Post-Fire Recovery of Soil Nematode Communities Depends on Fire Severity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling and Processing
2.3. Nematode Community Analysis
2.4. Statistical Analysis
3. Results
3.1. Variation in Physico-Chemical Properties of Soil
3.2. Status and Nematode Communities’ Development after High and Low Fire Severity
3.3. Nematode Community Indices and Faunal Analysis
3.4. Interaction between Soil Properties, Vegetation Composition, and Nematode Functional Guilds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bardgett, R.D.; Van Der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; Crowther, T.W. Soil nematode abundance and functional group composition at a global scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Moreno, S.; Ferris, H. Suppressive service of the soil food web: Effects of environmental management. Agric. Ecosyst. Environ. 2007, 119, 75–87. [Google Scholar] [CrossRef]
- Xiaoyun, C.; Huixin, L.; Feng, H.; Manqiang, L. Effect of bacterivorous nematode on soil microbial biomass and microbiocoenosis. Acta Ecol. Sin. 2004, 24, 2825–2831. [Google Scholar]
- Perry, R.N.; Moens, M. Plant Nematology; CAB International: Wallingford, UK, 2013. [Google Scholar]
- Chen, J.; Ferris, H. The effects of nematode grazing on nitrogen mineralization during fungal decomposition of organic matter. Soil Biol. Biochem. 1999, 31, 1265–1279. [Google Scholar] [CrossRef]
- Carrascosa, M.; Sánchez-Moreno, S.; Alonso-Prados, J.L. Relationships between nematode diversity, plant biomass, nutrient cycling and soil suppressiveness in fumigated soils. Eur. J. Soil Biol. 2014, 62, 49–59. [Google Scholar] [CrossRef]
- Jiang, Y.; Qian, H.; Wang, X.; Chen, L.; Liu, M.; Li, H.; Sun, B. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biol. Biochem. 2018, 119, 22–31. [Google Scholar] [CrossRef]
- Ferris, H. Contribution of nematodes to the structure and function of the soil food web. J. Nematol. 2010, 42, 63. [Google Scholar]
- Melakeberhan, H.; Maung, Z.; Lartey, I.; Yildiz, S.; Gronseth, J.; Qi, J.; Adjei-Gyapong, T. Nematode community-based soil food web analysis of Ferralsol, Lithosol and Nitosol soil groups in Ghana, Kenya and Malawi reveals distinct soil health degradations. Diversity 2021, 13, 101. [Google Scholar] [CrossRef]
- Renčo, M.; Gömöryová, E.; Čerevková, A. The effect of soil type and ecosystems on the soil nematode and microbial communities. Helminthologia 2020, 57, 129. [Google Scholar] [CrossRef]
- Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Wotton, B.M. Climate change and forest disturbances. BioScience 2001, 51, 723–734. [Google Scholar] [CrossRef] [Green Version]
- Zaitsev, A.S.; Gongalsky, K.B.; Malmström, A.; Persson, T.; Bengtsson, J. Why are forest fires generally neglected in soil fauna research? A mini-review. Appl. Soil Ecol. 2016, 98, 261–271. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. A burning story: The role of fire in the history of life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Mantoni, C.; Di Musciano, M.; Fattorini, S. Use of microarthropods to evaluate the impact of fire on soil biological quality. J. Environ. Manag. 2020, 266, 110624. [Google Scholar] [CrossRef]
- Castro-Huerta, R.; Morales, C.; Gajardo, J.; Mundaca, E.A.; Yáñez, M. Soil mesofauna responses to fire severity in a Sclerophyllous Forest in central Chile. Forests 2021, 12, 1444. [Google Scholar] [CrossRef]
- Keeley, J.E. Ecological Foundations for Fire Management in North American Forest and Shrubland Ecosystems; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2009; Volume 779.
- Wikars, L.O.; Schimmel, J. Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. For. Ecol. Manag. 2001, 141, 189–200. [Google Scholar] [CrossRef]
- García-Carmona, M.; García-Orenes, F.; Mataix-Solera, J.; Roldán, A.; Pereg, L.; Caravaca, F. Salvage logging alters microbial community structure and functioning after a wildfire in a Mediterranean forest. Appl. Soil Ecol. 2021, 168, 104130. [Google Scholar] [CrossRef]
- Vourlitis, G.; Steinecke, D.; Martinez, T.; Konda, K.; Rendon, R.; Hall, V.; Sethuraman, A. Fire and post-fire management alters soil microbial abundance and activity: A case study in semi-arid shrubland soils. Appl. Soil Ecol. 2022, 171, 104319. [Google Scholar] [CrossRef]
- Háněl, L.; Čerevková, A. Species and genera of soil nematodes in forest ecosystems of the Vihorlat Protected Landscape Area, Slovakia. Helminthologia 2010, 47, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Renčo, M.; Čerevková, A.; Gömöryová, E. Soil nematode fauna and microbial characteristics in an early-successional forest ecosystem. Forests 2019, 10, 888. [Google Scholar] [CrossRef] [Green Version]
- Čerevková, A.; Renčo, M.; Miklisová, D.; Gömöryová, E. Soil Nematode Communities in Managed and Natural Temperate Forest. Diversity 2021, 13, 327. [Google Scholar] [CrossRef]
- Bloemers, G.F.; Hodda, M.; Lambshead, P.J.D.; Lawton, J.H.; Wanless, F.R. The effects of forest disturbance on diversity of tropical soil nematodes. Oecologia 1997, 111, 575–582. [Google Scholar] [CrossRef]
- Renčo, M.; Čerevková, A. Windstorms as mediator of soil nematode community changes: Evidence from European spruce forest. Helminthologia 2017, 54, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Neher, D.A. Soil nematode genera that predict specific types of disturbance. Appl. Soil Ecol. 2013, 64, 135–141. [Google Scholar] [CrossRef]
- Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 1999, 14, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Pen-Mouratov, S.; Ginzburg, O.; Whitford, W.G.; Steinberger, Y. Forest fire modifies soil free-living nematode communities in the Biriya Woodland of Northern Israel. Zool. Stud. 2012, 51, 1018–1026. [Google Scholar]
- Čerevková, A.; Renčo, M.; Cagáň, L. Short-term effects of forest disturbances on soil nematode communities in European mountain spruce forests. J. Helminthol. 2013, 87, 376–385. [Google Scholar] [CrossRef]
- Whitford, W.G.; Pen-Mouratov, S.; Steinberger, Y. The effects of prescribed fire on soil nematodes in an arid juniper savanna. Open J. Ecol. 2014, 4, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Renčo, M.; Čerevková, A. Long-term effects of a wildfire on the soil nematode communities in the spruce forest ecosystem of High Tatra National Park. Int. J. Wild. Fire 2015, 24, 702–711. [Google Scholar] [CrossRef]
- Butenko, K.O.; Gongalsky, K.B.; Korobushkin, D.I.; Ekschmitt, K.; Zaitsev, A.S. Forest fires alter the trophic structure of soil nematode communities. Soil Biol. Biochem. 2017, 109, 107–117. [Google Scholar] [CrossRef]
- Malmström, A.; Persson, T.; Ahlström, K. Effects of fire intensity on survival and recovery of soil microarthropods after a clearcut burning. Can. J. For. Res. 2008, 38, 2465–2475. [Google Scholar] [CrossRef]
- Seller, U.; Ebner, K.; Wild, J. Informační List K Projektu Cíl 3 “Historický Vývoj Lesa”; Technische Universität Dresden: Dresden, Germany, 2011. [Google Scholar]
- Bogusch, P.; Blažej, L.; Trýzna, M.; Heneberg, P. Forgotten role of fires in Central European forests: Critical importance of early post-fire successional stages for bees and wasps (Hymenoptera: Aculeata). Eur. J. For. Res. 2015, 134, 153–166. [Google Scholar] [CrossRef]
- Cobb, N.A. Nematodes of the slow sand filter-beds of American cities. Contrib. Sci. Nematol. 1918, 7, 189–212. [Google Scholar]
- Baermann, G. Eine einfache methode zur auffindung von Ancylostomum (Nematoden) larven in erdproben. Geneeskd Tijdschr Ned Indie 1917, 57, 131–137. [Google Scholar]
- Seinhorst, J.W. On the killing, fixation and transferring to glycerin of nematodes. Nematologica 1962, 8, 29–32. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Yeates, G.W.; Bongers, T.; De Goede, R.G.; Freckman, D.W.; Georgieva, S. Feeding habits in soil nematode families and genera—An outline for soil ecologists. J. Nematol. 1993, 25, 315. [Google Scholar]
- Sieriebriennikov, B.; Ferris, H.; de Goede, R.G. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 2014, 61, 90–93. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef]
- Yeates, G.W. Modification and qualification of the nematode maturity index. Pedobiologia 1994, 38, 97–101. [Google Scholar]
- Ferris, H.; Bongers, T.; de Goede, R.G. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- ter Braak, C.J.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ulery, A.L.; Graham, R.C.; Amrhein, C. Wood-ash composition and soil pH following intense burning. Soil Sci. 1993, 156, 358–364. [Google Scholar] [CrossRef]
- Arocena, J.M.; Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 2003, 113, 1–16. [Google Scholar] [CrossRef]
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef]
- Inbar, A.; Lado, M.; Sternberg, M.; Tenau, H.; Ben-Hur, M. Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma 2014, 221, 131–138. [Google Scholar] [CrossRef]
- Ammitzboll, H.; Jordan, G.J.; Baker, S.C.; Freeman, J.; Bissett, A. Diversity and abundance of soil microbial communities decline, and community compositions change with severity of post-logging fire. Mol. Ecol. 2021, 30, 2434–2448. [Google Scholar] [CrossRef] [PubMed]
- Buckingham, S.; Murphy, N.; Gibb, H. Effects of fire severity on the composition and functional traits of litter-dwelling macroinvertebrates in a temperate forest. For. Ecol. Manag. 2019, 434, 279–288. [Google Scholar] [CrossRef]
- Fenster, M.; Ferrick, C.; Scott, M. Fall burning does not affect nematode density or carbon and nitrogen levels in Iowa oak forest soils. Tillers 2004, 5, 9–12. [Google Scholar]
- Bastow, J. The impacts of a wildfire in a semiarid grassland on soil nematode abundances over 4 years. Biol. Fertil. Soils 2020, 56, 675–685. [Google Scholar] [CrossRef]
- Malmström, A. Effects of wildfire and prescribed burning on soil fauna in boreal coniferous forests. Ph.D. Thesis, Faculty of Natural Resources and Agricultural Sciences, Acta Universitatis Agriculturae Sueciae, Uppsala, Sweden, 2006. [Google Scholar]
- Hu, C.; Pen-Mouratov, S.; Steinberger, Y. Vertical distribution of soil free-living nematode in a playa habitat in the North-Western Negev desert, Israel. Helminthologia 2020, 57, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Zhang, X.; Li, Q.; Jiang, Y.; Ou, W.; Neher, D.A. Vertical distribution of bacterivorous nematodes under different land uses. J. Nematol. 2005, 37, 254–262. [Google Scholar] [PubMed]
- Neher, D.A.; Wu, J.; Barbercheck, M.E.; Anas, O. Ecosystem type affects interpretation of soil nematode community measures. Appl. Soil Ecol. 2005, 30, 47–64. [Google Scholar] [CrossRef]
- Ruess, L.; Schmidt, I.K.; Michelsen, A.; Jonasson, S. Manipulations of a microbial based soil food web at two arctic sites—Evidence of species redundancy among the nematode fauna? Appl. Soil Ecol. 2001, 17, 19–30. [Google Scholar] [CrossRef]
- Wang, K.H.; McSorley, R.; Gallaher, R.N. Effect of Crotalaria juncea amendment on nematode communities in soil with different agricultural histories. J. Nematol. 2003, 35, 294. [Google Scholar]
- Šalamún, P.; Renčo, M.; Kucanová, E.; Brázová, T.; Papajová, I.; Miklisová, D.; Hanzelová, V. Nematodes as bioindicators of soil degradation due to heavy metals. Ecotoxicology 2012, 21, 2319–2330. [Google Scholar] [CrossRef]
- Renčo, M.; Čerevková, A.; Homolová, Z. Nematode communities indicate the negative impact of Reynoutria japonica invasion on soil fauna in ruderal habitats of Tatra National park in Slovakia. Glob. Ecol. Conserv. 2021, 26, e01470. [Google Scholar] [CrossRef]
- McSorley, R. Short-term effects of fire on the nematode community in a pine forest. Pedobiologia 1993, 37, 39–48. [Google Scholar]
- McSorley, R. Effect of disturbances on trophic groups in soil nematode assemblages. Nematology 2001, 13, 553–559. [Google Scholar] [CrossRef]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
Plot | Coordinates | Year of Fire | Time from Fire in 2020 (y) | Fire Severity | Dominant Tree | Tree Layer % | Shrub Layer % | Herb Layer % | Moss Layer % |
---|---|---|---|---|---|---|---|---|---|
FIR | N50.8751 E14.3314 | 2020 | 0 | High | - | 1 | 3 | ||
CON | N50.8752 E14.3311 | Pine, Spruce, Birch | 25 | 10 | 80 | 10 | |||
FIR | N50.8745 E14.3313 | 2020 | 0 | Low | Pine | 20 | 30 | 1 | |
CON | N50.8752 E14.3311 | Pine, Spruce, Birch | 25 | 20 | 80 | 10 | |||
FIR | N50.8937 E14.3612 | 2019 | 1 | High | Pine | 17 | 15 | 10 | |
CON | N50.8886 E14.3467 | - | 23 | 1 | 12 | 50 | |||
FIR | N50.8631 E14.4223 | 2019 | 1 | Low | Spruce | 1 | 2 | 40 | 25 |
CON | N50.8886 E14.3467 | - | 5 | 2 | 40 | 25 | |||
FIR | N50.8804 E14.3574 | 2016 | 4 | High | Pine | 10 | 1 | 70 | 15 |
CON | N50.8804 E14.3570 | Spruce, Pine | 10 | 20 | 65 | 70 | |||
FIR | N50.8494 E14.3487 | 2016 | 4 | Low | Pine, Spruce | 45 | 50 | 15 | |
CON | N50.8499 E14.3484 | Spruce, Beech | 40 | 5 | 70 | 70 | |||
FIR | N50.8607 E14.4061 | 2012 | 8 | High | Birch, Spruce | 10 | 75 | 20 | 2 |
CON | N50.8608 E14.4063 | Birch | 40 | 3 | 80 | 5 | |||
FIR | N50.8816 E14.3390 | 2012 | 8 | Low | Pine | 40 | 25 | 25 | |
CON | N50.8813 E14.3392 | Spruce, Pine | 25 | 20 | 50 | 20 | |||
FIR | N50.8565 E14.4050 | 2006 | 14 | High | Birch | 60 | 20 | 20 | 10 |
CON | N50.8608 E14.4063 | Birch | 40 | 3 | 80 | 5 | |||
FIR | N50.8804 E14.3147 | 2006 | 14 | Low | Pine, Beech | 15 | 10 | 5 | |
CON | N50.8819 E14.3120 | Beech, Pine, Spruce | 60 | 15 | 30 | 10 | |||
FIR | N50.8817 E14.2987 | 2000 | 20 | High | Birch, Pine | 50 | 25 | 40 | 2 |
CON | N50.8817 E14.2961 | Pine | 40 | 3 | 70 | 1 | |||
FIR | N50.9278 E14.4336 | 2000 | 20 | Low | Spruce, Pine | 30 | 2 | 55 | 20 |
CON | N50.9282 E14.4348 | Spruce, Pine | 70 | 6 | 10 | ||||
FIR | N50.9041 E14.3528 | 1975 | 45 | High | Birch, Larch | 30 | 3 | 60 | 60 |
CON | N50.9025 E14.3537 | Spruce, Beech | 40 | 3 | 1 | 20 | |||
FIR | N50.9232 E14.4042 | 1975 | 45 | Low | Spruce, Pine, Birch | 40 | 5 | 10 | 25 |
CON | N50.9239 E14.4045 | Spruce, Pine | 50 | 18 | 15 | 50 | |||
FIR | N50.8947 E14.3507 | 1910 | 110 | High | 30 | 10 | 65 | 70 | |
CON | N50.8886 E14.3467 | 60 | 10 | 50 | 5 | ||||
FIR | N50.9084 E14.2218 | 1910 | 110 | Low | Pine, Birch | 3 | 2 | 15 | 15 |
CON | N50.9057 E14.2196 | Beech, Spruce, Oak | 10 | 15 |
Year of Fire | Time from Fire in 2020 (Years) | Fire of High Severity | Fire of Low Severity | ||||||
---|---|---|---|---|---|---|---|---|---|
XI/2020 | IV/2021 | XI/2020 | IV/2021 | ||||||
FIR | CON | FIR | CON | FIR | CON | FIR | CON | ||
pH | |||||||||
2020 | 0 | 4.83 ± 0.21 | 4.83 ± 0.41 | 5.11 ± 0.18 | 5.15 ± 0.22 | 4.89 ± 0.25 | 5.19 ± 0.08 | 5.13 ± 0.38 | 5.27 ± 0.36 |
2019 | 1 | 4.63 ± 0.51 | 4.61 ± 0.15 | 4.85 ± 0.18 * | 5.21 ± 0.06 | 4.54 ± 0.31 | 4.01 ± 0.24 | 5.00 ± 0.35 | 4.71 ± 0.23 |
2016 | 4 | 4.37 ± 0.33 | 3.98 ± 0.13 | 4.96 ± 0.36 | 4.47 ± 0.19 | 4.22 ± 0.19 | 3.96 ± 0.13 | 4.12 ± 0.33 | 4.37 ± 0.15 |
2012 | 8 | 4.10 ± 0.40 | 3.87 ± 0.09 | 5.14 ± 0.28 * | 4.79 ± 0.12 | 4.21 ± 0.13 * | 3.82 ± 0.14 | 4.56 ± 0.31 | 4.79 ± 0.12 |
2006 | 14 | 4.92 ± 0.21 | 4.83 ± 0.24 | 6.06 ± 0.05 | 6.07 ± 0.43 | 4.14 ± 0.09 * | 3.81 ± 0.16 | 5.25 ± 0.80 | 4.50 ± 0.39 |
2000 | 20 | 4.31 ± 0.03 | 4.03 ± 0.19 | 4.60 ± 0.53 | 4.88 ± 0.37 | 3.78 ± 0.41 | 3.66 ± 0.06 | 4.54 ± 0.51 | 4.73 ± 0.06 |
1975 | 45 | 4.09 ± 0.14 | 3.89 ± 0.18 | 5.12 ± 0.32 * | 4.65 ± 0.12 | 3.59 ± 0.18 | 3.75 ± 0.17 | 4.54 ± 0.14 | 4.59 ± 0.03 |
1910 | 110 | 3.69 ± 0.32 | 3.74 ± 0.06 | 4.13 ± 0.15 | 4.43 ± 0.29 | 4.80 ± 0.18 | 4.78 ± 0.22 | 5.18 ± 0.11 | 5.38 ± 0.29 |
DM | |||||||||
2020 | 0 | 0.45 ± 0.07 * | 0.61 ± 0.05 | 0.40 ± 0.03 * | 0.29 ± 0.02 | 0.54 ± 0.15 | 0.47 ± 0.16 | 0.29 ± 0.02 * | 0.45 ± 0.16 |
2019 | 1 | 0.44 ± 0.05 | 0.52 ± 0.19 | 0.36 ± 0.04 | 0.36 ± 0.01 | 0.47 ± 0.12 * | 0.61 ± 0.03 | 0.39 ± 0.21 | 0.38 ± 0.08 |
2016 | 4 | 0.62 ± 0.24 | 0.58 ± 0.06 | 0.74 ± 0.15 * | 0.43 ± 0.12 | 0.86 ± 0.17 * | 0.58 ± 0.06 | 0.58 ± 0.08 | 0.47 ± 00.9 |
2012 | 8 | 0.67 ± 0.05 | 0.66 ± 0.04 | 0.42 ± 0.09 | 0.32 ± 0.03 | 0.92 ± 0.04 * | 0.59 ± 0.03 | 0.56 ± 0.14 * | 0.29 ± 0.01 |
2006 | 14 | 0.91 ± 0.09 | 0.92 ± 0.04 | 0.78 ± 0.06 | 0.80 ± 0.07 | 0.50 ± 0.09 | 0.66 ± 0.02 | 0.38 ± 0.09 | 0.49 ± 0.03 |
2000 | 20 | 0.84 ± 0.05 * | 0.66 ± 0.02 | 0.54 ± 0.06 * | 0.34 ± 0.07 | 0.81 ± 0.12 * | 0.64 ± 0.03 | 0.56 ± 0.11 * | 0.35 ± 0.06 |
1975 | 45 | 0.73 ± 0.12 | 0.67 ± 0.04 | 0.60 ± 0.12 * | 0.39 ± 0.03 | 0.67 ± 0.06 | 0.59 ± 0.03 | 0.40 ± 0.06 | 0.34 ± 0.02 |
1910 | 110 | 0.66 ± 0.07 | 0.73 ± 0.08 | 0.48 ± 0.01 | 0.51 ± 0.12 | 0.32 ± 0.03 | 0.38 ± 0.08 | 0.29 ± 0.01 | 0.36 ± 0.06 |
DOC | |||||||||
2020 | 0 | 592.3 ± 185.2 | 781.3 ± 139.9 | 315.1 ± 112.5 * | 930.5 ± 271.1 | 503.3 ± 17.4 | 507.4 ± 17.2 | 481.5 ± 104.9 | 469.4 ± 45.8 |
2019 | 1 | 650..8 ± 234.7 | 644.1 ± 458.2 | 397.7 ± 160.2 | 667.3 ± 93.7 | 335.1 ± 81.0 | 478.1 ± 193.2 | 607.2 ± 474.0 | 338.2 ± 150.9 |
2016 | 4 | 319.6 ± 217.3 * | 747.1 ± 154.1 | 103.6 ± 77.4 * | 507.8 ± 144.5 | 264.0 ± 173.7 | 579.1 ± 107.9 | 564.2 ± 393.6 | 420.8 ± 146.2 |
2012 | 8 | 838.3 ± 78.5 | 735.1 ± 196.1 | 323.7 ± 100.9 * | 509.4 ± 55.6 | 177.3 ± 64.6 * | 669.1 ± 103.3 | 272.3 ± 179.6 * | 632.9 ± 105.4 |
2006 | 14 | 382.7 ± 185.0 | 416.8 ± 199.4 | 103.5 ± 60.5 | 170.3 ± 14.5 | 544.7 ± 89.7 | 882.9 ± 206.7 | 423.9 ± 146.9 | 635.3 ± 41.8 |
2000 | 20 | 326.7 ± 26.5 * | 670.1 ± 102.8 | 140.9 ± 25.5 | 381.9 ± 130.6 | 724.7 ± 795.4 | 830.2 ± 177.9 | 487.1 ± 466.0 | 674.3 ± 207.8 |
1975 | 45 | 434.0 ± 189.6 | 612.9 ± 286.9 | 243.2 ± 94.8 * | 497.8 ± 130.2 | 1042.6 ± 551.8 | 825.4 ± 355.9 | 345.6 ± 81.7 * | 670.1 ± 58.1 |
1910 | 110 | 1406.5 ± 1502.7 | 476.2 ± 130.9 | 509.6 ± 88.2 | 605.0 ± 222.3 | 1246.5 ± 269.3 | 2318.9 ± 1561.2 | 877.4 ± 232.6 | 705.3 ± 176.6 |
DN | |||||||||
2020 | 0 | 116.4 ± 37.3 * | 72.7 ± 7.8 | 32.1 ± 11.0 * | 126.7 ± 74.6 | 125.1 ± 27.8 * | 74.9 ± 19.2 | 56.4 ± 10.6 | 64.1 ± 7.5 |
2019 | 1 | 148.1 ± 63.9 | 102.4 ± 70.9 | 55.9 ± 29.4 * | 96.6 ± 17.8 | 51.8 ± 42.7 | 28.4 ± 13.2 | 72.1 ± 57.9 | 30.1 ± 30.6 |
2016 | 4 | 20.2 ± 8.1 * | 41.6 ± 9.8 | 10.2 ± 11.7 | 33.6 ± 7.4 | 14.8 ± 6.3 | 31.2 ± 2.6 | 30.4 ± 22.9 | 16.5 ± 6.6 |
2012 | 8 | 35.6 ± 3.2 | 29.6 ± 9.1 | 26.5 ± 10.9 | 43.4 ± 15.1 | 9.5 ± 5.4 * | 36.1 ± 17.2 | 13.4 ± 4.7 * | 84.4 ± 10.1 |
2006 | 14 | 22.3 ± 9.9 | 20.6 ± 5.0 | 13.9 ± 5.7 | 16.4 ± 5.7 | 30.6 ± 2.3 | 56.1 ± 9.5 | 26.9 ± 6.5 | 46.6 ± 7.2 |
2000 | 20 | 12.3 ± 0.9 * | 32.1 ± 5.8 | 13.3 ± 6.2 | 38.5 ± 22.2 | 24.5 ± 27.8 | 28.9 ± 9.0 | 35.5 ± 41.2 | 66.3 ± 25.5 |
1975 | 45 | 25.2 ± 10.7 | 26.8 ± 6.6 | 29.4 ± 7.5 | 47.1 ± 16.7 | 39.9 ± 22.5 | 34.2 ± 14.1 | 26.6 ± 1.6 * | 50.9 ± 3.0 |
1910 | 110 | 54.2 ± 46.6 | 16.4 ± 4.2 | 57.5 ± 12.3 | 50.9 ± 20.9 | 138.9 ± 19.5 * | 291.0 ± 159.5 | 101.4 ± 33.1 | 101.2 ± 13.1 |
DP | |||||||||
2020 | 0 | 71.5 ± 53.9 * | 10.4 ± 13.5 | 42.7 ± 23.8 | 16.6 ± 6.8 | 84.1 ± 30.1 | 82.0 ± 10.5 | 63.0 ± 26.8 | 68.1 ± 14.6 |
2019 | 1 | 23.9 ± 9.6 | 10.7 ± 9.2 | 23.7 ± 8.4 | 26.1 ± 9.9 | 14.1 ± 7.1 * | 1.3 ± 1.7 | 26.2 ± 19.5 | 5.5 ± 6.9 |
2016 | 4 | 0.8 ± 0.1 | 3.5 ± 2.4 | 6.8 ± 1.5 | 2.7 ± 2.0 | 0.9 ± 0.2 | 0.6 ± 0.1 | 3.5 ± 1.9 | 3.2 ± 4.9 |
2012 | 8 | 0.7 ± 0.9 | 1.6 ± 1.1 | 41.9 ± 60.4 | 1.3 ± 0.5 | 2.7 ± 1.6 | 0.5 ± 0.5 | 4.8 ± 3.2 * | 18.7 ± 7.6 |
2006 | 14 | 19.2 ± 11.4 | 22.6 ± 5.3 | 15.8 ± 12.3 | 18.1 ± 11.1 | - | 3.8 ± 1.3 | 15.2 ± 5.1 | 17.3 ± 13.8 |
2000 | 20 | 9.7 ± 6.3 * | 0.5 ± 0.9 | 12.9 ± 4.1 | 10.8 ± 7.3 | 2.2 ± 3.5 | 2.5 ± 2.0 | 8.8 ± 3.2 | 17.2 ± 16.7 |
1975 | 45 | 0.5 ± 0.4 | 0.4 ± 0.2 | 3.4 ± 2.6 | 5.2 ± 9.1 | 4.1 ± 4.9 | 0.06 ± 0.11 | 14.6 ± 6.2 | 5.7 ± 9.8 |
1910 | 110 | 0.6 ± 0.8 | 0.9 ± 0.5 | 9.6 ± 12.1 | 6.7 ± 5.2 | 26.8 ± 4.8 | 46.0 ± 12.8 | 31.6 ± 5.8 | 43.4 ± 14.0 |
SM | |||||||||
2020 | 0 | 45.5 ± 15.4 * | 26.2 ± 3.8 | 60.4 ± 13.2 | 66.6 ± 1.1 | 60.1 ± 8.1 | 61.3 ± 9.2 | 68.9 ± 3.7 | 65.4 ± 7.5 |
2019 | 1 | 38.8 ± 2.2 | 52.9 ± 15.8 | 60.7 ± 2.7 | 59.7 ± 3.1 | 54.3 ± 8.0 | 39.4 ± 13.2 | 63.6 ± 7.5 | 61.3 ± 5.3 |
2016 | 4 | 14.7 ± 5.5 | 22.6 ± 2.5 | 36.5 ± 16.6 | 54.8 ± 5.7 | 6.9 ± 4.5 * | 31.1 ± 1.4 | 37.6 ± 13.0 | 54.8 ± 7.4 |
2012 | 8 | 26.6 ± 2.7 | 19.7 ± 7.3 | 61.1 ± 6.2 | 65.5 ± 2.1 | 19.7 ± 13.3 | 40.0 ± 14.9 | 38.5 ± 15.7 | 65.6 ± 1.6 |
2006 | 14 | 2.7 ± 2.0 | 10.3 ± 2.1 | 30.3 ± 2.4 | 30.5 ± 6.1 | 32.0 ± 10.4 * | 14.7 ± 7.2 | 60.6 ± 4.5 | 50.1 ± 7.8 |
2000 | 20 | 12.3 ± 6.2 | 17.4 ± 8.4 | 47.2 ± 5.5 * | 59.6 ± 4.8 | 14.0 ± 7.0 | 21.5 ± 2.7 | 44.8 ± 10.5 | 54.1 ± 6.4 |
1975 | 45 | 25.7 ± 6.4 | 28.1 ± 2.3 | 46.6 ± 15.2 | 55.5 ± 5.7 | 25.8 ± 4.2 | 20.4 ± 2.4 | 54.3 ± 8.6 | 62.5 ± 1.0 |
1910 | 110 | 25.7 ± 17.5 | 15.1 ± 5.2 | 50.2 ± 3.4 | 42.9 ± 12.0 | 58.9 ± 4.8 | 50.2 ± 10.0 | 67.1 ± 1.3 | 58.5 ± 4.1 |
Years from Fire | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 4 | 8 | 14 | 20 | 45 | 110 | |||||||||
FIR | CON | FIR | CON | FIR | CON | FIR | CON | FIR | CON | FIR | CON | FIR | CON | FIR | CON | |
Abundance (g−1) | 5.00 ± 3.2 ** | 33.1 ± 13.1 | 10.1 ± 5.2 ** | 45.9 ± 15.7 | 33.5 ± 11.7 * | 49.0 ± 5.6 | 95.5 ± 29.1 | 91.7 ± 21.3 | 42.8 ± 14.9 | 51.3 ± 15.2 | 44.2 ± 26.1 | 55.9 ± 24.9 | 58.2 ± 23.5 | 59.9 ± 20.4 | 36.6 ± 13.8 | 38.4 ± 7.3 |
H spp | 2.98 ± 0.16 * | 3.24 ± 0.15 | 2.40 ± 0.20 ** | 3.23 ± 0.12 | 3.19 ± 0.13 | 3.27 ± 0.17 | 3.25 ± 0.07 | 3.27 ± 0.19 | 3.38 ± 0.20 | 3.47 ± 0.08 | 3.20 ± 0.18 | 3.13 ± 0.17 | 3.14 ± 0.12 | 3.12 ± 0.32 | 3.20 ± 0.25 | 3.40 ± 0.04 |
Species number | 26.8 ± 2.5 * | 35.1 ± 5.1 | 19.8 ± 3.2 ** | 35.3 ± 3.6 | 37.8 ± 6.4 | 36.7 ± 5.2 | 38.0 ± 4.9 | 38.8 ± 6.1 | 38.8 ± 7.5 | 41.7 ± 2.4 | 35.8 ± 6.3 | 33.0 ± 6.0 | 33.7 ± 2.6 | 37.7 ± 4.6 | 35.7 ± 6.9 | 41.3 ± 3.7 |
Plant parasites (%) | 1.4 ± 1.9 ** | 9.9 ± 1.7 | 0.6 ± 0.7 * | 4.2 ± 0.7 | 6.2 ± 2.6 | 7.9 ± 4.5 | 17.4 ± 7.9 | 15.3 ± 6.9 | 6.7 ± 1.0 | 7.1 ± 0.3 | 4.6 ± 3.6 | 5.8 ± 3.0 | 20.6 ± 1.6 | 13.3 ± 5.5 | 10.8 ± 1.4 | 9.1 ± 1.0 |
Bacterivores (%) | 74.9 ± 10.7 * | 48.1 ± 5.9 | 70.5 ± 5.5 * | 56.8 ± 4.9 | 57.4 ± 4.5 | 48.9 ± 9.9 | 51.4 ± 8.0 | 42.4 ± 8.2 | 51.5 ± 5.0 | 46.4 ± 7.4 | 56.3 ± 10.1 | 53.2 ± 8.1 | 44.5 ± 12.6 | 57.7 ± 8.4 | 50.1 ± 4.0 | 53.4 ± 4.1 |
Fungivores (%) | 18.9 ± 11.7 | 22.6 ± 7.5 | 14.4 ± 5.2 | 22.2 ± 2.4 | 20.7 ± 6.8 | 21.2 ± 6.3 | 17.5 ± 4.9 | 25.8 ± 6.7 | 20.8 ± 3.3 | 27.5 ± 4.7 | 19.1 ± 6.6 | 23.4 ± 5.5 | 18.4 ± 8.6 | 16.1 ± 5.2 | 29.7 ± 3.6 | 23.2 ± 1.7 |
Omnivores (%) | 4.8 ± 0.9 * | 14.4 ± 3.8 | 14.3 ± 7.2 | 14.1 ± 4.1 | 13.4 ± 4.4 | 18.9 ± 6.8 | 10.2 ± 3.6 | 13.1 ± 4.0 | 15.2 ± 31 | 16.8 ± 1.9 | 15.7 ± 6.5 | 16.3 ± 6.2 | 11.6 ± 6.0 | 10.9 ± 3.1 | 8.3 ± 2.5 | 12.4 ± 3.7 |
Carnivores (%) | - | 5.0 ± 2.5 | - | 2.6 ± 1.1 | 2.3 ± 1.2 | 3.4 ± 3.1 | 3.5 ± 1.9 | 3.4 ± 2.2 | 5.8 ± 2.4 | 4.1 ± 2.6 | 4.4 ± 1.5 | 1.4 ± 1.0 | 4.9 ± 1.6 | 2.1 ± 1.2 | 1.0 ± 1.0 | 1.8 ± 1.5 |
MI | 2.13 ± 0.11 * | 2.51 ± 0.18 | 2.27 ± 0.16 * | 2.45 ± 0.18 | 2.29 ± 0.16 * | 2.69 ± 0.18 | 2.39 ± 0.08 | 2.55 ± 0.13 | 2.61 ± 0.16 | 2.64 ± 0.11 | 2.63 ± 0.24 | 2.69 ± 0.19 | 2.69 ± 0.17 | 2.61 ± 0.11 | 2.36 ± 0.11 | 2.47 ± 0.14 |
PPI | 2.44 ± 0.51 | 2.12 ± 0.09 | 2.54 ± 0.51 | 2.13 ± 0.24 | 2.28 ± 0.06 | 2.28 ± 0.27 | 2.14 ± 0.13 | 2.17 ± 0.16 | 2.15 ± 0.13 | 2.04 ± 0.06 | 2.33 ± 0.37 | 2.39 ± 0.22 | 2.07 ± 0.06 | 2.07 ± 0.08 | 2.25 ± 0.07 | 2.27 ± 0.21 |
CI | 16.2 ± 11.3 * | 54.7 ± 22.2 | 31.5 ± 14.4 * | 52.8 ± 9.8 | 43.9 ± 15.5 * | 71.8 ± 22.4 | 28.9 ± 11.1 * | 67.4 ± 23.0 | 43.5 ± 21.3 | 53.6 ± 19.3 | 60.8 ± 28.9 | 73.1 ± 18.9 | 48.5 ± 25.6 | 49.5 ± 20.7 | 65.1 ± 7.8 | 56.1 ± 12.6 |
EI | 60.5 ± 6.6 * | 47.6 ± 6.9 | 39.9 ± 11.8 | 46.0 ± 16.2 | 39.7 ± 10.6 | 42.1 ± 10.3 | 55.0 ± 8.4 | 41.8 ± 10.3 | 45.5 ± 15.5 | 47.6 ± 6.0 | 31.7 ± 14.8 | 44.2 ± 11.9 | 39.9 ± 13.9 | 32.5 ± 6.5 | 40.7 ± 6.1 | 54.5 ± 9.1 |
SI | 54.2 ± 5.3 * | 68.5 ± 6.3 | 48.8 ± 15.8 * | 66.3 ± 4.1 | 65.1 ± 7.7 | 71.9 ± 8.7 | 65.9 ± 1.9 | 66.6 ± 7.5 | 73.1 ± 7.9 | 73.4 ± 4.2 | 70.1 ± 7,1 | 76.9 ± 5.6 | 74.6 ± 8.25 | 69.5 ± 6.1 | 63.6 ± 8.1 | 68.4 ± 5.2 |
Total biomass | 0.3 ± 0.2 | 1.7 ± 1.1 | 0.6 ± 0.4 | 2.9 ± 2.2 | 2.3 ± 1.4 | 1.5 ± 1.0 | 4.1 ± 1.3 | 2.9 ± 2.0 | 4.3 ± 2.1 | 4.1 ± 1.7 | 1.3 ± 0.6 | 1.7 ± 0.8 | 3.3 ± 1.5 | 2.0 ± 0.5 | 1.1 ± 1.0 | 2.2 ± 0.9 |
Years from Fire | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 4 | 8 | 14 | 20 | 45 | 110 | |||||||||
FIR | CON | FIR | CON | FIR | CON | FIR | CON | FIR | CON | FIR | CON | FIR | CON | FIR | CON | |
Abundance (g−1) | 14.9 ± 2.9 ** | 36.8 ± 6.9 | 30.9 ± 11.5 | 45.9 ± 11.8 | 40.2 ± 7.8 | 44.7 ± 15.7 | 41.5 ± 18.4 | 80.6 ± 35.3 | 20.2 ± 10.6 | 18.8 ± 5.6 | 19.3 ± 6.4 | 22.3 ± 20.2 | 60.1 ± 17.6 | 66.8 ± 23.1 | 73.2 ± 19.0 | 82.8 ± 18.9 |
H spp | 2.61 ± 0.4 | 3.18 ± 0.22 | 2.96 ± 0.20 | 3.10 ± 0.2 | 3.22 ± 0.33 | 3.33 ± 0.21 | 3.13 ± 0.40 | 3.86 ± 0.11 | 3.31 ± 0.22 | 3.30 ± 0.22 | 3.15 ± 0.24 | 3.14 ± 0.32 | 2.92 ± 0.25 | 3.16 ± 0.22 | 3.31 ± 0.07 | 3.35 ± 0.18 |
Species number | 25.2 ± 4.1 | 33.0 ± 7.8 | 28.5 ± 3.6 | 33.0 ± 6.0 | 35.8 ± 7.6 | 43.5 ± 5.2 | 35.8 ± 9.5 | 42.0 ± 3.5 | 37.0 ± 6.8 | 37.5 ± 8.01 | 33.0 ± 6.8 | 35.2 ± 11.4 | 27.0 ± 6.3 | 34.3 ± 6.8 | 38.5 ± 2.0 | 42.2 ± 2.4 |
Plant parasites (%) | 2.6 ± 2.0 | 5.4 ± 2.8 | 2.6 ± 1.7 * | 14.7 ± 6.6 | 6.9 ± 2.1 | 11.4 ± 5.5 | 11.6 ± 5.3 | 6.2 ± 1.2 | 12.2 ± 5.2 | 12.0 ± 4.9 | 11.4 ± 2.9 | 13.6 ± 6.5 | 13.4 ± 7.3 | 9.2 ± 6.0 | 6.1 ± 3.0 | 4.9 ± 2.5 |
Bacterivores (%) | 70.6 ± 10.6 | 53.0 ± 12.6 | 59.0 ± 5.4 | 45.9 ± 4.6 | 52.3 ± 5.8 | 42.5 ± 11.0 | 50.1 ± 5.1 | 45.2 ± 6.5 | 52.6 ± 8.1 | 52.1 ± 8.6 | 50.1 ± 13.7 | 48.6 ± 8.2 | 52.0 ± 6.3 | 55.1 ± 8.4 | 61.2 ± 4.1 | 60.2 ± 2.7 |
Fungivores (%) | 16.4 ± 6.1 | 29.9 ± 6.9 | 20.3 ± 3.8 | 22.8 ± 4.2 | 25.6 ± 3.4 | 28.0 ± 9.2 | 22.4 ± 4.3 | 28.3 ± 6.7 | 18.8 ± 3.9 | 15.7 ± 2.9 | 22.2 ± 8.7 | 20.8 ± 4.7 | 23.6 ± 9.2 | 25.0 ± 4.1 | 18.1 ± 2.4 | 23.1 ± 3.2 |
Omnivores (%) | 7.2 ± 4.1 | 8.7 ± 5.0 | 17.0 ± 5.8 | 12.3 ± 4.5 | 14.6 ± 5.3 | 13.9 ± 1.8 | 12.9 ± 4.8 | 17.4 ± 5.8 | 13.0 ± 3.8 | 16.7 ± 5.3 | 14.6 ± 5.7 | 14.5 ± 5.7 | 9.5 ± 1.7 | 9.2 ± 2.1 | 12.1 ± 2.1 | 12.2 ± 5.1 |
Carnivores (%) | 3.3 ± 3.2 | 3.1 ± 0.6 | 1.1 ± 1.0 | 4.2 ± 1.6 | 2.4 ± 2.3 | 4.3 ± 1.2 | 3.0 ± 1.9 | 3.0 ± 1.5 | 3.4 ± 1.7 | 3.5 ± 2.2 | 1.6 ± 1.8 | 2.6 ± 2.4 | 1.7 ± 1.5 | 1.5 ± 1.3 | 2.5 ± 1.5 | 2.6 ± 2.4 |
MI | 2.41 ± 0.13 | 2.27 ± 0.16 | 2.40 ± 0.20 | 2.48 ± 0.10 | 2.55 ± 0.18 | 2.60 ± 0.14 | 2.42 ± 0.15 | 2.62 ± 014 | 2.64 ± 0.14 | 2.59 ± 0.10 | 2.46 ± 0.25 | 2.54 ± 0.15 | 2.39 ± 0.12 | 2.47 ± 0.09 | 2.54 ± 0.03 | 2.44 ± 0.10 |
PPI | 2.0 ± 0.0 | 2.0 ± 0.0 | 2.50 ± 0.35 | 2.10 ± 0.12 | 2.25 ± 0.14 | 2.16 ± 0.13 | 2.16 ± 0.13 | 2.25 ± 0.19 | 2.24 ± 0.25 | 2.23 ± 0.18 | 2.20 ± 0.12 | 2.27 ± 0.16 | 2.10 ± 0.14 | 2.18 ± 0.13 | 2.40 ± 0.31 | 2.39 ± 0.06 |
CI | 38.6 ± 12.1 | 36.9 ± 17.7 | 27.7 ± 8.4 | 43.2 ± 18.9 | 57.5 ± 14.3 | 39.9 ± 19.6 | 42.4 ± 13.0 | 58.7 ± 19.8 | 63.1 ± 23.4 | 43.2 ± 21.6 | 39.7 ± 23.2 | 61.8 ± 32.0 | 59.2 ± 22.3 | 64.9 ± 26.7 | 51.9 ± 26.6 | 51.5 ± 25.2 |
EI | 40.1 ± 13.1 | 57.9 ± 7.1 | 55.5 ± 9.8 | 48.8 ± 10.9 | 39.7 ± 4.5 | 52.9 ± 11.1 | 44.0 ± 4.7 | 45.2 ± 8.5 | 33.7 ± 8.8 | 42.6 ± 11.5 | 48.9 ± 9.9 | 38.1 ± 16.8 | 38.5 ± 8.5 | 40.9 ± 16.7 | 42.1 ± 11.9 | 42.1 ± 7.6 |
SI | 62.9 ± 10.7 | 57.2 ± 9.8 | 65.9 ± 8.6 | 67.5 ± 3.3 | 66.2 ± 13.0 | 74.2 ± 8.5 | 61.2 ± 9.9 | 73.4 ± 7.6 | 70.4 ± 7.9 | 70.6 ± 4.9 | 64.0 ± 14.7 | 66.7 ± 8.8 | 55.9 ± 12.2 | 63.8 ± 9.2 | 69.5 ± 3.2 | 60.8 ± 8.5 |
Total biomass | 0.7 ± 0.5 * | 2.5 ± 0.7 | 2.3 ± 1.2 | 2.5 ± 1.4 | 2.1 ± 0.7 | 1.6 ± 0.8 | 2.1 ± 1.1 | 4.4 ± 3.4 | 0.6 ± 0.2 | 1.3 ± 1.1 | 0.9 ± 0.6 | 0.8 ± 0.8 | 1.2 ± 0.7 | 1.2 ± 0.7 | 3.6 ± 1.3 | 5.1 ± 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renčo, M.; Adámek, M.; Jílková, V.; Devetter, M. Post-Fire Recovery of Soil Nematode Communities Depends on Fire Severity. Diversity 2022, 14, 1116. https://doi.org/10.3390/d14121116
Renčo M, Adámek M, Jílková V, Devetter M. Post-Fire Recovery of Soil Nematode Communities Depends on Fire Severity. Diversity. 2022; 14(12):1116. https://doi.org/10.3390/d14121116
Chicago/Turabian StyleRenčo, Marek, Martin Adámek, Veronika Jílková, and Miloslav Devetter. 2022. "Post-Fire Recovery of Soil Nematode Communities Depends on Fire Severity" Diversity 14, no. 12: 1116. https://doi.org/10.3390/d14121116
APA StyleRenčo, M., Adámek, M., Jílková, V., & Devetter, M. (2022). Post-Fire Recovery of Soil Nematode Communities Depends on Fire Severity. Diversity, 14(12), 1116. https://doi.org/10.3390/d14121116