Herbivore Influence on Post-Fire California Sage Scrub Plant and Soil Microbial Assemblages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design, Sample Collection, and Sample Processing
DNA Extraction, Sequencing, and Sequence Analysis
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Rain Year | Average Preciptiatation (cm) |
---|---|
2017–18 | 22.73 |
2018–19 | 73.76 |
2019–20 | 18.54 |
2020–21 | 2.11 |
2021–22 | 36.55 |
References
- Safford, H.D.; Van de Water, K.M. Using Fire Return Interval Departure (FRID) Analysis to Map Spatial and Temporal Changes in Fire Frequency on National Forest Lands in California; US Department of Agriculture, Forest Service, Pacific Southwest Research Station: Redding, CA, USA, 2014; p. 266. [Google Scholar]
- Kimball, S.; Goulden, M.L.; Suding, K.N.; Parker, S. Altered water and nitrogen input shifts succession in a southern California coastal sage community. Ecol. Appl. 2014, 24, 1390–1404. [Google Scholar] [CrossRef] [PubMed]
- Talluto, M.V.; Suding, K.N. Historical Change in Coastal Sage Scrub in Southern California, USA in Relation to Fire Frequency and Air Pollution. Landsc. Ecol. 2008, 23, 803–815. [Google Scholar] [CrossRef]
- Wood, Y.A.; Meixner, T.; Shouse, P.J.; Allen, E.B. Altered ecohydrologic response drives native shrub los under conditions of elevated nitrogen deposition. J. Environ. Qual. 2006, 35, 76–92. [Google Scholar] [CrossRef] [Green Version]
- D’Antonio, C.M.; Vitousek, P.M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 1992, 23, 63–87. [Google Scholar] [CrossRef]
- Brooks, M.L.; DAntonio, C.M.; Richardson, D.M.; Grace, J.B.; Keeley, J.E.; DiTomaso, J.M.; Hobbs, R.J.; Pellant, M.; Pyke, D. Effects of invasive alien plants on fire regimes. Bioscience 2014, 54, 677–688. [Google Scholar] [CrossRef] [Green Version]
- Syphard, A.D.; Keeley, J.E.; Abatzoglou, J.T. Trends and drivers of fire activity vary across California aridland ecosystems. J. Arid Environ. 2017, 144, 110–122. [Google Scholar] [CrossRef]
- Keeley, J.E.; Syphard, A.D. Historical patterns of wildfire ignition sources in California ecosystems. Int. J. Wildland Fire 2018, 27, 778–799. [Google Scholar] [CrossRef] [Green Version]
- Cox, R.D.; Preston, K.L.; Johnson, R.F.; Minnich, R.A.; Allen, A.B. Influence of landscape-scale variables on vegetation conversion to exotic annual grassland in southern California, USA. Glob. Ecol. Conserv. 2014, 2, 190–203. [Google Scholar] [CrossRef] [Green Version]
- DeSimone, S.A.; Zedler, P.H. Shrub seedling recruitment in unburned Californian coastal sage scrub and adjacent grassland. Ecology 1999, 80, 2018–2032. [Google Scholar] [CrossRef]
- Halligan, J.P. Bare areas associated with shrub stands in grasslands: The case of Artemisia californica. Bioscience 1973, 23, 429–432. [Google Scholar] [CrossRef]
- Vourlitis, G.L. Chronic N enrichment and drought alter plant cover and community composition in a Mediterranean-type semi-arid shrubland. Oecologia 2017, 184, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, R.J.; Mooney, H.A. Community changes following shrub invasion of grassland. Oecologia 1986, 70, 508–513. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, J.F.; Westman, W.E. Regional disturbance effects on herb succession patterns in Coastal Sage Scrub. J. Biogeogr. 1988, 15, 775. [Google Scholar] [CrossRef]
- Thomson, D.M.; Meyer, W.M., III; Whitcomb, I.F. Non-native plant removal and high rainfall years promote post-fire recovery of Artemisia californica in southern California sage scrub. PLoS ONE 2021, 16, e0254398. [Google Scholar] [CrossRef] [PubMed]
- Noss, R.F.; LaRoe, E.T., III; Scott, M.J. Endangered Ecosystems of the United States: A Preliminary Assessment of Loss and Degradation; Biological Report 28; National Biological Service, U.S. Department of Interior: Washington, DC, USA, 1995. [Google Scholar]
- Riordan, E.C.; Rundel, P.W. Land use compounds habitat losses under projected climate change in a threatened California ecosystem. PLoS ONE 2014, 9, e86487. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.W.; Stine, P.A.; Stoms, D.M. Distribution and conservation status of coastal sage scrub in southwestern California. J. Veg. Sci. 1994, 5, 743–756. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Bowler, P.A. Coastal sage scrub restoration. I. The challenge of mitigation. Restor. Manag. Notes 1990, 8, 78–82. [Google Scholar] [CrossRef]
- Rubinoff, D. Evaluating the California gnatcatcher as an umbrella species for conservation of southern California coastal sage scrub. Conserv. Biol. 2001, 15, 1374–1383. [Google Scholar] [CrossRef]
- Staubus, W.J.; Boyd, E.S.; Adams, T.A.; Spear, D.M.; Dipman, M.M.; Meyer, W.M., III. Ant communities in native sage scrub, non-native grassland, and suburban habitats in Los Angeles County, USA: Conservation implications. J. Insect Conserv. 2015, 19, 669–680. [Google Scholar] [CrossRef]
- Soulé, M.E.; Bolger, D.T.; Alberts, A.C.; Sauvajot, R.; Wright, J.; Sorice, M.; Hill, S. Reconstructed dynamics of rapid extinction of chaparral requiring birds in urban habitat islands. Conserv. Biol. 1988, 2, 75–92. [Google Scholar] [CrossRef] [Green Version]
- Caspi, T.; Estrada, L.; Dowling, A.V.; Su, E.; Leshchinskiy, M.; Cavalcanti, A.R.; Crane, E.J.; Robins, C.R.; Meyer, W.M., III. Carbon and nitrogen in the topsoils of Inceptisols and Mollisols under native sage scrub and non-native grasslands in southern California. Geoderma Reg. 2018, 14, 00172. [Google Scholar] [CrossRef]
- Caspi, T.; Hartz, L.A.; Villa, A.E.S.; Loesberg, J.A.; Robins, C.; Meyer, W.M., III. Impacts of invasive annuals on soil carbon and nitrogen storage in southern California depend on the identity of the invader. Ecol. Evol. 2019, 9, 4980–4993. [Google Scholar] [CrossRef] [PubMed]
- Wakefiled, Z.R.; Cavalcanti, A.R.O.C.; Driessen, L.; Jaramillo, A.; Crane, E.J., III; Richetta, G.; Meyer, W.M., III. Effects of mustard invasions on soil microbial assemblages in southern California. Diversity. In Review.
- Singh, M.; Meyer, W.M. Plant-soil feedback effects on germination and growth of native and non-native species common across southern California. Diversity 2020, 12, 217. [Google Scholar] [CrossRef]
- Bozzolo, F.H.; Lipson, D.A. Differential responses of native and exotic coastal sage scrub plant species to N additions and the soil microbial community. Plant Soil 2013, 371, 37–51. [Google Scholar] [CrossRef]
- Pickett, B.; Irvine, I.C.; Bullock, E.; Arogyaswamy, K.; Aronson, E. Legacy effects of invasive grass impact soil microbes and native shrub growth. Invasive Plant Sci. Manag. 2019, 12, 22–35. [Google Scholar] [CrossRef]
- Malanson, G.P.; Westman, W.E. Postfire succession in Californian Coastal Sage Scrub: The role of continual basal sprouting. Am. Midl. Nat. 1985, 113, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.E.; Keeley, S.C. Postfire recovery of California Coastal Sage Scrub. Am. Midl. Nat. 1984, 111, 105–117. [Google Scholar] [CrossRef]
- Callaway, R.M.; Davis, F.W. Vegetation dynamics, fire, and the physical environment in coastal central California. Ecology 1993, 74, 1567–1578. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.E.; Fotheringham, C.J.; Baer-Keeley, M. Demographic patterns of postfire regeneration in Mediterranean-climate shrublands of California. Ecol. Monogr. 2006, 76, 235–255. [Google Scholar] [CrossRef]
- Keeley, J.E. Role of fire in seed germination of woody taxa in California chaparral. Ecology 1987, 68, 434–443. [Google Scholar] [CrossRef]
- Mills, J.N. Herbivores and early postfire succession in southern California chaparral. Ecology 1986, 67, 1637–1649. [Google Scholar] [CrossRef]
- Moreno, J.M.; Oechel, W.C. Fire intensity and herbivory effects on postfire resprouting of Adenostoma fasciculatum in southern California chaparral. Oecologia 1991, 85, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, L.G. Post-Fire Succession of Plants and Soils in Chaparral Shrublands: The Role of Ephemeral Herbs and Mammalian Herbivores. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2020. [Google Scholar]
- Bartholomew, B. Bare zone between California shrub and grassland communities: The role of animals. Science 1970, 170, 1210–1212. [Google Scholar] [CrossRef]
- Litle, J.; Quon, L.H.; Antill, M.L.; Questad, E.J.; Meyer, W.M., III. Vertebrate herbivory on shrub seedlings in California sage scrub: Important but understudied interactions. Plant Ecol. 2019, 220, 523–528. [Google Scholar] [CrossRef]
- Quon, L.H.; Bobich, E.G.; Questad, E.J. Facilitation and herbivory during restoration of California coastal sage scrub. Restor. Ecol. 2019, 27, 1041–1052. [Google Scholar] [CrossRef]
- Pratt, R.B.; Jacobsen, A.L.; Ramirez, A.R.; Helms, A.M.; Traugh, C.A.; Tobin, M.F.; Heffner, M.S.; Davis, S.D. Mortality of resprouting chaparral shrubs after a fire and during a record drought: Physiological mechanisms and demographic consequences. Glob. Change Biol. 2014, 20, 893–907. [Google Scholar] [CrossRef]
- Cox, E.; Cavalcanti, A.R.O.; Crane, E.J.; Meyer, W.M., III. Soil bacterial assemblage responses to wildfire in low elevation southern California habitats. PLoS ONE 2022, 17, e0266256. [Google Scholar] [CrossRef]
- Wheeler, M.M.; Dipman, M.M.; Adams, T.A.; Runia, A.V.; Robins, C.R.; Meyer, W.M., III. Carbon and nitrogen storage in California sage scrub and non-native grasslands. J. Arid Environ. 2016, 129, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Dipman, M.M.; Meyer, W.M., III. Type conversion from native California sage scrub to non-native grassland accelerates decomposition processes. Appl. Soil Ecol. 2019, 144, 68–71. [Google Scholar] [CrossRef]
- Willott, S.J.; Miller, A.J.; Incoll, L.D.; Compton, S.G. The contribution of rabbits (Oryctolagus cuniculus L.) to soil fertility in semi-arid Spain. Biol. Fertil. Soils 2000, 31, 79–384. [Google Scholar] [CrossRef]
- Dartnell, S.; Hamlett, N.; Meyer, W.M., III. Monitoring butterfly assemblages in southern California to assess the impact of habitat and climate modifications. J. Insect Conserv. 2022, 26, 149–162. [Google Scholar] [CrossRef]
- Rundel, P.W. Sage Scrub. In Terrestrial Vegetation of California; Barbour, M.G., Keeler-Wolf, T., Schoenherr, A., Eds.; University of California Press: Berkeley, CA, USA, 2007; pp. 208–228. [Google Scholar]
- Godinez-Alvarez, H.; Herrick, J.E.; Mattocks, M.; Toledo, D.; van Zee, J. Comparison of three vegetation monitoring methods: Their relative utility for ecological assessment and monitoring. Ecol. Indicators 2009, 9, 1001–1008. [Google Scholar] [CrossRef]
- Babiuk, L.A.; Paul, E.A. The use of fluorescein isothiocyanate in the determination of the bacterial biomass of grassland soil. Can. J. Microbiol. 1970, 16, 57–62. [Google Scholar] [CrossRef]
- Ingham, E.R. Standard Operating Procedure for Microbial Population Dynamics, USEPA Global Climate Change Program. Corvallis Environmental Research Lab. 1995. Available online: https://www.soilfoodweb.com/publications/ (accessed on 30 October 2022).
- Schnurer, J.; Rosswall, T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 1982, 43, 1256–1261. [Google Scholar] [CrossRef] [Green Version]
- Van Veen, J.A.; Paul, E.A. Conversion of bio volume measurements of soil organisms, grown under various moisture tensions, to biomass and their nutrient content. Appl. Environ. Microbiol. 1979, 37, 686–692. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, D.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotech. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Rivers, A.R.; Weber, K.C.; Gardner, T.G.; Liu, S.; Armstrong, S.D. ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 2018, 7, 1418. [Google Scholar] [CrossRef] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Abarenkov, K.; Zirk, A.; Põldmaa, K.; Piirmann, T.; Pöhönen, R.; Ivanov, F.; Adojaan, K.; Kõljalg, U. Third-party annotations: Linking PlutoF Platform and the ELIXIR Contextual Data Clearing House for the reporting of source material annotation gaps and inaccuracies. Biodivers. Inf. Sci. Stand. 2021, 5, e742249. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER V6: User Manual/Tutorial; PRIMER-E: Plymouth, UK, 2006. [Google Scholar]
- Eliason, S.A.; Allen, E.B. Exotic grass competition in suppressing native shrubland re-establishment. Restor. Ecol. 1997, 5, 245–255. [Google Scholar] [CrossRef]
- Schultz, G.P. Seedling Establishment and Competition in Coastal Sage Scrub and Annual Grassland; University of California: Riverside, CA, USA, 1996. [Google Scholar]
- Allen, E.B.; Eliason, S.A.; Marquez, V.J.; Schultz, G.P.; Storms, N.K.; Stylinksi, C.D.; Zink, T.A.; Allen, M.F. What are the limits to restoration of Coastal Sage Scrub in southern California? In 2nd Interface Between Ecology and Land Development in California; Keeley, J.E., Baer-Keeley, M., Fotheringham, C.J., Eds.; United States Geological Survey: Sacramento, CA, USA, 2000; pp. 253–262. [Google Scholar]
- Keeley, J.E. Postfire ecosystem recovery and management: The October 1993 large fire episode in California. In Large Forest Fires; Moreno, J.M., Ed.; Backhuys Publishers: Leiden, The Netherlands, 1998; pp. 69–90. [Google Scholar]
- Westman, W.E.; O’Leary, J.F.; Malanson, G.P. The effects of fire intensity, aspect and substrate on post-fire growth of California Coastal Sage Scrub. In Components of Productivity of Mediterranean-Climate Regions- Basic and Applied Aspects; Margaris, N.S., Mooney, H.A., Eds.; Dr. W Junk Publishers: Boston, MA, USA, 1981; pp. 151–179. [Google Scholar]
- Nilsen, E.T. Productivity and nutrient cycling in the early postburn chaparral species Lotus scoparius. In Proceedings of the Symposium on Dynamics and Management of Mediterranean-type Ecosystems; Conrad, C.E., Oechel, W.C., Eds.; General Technical Report PSW-58; U.S. Department of Agriculture Forest Service, Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1982; pp. 291–296. [Google Scholar]
- Montalvo, A.M. Lotus scoparius (Nutt.) Ottley. In Wildland Shrubs; Francis, J.K., Ed.; General Technical Report IITF-GTR-26; U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry and Rocky Mountain Research Station: Fort Collins, CO, USA, 2004; pp. 445–448. [Google Scholar]
- Thomson, D.M.; Kwok, J.W.; Schultz, E.L. Extreme drought alters growth and interactions with exotic grasses, but not survival, for a California annual forb. Plant Ecol. 2018, 219, 705–717. [Google Scholar] [CrossRef]
Plant Taxa | Average Percent Cover | Average Dissimilarity | |
---|---|---|---|
Experimental | Control | ± 1 SD | |
Acmispon glaberNS | 50 | 22 | 27.54 ± 1.35 |
Eriodium spp. NNF | 19 | 19 | 15.58 ± 0.99 |
Bromus spp. NNG | 20 | 5 | 11.47 ± 1.04 |
Schimus barbatusNNG | 11 | 7 | 8.64 ± 0.84 |
Cryptantha spp. NF | 7 | 10 | 7.26 ± 0.88 |
Mustards *,NNF | 5 | 6 | 5.48 ± 0.72 |
Phacelia spp. NF | 3 | 5 | 4.21 ± 0.65 |
Solaum spp. NPF | 4 | 2 | 4.04 ± 0.44 |
Apiastrum angustifoliumNF | 1 | 4 | 2.99 ± 0.63 |
Camissoniopsis spp. NF | 0 | 3 | 1.72 ± 0.40 |
Centaurea melitensisNNF | 2 | 0 | 1.51 ± 0.50 |
Plant Taxa | Average Percent Cover | Average Dissimilarity | |
---|---|---|---|
Sites 1–4 | Sites 5 & 6 | ± 1 SD | |
Acmispon glaberNS | 49 | 0 | 37.78 ± 2.37 |
Cryptantha spp. NF | 17 | 0 | 12.15 ± 1.54 |
Eriodium spp. NNF | 19 | 3 | 12.02 ± 1.41 |
Schimus barbatusNNG | 10 | 4 | 6.58 ± 1.45 |
Camissoniopsis spp. NF | 0 | 8 | 5.85 ± 0.91 |
Phacelia spp. NF | 9 | 0 | 5.56 ± 0.54 |
Bromus spp. NNG | 8 | 7 | 5.25 ± 1.05 |
Mustards *,NNF | 5 | 4 | 3.85 ± 1.80 |
Artemisia californicaNS | 0 | 4 | 2.91 ± 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, W.M., III; Halligan, C.; Thomey, L.; Madunich-Arévalo, K.; Parry, C.; Scaff, R.; Macy, R.; Jones, I.; Halligan, E.; Jaramillo, A.; et al. Herbivore Influence on Post-Fire California Sage Scrub Plant and Soil Microbial Assemblages. Diversity 2022, 14, 1110. https://doi.org/10.3390/d14121110
Meyer WM III, Halligan C, Thomey L, Madunich-Arévalo K, Parry C, Scaff R, Macy R, Jones I, Halligan E, Jaramillo A, et al. Herbivore Influence on Post-Fire California Sage Scrub Plant and Soil Microbial Assemblages. Diversity. 2022; 14(12):1110. https://doi.org/10.3390/d14121110
Chicago/Turabian StyleMeyer, Wallace M., III, Caitlin Halligan, Lilleana Thomey, Kyra Madunich-Arévalo, Celia Parry, Riley Scaff, Rowan Macy, Ivy Jones, Erin Halligan, Ana Jaramillo, and et al. 2022. "Herbivore Influence on Post-Fire California Sage Scrub Plant and Soil Microbial Assemblages" Diversity 14, no. 12: 1110. https://doi.org/10.3390/d14121110
APA StyleMeyer, W. M., III, Halligan, C., Thomey, L., Madunich-Arévalo, K., Parry, C., Scaff, R., Macy, R., Jones, I., Halligan, E., Jaramillo, A., Phan, A. N. T., Thierry, S., Crane, E. J., III, & Cavalcanti, A. R. O. (2022). Herbivore Influence on Post-Fire California Sage Scrub Plant and Soil Microbial Assemblages. Diversity, 14(12), 1110. https://doi.org/10.3390/d14121110