner, C.R.; Jerde, C.L.; Renshaw, M.A.; Chadderton, W.L.; Lodge, D.M. Environmental Conditions Influence EDNA Persistence in Aquatic Systems. Environ. Sci. Technol. 2014, 48, 1819–1827. [Google Scholar] [CrossRef]
- Romanowski, G.; Lorenz, M.G.; Sayler, G.; Wackernagel, W. Persistence of Free Plasmid DNA in Soil Monitored by Various Methods, Including a Transformation Assay. Appl. Environ. Microbiol. 1992, 58, 3012–3019. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, A.J.; Yumet, G.M.; Santiago, C.L.; Toranzos, G.A. Stability of Manipulated Plasmid DNA in Aquatic Environments. Environ. Toxicol. Water Qual. 1996, 11, 129–135. [Google Scholar] [CrossRef]
- Zhu, B. Degradation of Plasmid and Plant DNA in Water Microcosms Monitored by Natural Transformation and Real-Time Polymerase Chain Reaction (PCR). Water Res. 2006, 40, 3231–3238. [Google Scholar] [CrossRef]
- Matsui, K.; Honjo, M.; Kawabata, Z. Estimation of the Fate of Dissolved DNA in Thermally Stratified Lake Water from the Stability of Exogenous Plasmid DNA. Aquat. Microb. Ecol. 2001, 26, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Zulkefli, N.S.; Kim, K.-H.; Hwang, S.-J. Effects of Microbial Activity and Environmental Parameters on the Degradation of Extracellular Environmental DNA from a Eutrophic Lake. Int. J. Environ. Res. Public Health 2019, 16, 3339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klymus, K.E.; Richter, C.A.; Chapman, D.C.; Paukert, C. Quantification of EDNA Shedding Rates from Invasive Bighead Carp Hypophthalmichthys Nobilis and Silver Carp Hypophthalmichthys Molitrix. Biol. Conserv. 2015, 183, 77–84. [Google Scholar] [CrossRef]
- Takahara, T.; Minamoto, T.; Doi, H. Using Environmental DNA to Estimate the Distribution of an Invasive Fish Species in Ponds. PLoS ONE 2013, 8, e56584. [Google Scholar] [CrossRef] [Green Version]
- Robson, H.L.A.; Noble, T.H.; Saunders, R.J.; Robson, S.K.A.; Burrows, D.W.; Jerry, D.R. Fine-Tuning for the Tropics: Application of EDNA Technology for Invasive Fish Detection in Tropical Freshwater Ecosystems. Mol. Ecol. Resour. 2016, 16, 922–932. [Google Scholar] [CrossRef]
- Häder, D.-P.; Sinha, R.P. Solar Ultraviolet Radiation-Induced DNA Damage in Aquatic Organisms: Potential Environmental Impact. Mutat. Res. 2005, 571, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Mächler, E.; Osathanunkul, M.; Altermatt, F. Shedding Light on EDNA: Neither Natural Levels of UV Radiation nor the Presence of a Filter Feeder Affect EDNA-Based Detection of Aquatic Organisms. PLoS ONE 2018, 13, e0195529. [Google Scholar] [CrossRef] [PubMed]
- Seymour, M.; Durance, I.; Cosby, B.J.; Ransom-Jones, E.; Deiner, K.; Ormerod, S.J.; Colbourne, J.K.; Wilgar, G.; Carvalho, G.R.; de Bruyn, M.; et al. Acidity Promotes Degradation of Multi-Species Environmental DNA in Lotic Mesocosms. Commun. Biol. 2018, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, S.; Ushio, M.; Sakurai, S.; Minamoto, T.; Yamanaka, H. Water Temperature-Dependent Degradation of Environmental DNA and Its Relation to Bacterial Abundance. PLoS ONE 2017, 12, e0176608. [Google Scholar] [CrossRef]
- Eichmiller, J.J.; Best, S.E.; Sorensen, P.W. Effects of Temperature and Trophic State on Degradation of Environmental DNA in Lake Water. Environ. Sci. Technol. 2016, 50, 1859–1867. [Google Scholar] [CrossRef]
- Strickler, K.M.; Fremier, A.K.; Goldberg, C.S. Quantifying Effects of UV-B, Temperature, and PH on EDNA Degradation in Aquatic Microcosms. Biol. Conserv. 2015, 183, 85–92. [Google Scholar] [CrossRef]
- Lindahl, T. Instability and Decay of the Primary Structure of DNA. Nature 1993, 362, 709–715. [Google Scholar] [CrossRef]
- Gates, K.S. An Overview of Chemical Processes That Damage Cellular DNA: Spontaneous Hydrolysis, Alkylation, and Reactions with Radicals. Chem. Res. Toxicol. 2009, 22, 1747–1760. [Google Scholar] [CrossRef] [Green Version]
- Ficetola, G.F.; Miaud, C.; Pompanon, F.; Taberlet, P. Species Detection Using Environmental DNA from Water Samples. Biol. Lett. 2008, 4, 423–425. [Google Scholar] [CrossRef] [Green Version]
- Nathan, L.R.; Jerde, C.L.; Budny, M.L.; Mahon, A.R. The Use of Environmental DNA in Invasive Species Surveillance of the Great Lakes Commercial Bait Trade. Conserv. Biol. 2015, 29, 430–439. [Google Scholar] [CrossRef]
- Rees, H.C.; Maddison, B.C.; Middleditch, D.J.; Patmore, J.R.M.; Gough, K.C. REVIEW: The Detection of Aquatic Animal Species Using Environmental DNA—A Review of EDNA as a Survey Tool in Ecology. J. Appl. Ecol. 2014, 51, 1450–1459. [Google Scholar] [CrossRef]
- Shogren, A.J.; Tank, J.L.; Andruszkiewicz, E.; Olds, B.; Mahon, A.R.; Jerde, C.L.; Bolster, D. Controls on EDNA Movement in Streams: Transport, Retention, and Resuspension. Sci. Rep. 2017, 7, 5065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, G.J.; Sinigalliano, C.D.; Garko, K.A. Binding of Exogenous DNA to Marine Sediments and the Effect of DNA/Sediment Binding on Natural Transformation of Pseudomonas Stutzeri Strain ZoBell in Sediment Columns. FEMS Microbiol. Lett. 1991, 85, 1–8. [Google Scholar] [CrossRef]
- Graf, G.; Rosenberg, R. Bioresuspension and Biodeposition: A Review. J. Mar. Syst. 1997, 11, 269–278. [Google Scholar] [CrossRef]
- Stoeckle, B.C.; Beggel, S.; Cerwenka, A.F.; Motivans, E.; Kuehn, R.; Geist, J. A Systematic Approach to Evaluate the Influence of Environmental Conditions on EDNA Detection Success in Aquatic Ecosystems. PLoS ONE 2017, 12, e0189119. [Google Scholar] [CrossRef] [Green Version]
- Albers, C.N.; Jensen, A.; Bælum, J.; Jacobsen, C.S. Inhibition of DNA Polymerases Used in Q-PCR by Structurally Different Soil-Derived Humic Substances. Geomicrobiol. J. 2013, 30, 675–681. [Google Scholar] [CrossRef]
- Xu, D.-H.; Shoemaker, C.A.; Klesius, P.H. Evaluation of the Link between Gyrodactylosis and Streptococcosis of Nile Tilapia, Oreochromis Niloticus (L.). J. Fish Dis. 2007, 30, 233–238. [Google Scholar] [CrossRef]
- Zhang, C.; Li, D.; Chi, C.; Ling, F.; Wang, G. Dactylogyrus Intermedius Parasitism Enhances Flavobacterium Columnare Invasion and Alters Immune-Related Gene Expression in Carassius Auratus. Dis. Aquat. Organ. 2015, 116, 11–21. [Google Scholar] [CrossRef]
- Ogut, H.; Cavus, N. A Comparison of Ectoparasite Prevalence and Occurrence of Viral Haemorrhagic Septicemia Virus (VHSV) in Whiting Merlangius Merlangus Euxinus. Revista de Biología Marina y Oceanografía 2014, 49, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, M.E.; Hellström, M.; Kariuki, H.C.; Olsen, A.; Thomsen, P.F.; Mejer, H.; Willerslev, E.; Mwanje, M.T.; Madsen, H.; Kristensen, T.K.; et al. Environmental DNA for Improved Detection and Environmental Surveillance of Schistosomiasis. Proc. Natl. Acad. Sci. USA 2019, 116, 8931–8940. [Google Scholar] [CrossRef] [Green Version]
- Collins, R.A.; Wangensteen, O.S.; O’Gorman, E.J.; Mariani, S.; Sims, D.W.; Genner, M.J. Persistence of Environmental DNA in Marine Systems. Commun. Biol. 2018, 1, 185. [Google Scholar] [CrossRef] [PubMed]
- Sassoubre, L.M.; Yamahara, K.M.; Gardner, L.D.; Block, B.A.; Boehm, A.B. Quantification of Environmental DNA (EDNA) Shedding and Decay Rates for Three Marine Fish. Environ. Sci. Technol. 2016, 50, 10456–10464. [Google Scholar] [CrossRef] [PubMed]
- Torti, A.; Lever, M.A.; Jørgensen, B.B. Origin, Dynamics, and Implications of Extracellular DNA Pools in Marine Sediments. Mar. Genom. 2015, 24, 185–196. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohara, K.; Yadav, A.K.; Joshi, P. Detection of Fish Pathogens in Freshwater Aquaculture Using eDNA Methods. Diversity 2022, 14, 1015. https://doi.org/10.3390/d14121015
Bohara K, Yadav AK, Joshi P. Detection of Fish Pathogens in Freshwater Aquaculture Using eDNA Methods. Diversity. 2022; 14(12):1015. https://doi.org/10.3390/d14121015
Chicago/Turabian StyleBohara, Kailash, Amit K. Yadav, and Pabitra Joshi. 2022. "Detection of Fish Pathogens in Freshwater Aquaculture Using eDNA Methods" Diversity 14, no. 12: 1015. https://doi.org/10.3390/d14121015
APA StyleBohara, K., Yadav, A. K., & Joshi, P. (2022). Detection of Fish Pathogens in Freshwater Aquaculture Using eDNA Methods. Diversity, 14(12), 1015. https://doi.org/10.3390/d14121015