Cuticular Swabs and eDNA as Non-Invasive Sampling Techniques to Monitor Aphanomyces astaci in Endangered White-Clawed Crayfish (Austropotamobius pallipes Complex)
Abstract
:1. Introduction
2. Materials and Methods
2.1. eDNA Sampling Procedure
2.2. Cuticular Swabbing Procedure
2.3. Non-Invasive Sampling in Carrier Species
2.4. Non-Invasive Sampling in Susceptible Species
2.5. In-Field Tests
2.6. DNA Extraction
2.7. Molecular Assays
2.8. Statistical Analyses
3. Results
3.1. Non-Invasive Sampling in Carrier Species
3.2. Non-Invasive Sampling in Susceptible Species
3.3. In-Field Tests in Susceptible Species
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skorikov, A.S. Contributions à la classification des Potamobiidae d’Europe et d’Asia. Annu. Mus. Zool. Acad. Imp. Sci. St. Petersb. 1907, 12, 115–118. (In Russian) [Google Scholar]
- Kouba, A.; Petrusek, A.; Kozák, P. Continental-wide distribution of crayfish species in Europe: Update and maps. Knowl. Manag. Aquat. Ecosyst. 2014, 413, 5. [Google Scholar] [CrossRef] [Green Version]
- Schrank, F.v.P. Fauna Boica: Durchgedachte Geschichte dere in Baiern einheimischen und zahmen Thiere; Stein’schen Buchhandlung: Nürnberg, Germany, 1803; Volume 3, pp. 1–272. [Google Scholar] [CrossRef]
- Ninni, A.P. Sul gambero fluviale Italiano. Atti. Della. Soc. Ital. Sci. Nat. 1886, 29, 323–326. [Google Scholar]
- Lereboullet, A. Descriptions de deux nouvelles especes d’ecrevisses de nos Rivieres; Mémoires de la Société des sciences naturelles de Strasbourg; Berger-Levrault: Paris, France, 1858; Volume 5, pp. 1–11, Pls. I–III. [Google Scholar] [CrossRef] [Green Version]
- Pârvulescu, L. Introducing a new Austropotamobius crayfish species (Crustacea, Decapoda, Astacidae): A Miocene endemism of the Apuseni Mountains, Romania. Zool. Anz. 2019, 279, 94–102. [Google Scholar] [CrossRef]
- Crandall, K.A.; De Grave, S. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. J. Crustac. Biol. 2017, 37, 615–653. [Google Scholar] [CrossRef] [Green Version]
- Fratini, S.; Zaccara, S.; Barbaresi, S.; Grandjean, F.; Souty-Grosset, C.; Crosa, G.; Gherardi, F. Phylogeography of the threatened crayfish (genus Austropotamobius) in Italy: Implications for its taxonomy and conservation. Heredity 2005, 94, 108–118. [Google Scholar] [CrossRef]
- Grandjean, F.; Momon, J.; Bramard, M. Biological water quality assessment of the Whiteclawed Crayfish habitat based on macroinvertebrate communities: Usefulness for its conservation. Bull. Fr. Pêche. Piscic. 2003, 370–371, 115–125. [Google Scholar] [CrossRef]
- Ghia, D.; Fea, G.; Sacchi, R.; Renzo, G.; Garozzo, P.; Marrone, M.; Piccoli, F.; Porfirio, S.; Santillo, D.; Salvatore, B.; et al. Modelling environmental niche for the endangered crayfish Austropotamobius pallipes complex in Northern and central Italy. Freshw. Crayf. 2013, 19, 189–195. [Google Scholar] [CrossRef]
- Bernini, G.; Bellati, A.; Pellegrino, I.; Negri, A.; Ghia, D.; Fea, G.; Sacchi, R.; Nardi, P.A.; Fasola, M.; Galeotti, P. Complexity of biogeographic pattern in the endangered crayfish Austropotamobius italicus in northern Italy: Molecular insights of conservation concern. Conser. Genet. 2016, 17, 141–154. [Google Scholar] [CrossRef]
- Reynolds, J.; Souty-Grosset, C.; Richardson, A. Ecological roles of crayfish in freshwater and terrestrial habitats. Freshw. Crayf. 2013, 19, 197–218. [Google Scholar] [CrossRef]
- Danilović, M.; Maguire, I.; Füreder, L. Overlooked keystone species in conservation plans of fluvial ecosystems in Southeast Europe: A review of native freshwater crayfish species. Knowl. Manag. Aquat. Ecosyst. 2022, 423, 21. [Google Scholar] [CrossRef]
- Holdich, D.M.; Reynolds, J.D.; Souty-Grosset, C.; Sibley, P.J. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst. 2009, 394–395, 11. [Google Scholar] [CrossRef] [Green Version]
- Souty-Grosset, C.; Holdich, D.M.; NÖEl, P.Y.; Reynolds, J.; Haffner, P.H. Atlas of Crayfish in Europe; Muséum National d’Histoire naturelle: Paris, France, 2006; Volume 64. [Google Scholar]
- Gherardi, F.; Daniels, W.H. Agonism and shelter competition between invasive and indigenous crayfish species. Can. J. Zool. 2004, 82, 1923–1932. [Google Scholar] [CrossRef] [Green Version]
- Gil-Sánchez, J.M.; Alba-Tercedor, J. The Decline of the Endangered Populations of the Native Freshwater Crayfish (Austropotamobius pallipes) in Southern Spain: It is Possible to Avoid Extinction? Hydrobiologia 2006, 559, 113–122. [Google Scholar] [CrossRef]
- Olsson, K.; Stenroth, P.; NystrÖM, P.E.R.; GranÉLi, W. Invasions and niche width: Does niche width of an introduced crayfish differ from a native crayfish? Freshw. Biol. 2009, 54, 1731–1740. [Google Scholar] [CrossRef]
- Manenti, R.; Ghia, D.; Fea, G.; Ficetola, G.F.; Padoa-Schioppa, E.; Canedoli, C. Causes and consequences of crayfish extinction: Stream connectivity, habitat changes, alien species and ecosystem services. Freshw. Biol. 2019, 64, 284–293. [Google Scholar] [CrossRef]
- Füreder, L.; Gherardi, F.; Holdich, D.; Reynolds, J.; Sibley, P.; Souty-Grosset, C. Austropotamobius pallipes. IUCN Red List of Threatened Species. p. e.T2430A9438817. 2010. Available online: https://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T2430A9438817.en (accessed on 18 November 2022).
- Alderman, D.J.; Polglase, J.L. Aphanomyces astaci: Isolation and culture. J. Fish Dis. 1986, 9, 367–379. [Google Scholar] [CrossRef]
- Sensson, E.; Unestam, T. Differectial induction of zoospore encystment and germination in Aphanomyces astaci, Oomycetes. Physiol. Plant 1975, 35, 210–216. [Google Scholar] [CrossRef]
- Unestam, T. Studies on the Crayfish Plague Fungus Aphanomyces astaci. Physiol. Plant 1966, 19, 1110–1119. [Google Scholar] [CrossRef]
- Cerenius, L.; Söderhäll, K. Chemotaxis in Aphanomyces astaci, an arthropod-parasitic fungus. J. Invertebr. Pathol. 1984, 43, 278–281. [Google Scholar] [CrossRef]
- Wittwer, C.; Nowak, C.; Strand, D.A.; Vrålstad, T.; Thines, M.; Stoll, S. Comparison of two water sampling approaches for eDNA-based crayfish plague detection. Limnologica 2018, 70, 1–9. [Google Scholar] [CrossRef]
- Crandall, K.A.; Buhay, J.E. Global diversity of crayfish (Astacidae, Cambaridae, and Parastacidae—Decapoda) in freshwater. Hydrobiologia 2007, 595, 295–301. [Google Scholar] [CrossRef]
- Martin-Torrijos, L.; Martinez-Rios, M.; Casabella-Herrero, G.; Adams, S.B.; Jackson, C.R.; Dieguez-Uribeondo, J. Tracing the origin of the crayfish plague pathogen, Aphanomyces astaci, to the Southeastern United States. Sci. Rep. 2021, 11, 9332. [Google Scholar] [CrossRef] [PubMed]
- Cornalia, E. Sulla malattia dei gamberi. Atti. Della. Soc. Ital. Sci. Nat. 1860, 2, 334–336. [Google Scholar]
- Nellemann, C.; Corcoran, E. Dead Planet, LivingPlanet—Biodiversity and Ecosystem Restoration for Sustain-able Development. A Rapid Response Assessment.; United Nations Environment Programme: Nairobi, Kenya, 2010; p. 109. [Google Scholar]
- Panteleit, J.; Keller, N.S.; Diéguez-Uribeondo, J.; Makkonen, J.; Martín-Torrijos, L.; Patrulea, V.; Pîrvu, M.; Preda, C.; Schrimpf, A.; Pârvulescu, L. Hidden sites in the distribution of the crayfish plague pathogen Aphanomyces astaci in Eastern Europe: Relicts of genetic groups from older outbreaks? J. Invertebr. Pathol. 2018, 157, 117–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jussila, J.; Edsman, L.; Maguire, I.; Diéguez-Uribeondo, J.; Theissinger, K. Money Kills Native Ecosystems: European Crayfish as an Example. Front. Ecol. Evol. 2021, 9, 1–22. [Google Scholar] [CrossRef]
- Baran, I.; Soylu, E. Crayfish plague in Turkey. J. Fish Dis. 1989, 12, 193–197. [Google Scholar] [CrossRef]
- Matthews, M.; Reynolds, J.D. Ecological impact of crayfish plague in Ireland. Hydrobiologia 1992, 234, 1–6. [Google Scholar] [CrossRef]
- Alderman, D.J. Crayfish plague in Britain, the first twelve years. In Freshwater Crayfish IX, Papers from the 9th International Symposium of Astacology. Reading University, England 1992; Holdich, D.M., Warner, G.F., Eds.; International Association of Astacology: Los Angeles, CA, USA, 1993; pp. 266–272. [Google Scholar]
- Taugbøl, T.; Skurdal, J.; Håstein, T. Crayfish plague and management strategies in Norway. Biol. Conserv. 1993, 63, 75–82. [Google Scholar] [CrossRef]
- Alderman, D.J. Aphanomycosis of Crayfish: Crayfish Plague; CEFAS—Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory: Weymouth, UK, 2000; p. 121. [Google Scholar]
- Diéguez-Uribeondo, J.; Temiño, C.; Múzquiz, J.L. The crayfish plague fungus (Aphanomyces astaci) in Spain. Bull. Fr. Pêche. Piscic. 1997, 347, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Loureiro, T.G.; Anastácio, P.M.S.G.; Araujo, P.B.; Souty-Grosset, C.; Almerão, M.P. Red swamp crayfish: Biology, ecology and invasion—an overview. Nauplius 2015, 23, 1–19. [Google Scholar] [CrossRef]
- Makkonen, J.; Jussila, J.; Kokko, H. The diversity of the pathogenic Oomycete (Aphanomyces astaci) chitinase genes within the genotypes indicate adaptation to its hosts. Fungal. Genet. Biol. 2012, 49, 635–642. [Google Scholar] [CrossRef]
- Makkonen, J.; Jussila, J.; Panteleit, J.; Keller, N.S.; Schrimpf, A.; Theissinger, K.; Kortet, R.; Martin-Torrijos, L.; Sandoval-Sierra, J.V.; Dieguez-Uribeondo, J.; et al. MtDNA allows the sensitive detection and haplotyping of the crayfish plague disease agent Aphanomyces astaci showing clues about its origin and migration. Parasitology 2018, 145, 1210–1218. [Google Scholar] [CrossRef] [Green Version]
- Minardi, D.; Studholme, D.J.; Oidtmann, B.; Pretto, T.; van der Giezen, M. Improved method for genotyping the causative agent of crayfish plague (Aphanomyces astaci) based on mitochondrial DNA. Parasitology 2019, 146, 1022–1029. [Google Scholar] [CrossRef]
- Minardi, D.; Studholme, D.J.; van der Giezen, M.; Pretto, T.; Oidtmann, B. New genotyping method for the causative agent of crayfish plague (Aphanomyces astaci) based on whole genome data. J. Invertebr. Pathol. 2018, 156, 6–13. [Google Scholar] [CrossRef]
- Huang, T.S.; Cerenius, L.; Söderhäll, K. Analysis of genetic diversity in the crayfish plague fungus, Aphanomyces astaci, by random amplification of polymorphic DNA. Aquaculture 1994, 126, 1–9. [Google Scholar] [CrossRef]
- Viljamaa-Dirks, S.; Heinikainen, S.; Virtala, A.M.; Torssonen, H.; Pelkonen, S. Variation in the hyphal growth rate and the virulence of two genotypes of the crayfish plague organism Aphanomyces astaci. J. Fish Dis. 2016, 39, 753–764. [Google Scholar] [CrossRef]
- Caprioli, R.; Mrugała, A.; Di Domenico, M.; Curini, V.; Giansante, C.; Cammà, C.; Petrusek, A. Aphanomyces astaci genotypes involved in recent crayfish plague outbreaks in central Italy. Dis. Aquat. Organ. 2018, 130, 209–219, Pls. I–III. [Google Scholar] [CrossRef]
- Kusar, D.; Vrezec, A.; Ocepek, M.; Jencic, V. Aphanomyces astaci in wild crayfish populations in Slovenia: First report of persistent infection in a stone crayfish Austropotamobius torrentium population. Dis. Aquat. Organ. 2013, 103, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Dana, J.D. United States Exploring Expedition. During the Years 1838, 1839, 1840, 1841, 1842; Under the Command of Charles Wilkes, U.S.N. XIII. In Crustacea; Part I; C. Sherman: Philadelphia, PA, USA, 1852; p. 685, i–viii. [Google Scholar]
- Girard, C.F. A revision of the North American Astaci, with observations on their habits and geographic distribution. In Proceedings of the Academy of Natural Sciences of Philadelphia, 1852–1853; Academy of Natural Sciences, Philadelphia, PA, USA; 1854; Volume 6, pp. 87–91. [Google Scholar]
- Lilley, J.H.; Cerenius, L.; Söderhäll, K. RAPD evidence for the origin of crayfish plague outbreaks in Britain. Aquaculture 1997, 157, 181–185. [Google Scholar] [CrossRef]
- Diéguez-Uribeondo, J.; Huang, T.S.; Cerenius, L.; Söderhäll, K. Physiological adaptation of an Aphanomyces astaci strain isolated from the freshwater crayfish Procambarus clarkii. Mycol. Res. 1995, 99, 574–578. [Google Scholar] [CrossRef]
- Rezinciuc, S.; Galindo, J.; Montserrat, J.; Diéguez-Uribeondo, J. AFLP-PCR and RAPD-PCR evidences of the transmission of the pathogen Aphanomyces astaci (Oomycetes) to wild populations of European crayfish from the invasive crayfish species, Procambarus clarkii. Fungal. Biol. 2014, 118, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Martín-Torrijos, L.; Campos Llach, M.; Pou-Rovira, Q.; Diéguez-Uribeondo, J. Resistance to the crayfish plague, Aphanomyces astaci (Oomycota) in the endangered freshwater crayfish species, Austropotamobius pallipes. PLoS ONE 2017, 12, e0181226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafinesque, C.S. Synopsis of four new genera and ten new species of Crustacea, found in the United States. Am. Mon. Mag. Crit. Rev. 1817, 2, 41–44. [Google Scholar]
- Kozubikova, E.; Viljamaa-Dirks, S.; Heinikainen, S.; Petrusek, A. Spiny-cheek crayfish Orconectes limosus carry a novel genotype of the crayfish plague pathogen Aphanomyces astaci. J. Invertebr. Pathol. 2011, 108, 214–216. [Google Scholar] [CrossRef]
- Diéguez-Uribeondo, J.; Söderhäll, K. Procambarus clarkii Girard as a vector for the crayfish plague fungus, Aphanomyces astaci Schikora. Aquac. Res. 1993, 24, 761–765. [Google Scholar] [CrossRef]
- Pretto, T.; Tosi, F.; Sandoval-Sierra, J.V.; Grandjean, F.A.M.; Diéguez-Uribeondo, J. Characterization of Aphanomyces astaci in white-clawed crayfish Austropotamobius pallipes from Northern Italy: Considerations regarding a crayfish plague outbreak. In Proceedings of the IAA & CSJ Joint International Conference on Crustacea, Sapporo, Japan, 20–26 June 2014. [Google Scholar]
- Lowe, S.M.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection From the Global Invasive Species Database; Hollands Printing Ltd., Ed.; First published as special lift-out in Aliens 12; The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN): Auckland, New Zealand, 2000; p. 12. [Google Scholar]
- OIE. Chapter 2.2.2—Infection with Aphanomyces astaci (Crayfish Plague). In Manual of Diagnostic Tests for Aquatic Animals 2021; Office International Des Épizooties: Paris, France, 2021; pp. 109–126. [Google Scholar]
- European Commission—Cinea—D2. LIFE-CLAW: Crayfish lineages conservation in north-western Apennine. LIFE18 NAT/IT/000806. Available online: https://webgate.ec.europa.eu/life/publicWebsite/project/details/5164 (accessed on 10 May 2022).
- Manfrin, A.; Pretto, T. Aspects of health and disease prevention. In RARITY. Eradicate Invasive Louisiana Red Swamp and Preserve Native White Clawed Crayfish in Friuli Venezia Giulia; RARITY project LIFE10 NAT/IT/000239; 2014; pp. 123–125. Available online: https://webgate.ec.europa.eu/life/publicWebsite/index.cfm?fuseaction=search.dspPage&n_proj_id=4054 (accessed on 18 November 2022).
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Goldberg, C.S.; Turner, C.R.; Deiner, K.; Klymus, K.E.; Thomsen, P.F.; Murphy, M.A.; Spear, S.F.; McKee, A.; Oyler-McCance, S.J.; Cornman, R.S.; et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 2016, 7, 1299–1307. [Google Scholar] [CrossRef]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; de Vere, N.; et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef]
- Strand, D.A.; Johnsen, S.I.; Rusch, J.C.; Agersnap, S.; Larsen, W.B.; Knudsen, S.W.; Møller, P.R.; Vrålstad, T.; Tulloch, A. Monitoring a Norwegian freshwater crayfish tragedy: eDNA snapshots of invasion, infection and extinction. J. Appl. Ecol. 2019, 56, 1661–1673. [Google Scholar] [CrossRef]
- Manfrin, C.; Souty-Grosset, C.; Anastácio, P.M.; Reynolds, J.; Giulianini, P.G. Detection and control of invasive freshwater crayfish: From traditional to innovative methods. Diversity 2019, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Bradley, D.L.; Morey, K.C.; Bourque, D.A.; Fost, B.; Loeza-Quintana, T.; Hanner, R.H. Environmental DNA detection and abundance estimates comparable to conventional methods for three freshwater larval species at a power plant discharge. Environ. DNA 2022, 4, 700–714. [Google Scholar] [CrossRef]
- Beng, K.C.; Corlett, R.T. Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges and prospects. Biodivers. Conserv. 2020, 29, 2089–2121. [Google Scholar] [CrossRef]
- Carneiro de Melo Moura, C.; Setyaningsih, C.A.; Li, K.; Merk, M.S.; Schulze, S.; Raffiudin, R.; Grass, I.; Behling, H.; Tscharntke, T.; Westphal, C.; et al. Biomonitoring via DNA metabarcoding and light microscopy of bee pollen in rainforest transformation landscapes of Sumatra. BMC Ecol. Evol. 2022, 22, 51. [Google Scholar] [CrossRef]
- Villacorta-Rath, C.; Espinoza, T.; Cockayne, B.; Schaffer, J.; Burrows, D. Environmental DNA analysis confirms extant populations of the cryptic Irwin’s turtle within its historical range. BMC Ecol. Evol. 2022, 22, 57. [Google Scholar] [CrossRef]
- Huver, J.R.; Koprivnikar, J.; Johnson, P.T.; Whyard, S. Development and application of an eDNA method to detect and quantify a pathogenic parasite in aquatic ecosystems. Ecol. Appl. 2015, 25, 991–1002. [Google Scholar] [CrossRef]
- Miaud, C.; Arnal, V.; Poulain, M.; Valentini, A.; Dejean, T. eDNA Increases the detectability of ranavirus infection in an alpine amphibian population. Viruses 2019, 11, 526. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, D.; Warne, B.; Jahun, A.S.; Hamilton, W.L.; Fieldman, T.; du Plessis, L.; Hill, V.; Blane, B.; Watkins, E.; Wright, E.; et al. Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission. Nat. Commun. 2022, 13, 751. [Google Scholar] [CrossRef]
- Muha, T.P.; Robinson, C.V.; Garcia de Leaniz, C.; Consuegra, S. An optimised eDNA protocol for detecting fish in lentic and lotic freshwaters using a small water volume. PLoS ONE 2019, 14, e0219218. [Google Scholar] [CrossRef] [Green Version]
- Polanco, F.A.; Mutis Martinezguerra, M.; Marques, V.; Villa-Navarro, F.; Borrero Pérez, G.H.; Cheutin, M.C.; Dejean, T.; Hocdé, R.; Juhel, J.B.; Maire, E.; et al. Detecting aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA. Biotropica 2021, 53, 1606–1619. [Google Scholar] [CrossRef]
- Banerjee, P.; Stewart, K.A.; Dey, G.; Antognazza, C.M.; Sharma, R.K.; Maity, J.P.; Saha, S.; Doi, H.; de Vere, N.; Chan, M.W.Y.; et al. Environmental DNA analysis as an emerging non-destructive method for plant biodiversity monitoring: A review. AoB Plants 2022, 14, plac031. [Google Scholar] [CrossRef] [PubMed]
- Staehr, P.A.U.; Dahl, K.; Buur, H.; Göke, C.; Sapkota, R.; Winding, A.; Panova, M.; Obst, M.; Sundberg, P. Environmental dna monitoring of biodiversity hotspots in Danish marine waters. Front. Mar. Sci. 2022, 8, 800474. [Google Scholar] [CrossRef]
- Ogram, A.; Sayler, G.S.; Barkay, T. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods 1987, 7, 57–66. [Google Scholar] [CrossRef]
- Harper, L.R.; Buxton, A.S.; Rees, H.C.; Bruce, K.; Brys, R.; Halfmaerten, D.; Read, D.S.; Watson, H.V.; Sayer, C.D.; Jones, E.P.; et al. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 2019, 826, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Deiner, K.; Walser, J.C.; Mächler, E.; Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol. Conserv. 2015, 183, 53–63. [Google Scholar] [CrossRef]
- Eichmiller, J.J.; Miller, L.M.; Sorensen, P.W. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Mol. Ecol. Resour. 2016, 16, 56–68. [Google Scholar] [CrossRef]
- Hunter, M.E.; Ferrante, J.A.; Meigs-Friend, G.; Ulmer, A. Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Sci. Rep. 2019, 9, 5259. [Google Scholar] [CrossRef] [Green Version]
- Pavić, D.; Cankovic, M.; Petric, I.; Makkonen, J.; Hudina, S.; Maguire, I.; Vladusic, T.; Sver, L.; Hrascan, R.; Orlic, K.; et al. Non-destructive method for detecting Aphanomyces astaci, the causative agent of crayfish plague, on the individual level. J. Invertebr. Pathol. 2020, 169, 107274. [Google Scholar] [CrossRef]
- Strand, D.A.; Jussila, J.; Johnsen, S.I.; Viljamaa-Dirks, S.; Edsman, L.; Wiik-Nielsen, J.; Viljugrein, H.; Engdahl, F.; Vrålstad, T.; Morgan, E. Detection of crayfish plague spores in large freshwater systems. J. Appl. Ecol. 2014, 51, 544–553. [Google Scholar] [CrossRef] [Green Version]
- Laramie, M.B.; Pilliod, D.S.; Goldberg, C.S.; Strickler, K.M. Environmental DNA Sampling Protocol—Filtering Water to Capture DNA from Aquatic Organisms 2-A13; U.S. Geological Survey: Reston, VA, USA, 2015; p. 23.
- Rusch, J.C.; Mojžišová, M.; Strand, D.A.; Svobodová, J.; Vrålstad, T.; Petrusek, A. Simultaneous detection of native and invasive crayfish and Aphanomyces astaci from environmental DNA samples in a wide range of habitats in Central Europe. NeoBiota 2020, 58, 1–32. [Google Scholar] [CrossRef]
- Alderman, D.J.; Polglase, J.L. Disinfection for crayfish plague. Aquac. Res. 1985, 16, 203–205. [Google Scholar] [CrossRef]
- Oidtmann, B.; Geiger, S.; Steinbauer, P.; Culas, A.; Hoffmann, R.W. Detection of Aphanomyces astaci in North American crayfish by polymerase chain reaction. Dis. Aquat. Organ. 2006, 72, 53–64. [Google Scholar] [CrossRef]
- Hinlo, R.; Gleeson, D.; Lintermans, M.; Furlan, E. Methods to maximise recovery of environmental DNA from water samples. PLoS ONE 2017, 12, e0179251. [Google Scholar] [CrossRef] [Green Version]
- Kirk, R.E. Simple Random Sample. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1328–1330. [Google Scholar]
- Ng, D.P.; Koh, D.; Choo, S.G.; Ng, V.; Fu, Q. Effect of storage conditions on the extraction of PCR-quality genomic DNA from saliva. Clin. Chim. Acta 2004, 343, 191–194. [Google Scholar] [CrossRef]
- Nagy, Z.T. A hands-on overview of tissue preservation methods for molecular genetic analyses. Org. Divers. Evol. 2010, 10, 91–105. [Google Scholar] [CrossRef]
- Michaud, C.L.; Foran, D.R. Simplified field preservation of tissues for subsequent DNA analyses. J. Forensic. Sci. 2011, 56, 846–852. [Google Scholar] [CrossRef]
- Abbadi, M.; Gastaldelli, M.; Pascoli, F.; Zamperin, G.; Buratin, A.; Bedendo, G.; Toffan, A.; Panzarin, V. Increased virulence of Italian infectious hematopoietic necrosis virus (IHNV) associated with the emergence of new strains. Virus Evol. 2021, 7, veab056. [Google Scholar] [CrossRef]
- Vrålstad, T.; Knutsen, A.K.; Tengs, T.; Holst-Jensen, A. A quantitative TaqMan MGB real-time polymerase chain reaction based assay for detection of the causative agent of crayfish plague Aphanomyces astaci. Vet. Microbiol. 2009, 137, 146–155. [Google Scholar] [CrossRef]
- Viljamaa-Dirks, S.; Heinikainen, S. A tentative new species Aphanomyces fennicus sp. nov. interferes with molecular diagnostic methods for crayfish plague. J. Fish Dis. 2019, 42, 413–422. [Google Scholar] [CrossRef]
- Berdal, K.G.; Bøydler, C.; Tengs, T.; Holst-Jensen, A. A statistical approach for evaluation of PCR results to improve the practical limit of quantification (LOQ) of GMO analyses (SIMQUANT). Eur. Food Res. Technol. 2008, 227, 1149–1157. [Google Scholar] [CrossRef]
- Strand, D.A.; Holst-Jensen, A.; Viljugrein, H.; Edvardsen, B.; Klaveness, D.; Jussila, J.; Vralstad, T. Detection and quantification of the crayfish plague agent in natural waters: Direct monitoring approach for aquatic environments. Dis. Aquat. Organ. 2011, 95, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozubikova, E.; Vralstad, T.; Filipova, L.; Petrusek, A. Re-examination of the prevalence of Aphanomyces astaci in North American crayfish populations in Central Europe by TaqMan MGB real-time PCR. Dis. Aquat. Organ. 2011, 97, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Tuffs, S.; Oidtmann, B. A comparative study of molecular diagnostic methods designed to detect the crayfish plague pathogen, Aphanomyces astaci. Vet. Microbiol. 2011, 153, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Lofgren, L.A.; Uehling, J.K.; Branco, S.; Bruns, T.D.; Martin, F.; Kennedy, P.G. Genome-based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Mol. Ecol. 2019, 28, 721–730. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In PCR—Protocols and Applications—A Laboratory Manual; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Oidtmann, B.; Schaefers, N.; Cerenius, L.; Söderhäll, K.; Hoffmann, R.W. Detection of genomic DNA of the crayfish plague fungus Aphanomyces astaci (Oomycete) in clinical samples by PCR. Vet. Microbiol. 2004, 100, 269–282. [Google Scholar] [CrossRef]
- Agersnap, S.; Larsen, W.B.; Knudsen, S.W.; Strand, D.; Thomsen, P.F.; Hesselsøe, M.; Mortensen, P.B.; Vrålstad, T.; Møller, P.R. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples. PLoS ONE 2017, 12, e0179261. [Google Scholar] [CrossRef] [Green Version]
- Tréguier, A.; Paillisson, J.M.; Dejean, T.; Valentini, A.; Schlaepfer, M.A.; Roussel, J.M. Environmental DNA surveillance for invertebrate species: Advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. J. Appl. Ecol. 2014, 51, 871–879. [Google Scholar] [CrossRef]
- Manfrin, C.; Zanetti, M.; Stanković, D.; Fattori, U.; Bertucci-Maresca, V.; Giulianini, P.G.; Pallavicini, A. Detection of the endangered stone crayfish Austropotamobius torrentium (Schrank, 1803) and its congeneric A. pallipes in its last italian biotope by eDNA analysis. Diversity 2022, 14, 205. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 17; StataCorp LLC: College Station, TX, USA, 2021. [Google Scholar]
- Torti, A.; Lever, M.A.; Jørgensen, B.B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genom. 2015, 24, 185–196. [Google Scholar] [CrossRef]
- Wittwer, C.; Stoll, S.; Thines, M.; Nowak, C. eDNA-based crayfish plague detection as practical tool for biomonitoring and risk assessment of A. astaci-positive crayfish populations. Biol. Invasions 2019, 21, 1075–1088. [Google Scholar] [CrossRef]
- King, A.C.; Krieg, R.; Weston, A.; Zenker, A.K. Using eDNA to simultaneously detect the distribution of native and invasive crayfish within an entire country. J. Environ. Manag. 2022, 302, 113929. [Google Scholar] [CrossRef]
- Wing, R.; Drew, H.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R.E. Crystal structure analysis of a complete turn of B-DNA. Nature 1980, 287, 755–758. [Google Scholar] [CrossRef]
- Turner, C.R.; Barnes, M.A.; Xu, C.C.Y.; Jones, S.E.; Jerde, C.L.; Lodge, D.M. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods Ecol Evol 2014, 5, 676–684. [Google Scholar] [CrossRef] [Green Version]
- Nyhlén, L.; Unestam, T. Wound reactions and Aphanomyces astaci growth in crayfish cuticle. J. Invertebr. Pathol. 1980, 36, 187–197. [Google Scholar] [CrossRef]
- Svoboda, J.; Mrugala, A.; Kozubikova-Balcarova, E.; Kouba, A.; Dieguez-Uribeondo, J.; Petrusek, A. Resistance to the crayfish plague pathogen, Aphanomyces astaci, in two freshwater shrimps. J. Invertebr. Pathol. 2014, 121, 97–104. [Google Scholar] [CrossRef]
- Nyhlén, L.; Unestam, T. Ultrastructure of the penetration of the crayfish integument by the fungal parasite, Aphanomyces astaci, Oomycetes. J. Invertebr. Pathol. 1975, 26, 353–366. [Google Scholar] [CrossRef]
- Dillon, N.; Austin, A.D.; Bartowsky, E. Comparison of preservation techniques for DNA extraction from hymenopterous insects. Insect. Mol. Biol. 1996, 5, 21–24. [Google Scholar] [CrossRef]
- Frantzen, M.A.; Silk, J.B.; Ferguson, J.W.; Wayne, R.K.; Kohn, M.H. Empirical evaluation of preservation methods for faecal DNA. Mol. Ecol. 1998, 7, 1423–1428. [Google Scholar] [CrossRef] [Green Version]
- Bubb, A.; Ehlers, K.; Kotze, A.; Grobler, J.P. The effect of sample age and storage method on DNA yield and microsatellite amplification from baboon (Papio ursinus) faecal samples. Eur. J. Wildl. Res. 2010, 57, 971–975. [Google Scholar] [CrossRef]
- Rissanen, A.J.; Kurhela, E.; Aho, T.; Oittinen, T.; Tiirola, M. Storage of environmental samples for guaranteeing nucleic acid yields for molecular microbiological studies. Appl. Microbiol. Biotechnol. 2010, 88, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Marotz, C.; Cavagnero, K.J.; Song, S.J.; McDonald, D.; Wandro, S.; Humphrey, G.; Bryant, M.; Ackermann, G.; Diaz, E.; Knight, R. Evaluation of the Effect of Storage Methods on Fecal, Saliva, and Skin Microbiome Composition. mSystems 2021, 6, e01329-20. [Google Scholar] [CrossRef] [PubMed]
- Stein, E.D.; White, B.P.; Mazor, R.D.; Miller, P.E.; Pilgrim, E.M. Evaluating ethanol-based sample preservation to facilitate use of DNA barcoding in routine freshwater biomonitoring programs using benthic macroinvertebrates. PLoS ONE 2013, 8, e51273. [Google Scholar] [CrossRef] [PubMed]
- Bedwell, M.E.; Goldberg, C.S. Spatial and temporal patterns of environmental DNA detection to inform sampling protocols in lentic and lotic systems. Ecol. Evol. 2020, 10, 1602–1612. [Google Scholar] [CrossRef] [Green Version]
- Barnes, M.A.; Chadderton, W.L.; Jerde, C.L.; Mahon, A.R.; Turner, C.R.; Lodge, D.M. Environmental conditions influence eDNA particle size distribution in aquatic systems. Environ. DNA 2020, 3, 643–653. [Google Scholar] [CrossRef]
- Kramer, M.F.; Coen, D.M. Enzymatic amplification of DNA by PCR: Standard procedures and optimization. Curr. Protoc. Mol. Biol. 2001, 15.1.1–15.1.14. [Google Scholar] [CrossRef]
- Kennedy, S.; Oswald, N. PCR Troubleshooting and Optimization: The Essential Guide, 1st ed.; Kennedy, S., Oswald, N., Eds.; Caister Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Matheson, C.; Gurney, C.; Esau, N.; Lehto, R. Assessing PCR Inhibition from Humic Substances. Open Enzym. Inhib. J. 2010, 3, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Wnuk, E.; Waśko, A.; Walkiewicz, A.; Bartmiński, P.; Bejger, R.; Mielnik, L.; Bieganowski, A. The effects of humic substances on DNA isolation from soils. PeerJ 2020, 8, e9378. [Google Scholar] [CrossRef]
- Ross, S.M. Introductory Statistics, 3rd ed.; Academic Press: Boston, MA, USA, 2010. [Google Scholar]
- Chang, H.-J.; Huang, K.-C.; Wu, C.-H. Determination of sample size in using central limit theorem for weibull distribution. IJIMS 2006, 17, 31–46. [Google Scholar]
- OIE. Chapter 1.4—Aquatic animal health surveillance. In Aquatic Animal Health Code; Office International Des Épizooties: Paris, France, 2009; pp. 1–34. [Google Scholar]
- West, K.M.; Stat, M.; Harvey, E.S.; Skepper, C.L.; DiBattista, J.D.; Richards, Z.T.; Travers, M.J.; Newman, S.J.; Bunce, M. eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol. Ecol. 2020, 29, 1069–1086. [Google Scholar] [CrossRef]
- Maguire, I.; Jelic, M.; Klobucar, G.; Delpy, M.; Delaunay, C.; Grandjean, F. Prevalence of the pathogen Aphanomyces astaci in freshwater crayfish populations in Croatia. Dis. Aquat. Organ. 2016, 118, 45–53. [Google Scholar] [CrossRef]
- Jussila, J.; Vrezec, A.; Jaklic, T.; Kukkonen, H.; Makkonen, J.; Kokko, H. Aphanomyces astaci isolate from latently infected stone crayfish (Austropotamobius torrentium) population is virulent. J. Invertebr. Pathol. 2017, 149, 15–20. [Google Scholar] [CrossRef]
- Davidovich, N.; Fiocchi, E.; Basso, A.; Budai, J.; Montesi, F.; Pretto, T. An outbreak of crayfish rickettsiosis caused by Coxiella cheraxi in redclaw crayfish (Cherax quadricarinatus) imported to Israel from Australia. Transbound. Emerg. Dis. 2022, 69, 204–212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basso, A.; Paolini, V.; Ghia, D.; Fea, G.; Toson, M.; Pretto, T. Cuticular Swabs and eDNA as Non-Invasive Sampling Techniques to Monitor Aphanomyces astaci in Endangered White-Clawed Crayfish (Austropotamobius pallipes Complex). Diversity 2023, 15, 279. https://doi.org/10.3390/d15020279
Basso A, Paolini V, Ghia D, Fea G, Toson M, Pretto T. Cuticular Swabs and eDNA as Non-Invasive Sampling Techniques to Monitor Aphanomyces astaci in Endangered White-Clawed Crayfish (Austropotamobius pallipes Complex). Diversity. 2023; 15(2):279. https://doi.org/10.3390/d15020279
Chicago/Turabian StyleBasso, Andrea, Valentina Paolini, Daniela Ghia, Gianluca Fea, Marica Toson, and Tobia Pretto. 2023. "Cuticular Swabs and eDNA as Non-Invasive Sampling Techniques to Monitor Aphanomyces astaci in Endangered White-Clawed Crayfish (Austropotamobius pallipes Complex)" Diversity 15, no. 2: 279. https://doi.org/10.3390/d15020279
APA StyleBasso, A., Paolini, V., Ghia, D., Fea, G., Toson, M., & Pretto, T. (2023). Cuticular Swabs and eDNA as Non-Invasive Sampling Techniques to Monitor Aphanomyces astaci in Endangered White-Clawed Crayfish (Austropotamobius pallipes Complex). Diversity, 15(2), 279. https://doi.org/10.3390/d15020279