First Description of Akanthomyces uredinophilus comb. nov. from Hemipteran Insects in America
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. Morphological and Microscopic Characterization
2.3. Virulence Bioassays
2.4. DNA Extraction, PCR Amplification and Sequencing
2.5. Phylogenetic Analysis
2.6. Database Mining for Cryptic Identifications of L. uredinophilum
3. Results
3.1. Morphological and Microscopic Characterization
3.2. Virulence Bioassays
3.3. Molecular Taxonomic Identification
3.4. Database Mining for Cryptic Identifications of L. uredinophilum
4. Discussion
5. Conclusions
6. Taxonomic Description
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Emden, H.; Harrington, R. Aphids as Crop Pests; CABI Publishing: London, UK, 2007; p. 717. [Google Scholar]
- Oliveira, M.R.V.; Henneberry, T.J.; Anderson, P. History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot. 2001, 20, 709–723. [Google Scholar] [CrossRef] [Green Version]
- Blackman, R.L. Aphids on the Worlds Crops. An Identification and Information Guide; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Kunjwal, N.; Srivastava, R.M. Insect pests of vegetables. In Pests and Their Management; Omkar, Ed.; Springer Nature: Singapore; Pte Ltd.: Uttarakhand, India, 2018; pp. 163–221. [Google Scholar] [CrossRef]
- Khan, I.A.; Wan, F.H. Life history of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) biotype B on tomato and cotton host plants. J. Entomol. Zool. Stud. 2015, 3, 117–121. [Google Scholar]
- Henneberry, T.J.; Jech, L.F.; Hendrix, D.L.; Steele, T. Bemisia argentifolii (Homoptera: Aleyrodidae) honeydew and honeydew sugar relationships to sticky cotton. Southwest. Entomol. 2000, 25, 1–14. [Google Scholar] [CrossRef]
- Chen, J.; McAuslane, H.J.; Carle, R.B.; Webb, S.E. Impact of Bemisia argentifolii (Homoptera: Auchenorrhyncha: Aleyrodidae) infestation and squash silverleaf disorder on Zucchini yield and quality. J. Econ. Entomol. 2004, 97, 2083–2094. [Google Scholar] [CrossRef]
- Miles, P.W. Specific responses and damage caused by Aphidoidea. In Aphids. Their Biology, Natural Enemies and Control; Minks, A.K., Harrewijn, P., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; Volume C, pp. 23–47. [Google Scholar]
- Sylvester, E.S. Viruses Transmitted by Aphids. In Aphids. Their Biology, Natural Enemies and Control; Minks, A.K., Harrewijn, P., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; Volume C, pp. 65–88. [Google Scholar]
- Ragsdale, D.W.; Landis, D.A.; Brodeur, J.; Heimpel, G.E.; Desneux, N. Ecology and management of the soybean aphid in north America. Annu. Rev. Entomol. 2011, 56, 375–399. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, V.; Uniyal, P.L.; Bhattacharya, R. Aphid resistance in Brassica crops: Challenges, biotechnological progress and emerging possibilities. Biotechnol. Adv. 2011, 29, 879–888. [Google Scholar] [CrossRef]
- Devonshire, A.L. Resistance of Aphids to Insecticides. In Aphids, Their Biology, Natural Enemies and Control; Minks, A.K., Harrewijn, P., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; Volume C, pp. 123–139. [Google Scholar]
- Moores, G.D.; Gao, X.; Denholm, I.; Devonshire, A.L. Characterization of insensitive acetylcholinesterase in insecticide-resistant cotton aphids, Aphis gossypii Glover (Homoptera: Aphididae). Pestic. Biochem. Phys. 1996, 56, 102–110. [Google Scholar] [CrossRef]
- Foster, S.P.; Harrington, R.; Dewar, A.M.; Denholm, I.; Devonshire, A.L. Temporal and spatial dynamics of insecticide resistance in Myzus persicae (Hemiptera: Aphididae). Pest Manag. Sci. 2002, 58, 895–907. [Google Scholar] [CrossRef]
- Lacey, L.A.; Shapiro-Ilan, D.I. Microbial control of insect pests in temperate orchard systems: Potential for incorporation into IPM. Annu. Rev. Entomol. 2008, 53, 121–144. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among Ascomycetes: Evidence from an RNA Polymerase II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [Green Version]
- Zare, R.; Gams, W. A revision of Verticillium section Prostrata. IV. The genus Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 2001, 73, 1–50. [Google Scholar] [CrossRef]
- Chiriví-Salomón, J.S.; Danies, G.; Restrepo, S.; Sanjuan, T. Lecanicillium sabanense sp. nov. (Cordycipitaceae) a new fungal entomopathogen of coccids. Phytotaxa 2015, 234, 63–74. [Google Scholar] [CrossRef]
- Kope, H.H.; Leal, I. A new species of Lecanicillium isolated from the white pine weevil, Pissodes strobi. Mycotaxon 2005, 34, 331–340. [Google Scholar]
- Park, M.J.; Hong, S.B.; Shin, H.D. Lecanicillium uredinophilum sp. nov. associated with rust fungi from Korea. Mycotaxon 2015, 12, 997–1005. [Google Scholar] [CrossRef]
- Shah, P.A.; Pell, J.K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 2003, 61, 413–423. [Google Scholar] [CrossRef] [PubMed]
- De Faria, M.R.; Wraight, S.P. Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol. Control. 2007, 43, 237–256. [Google Scholar] [CrossRef]
- Goettel, M.S.; Koike, M.; Kim, J.J.; Aiuchi, D.; Shinya, R.; Brodeur, J. Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J. Invertebr. Pathol. 2008, 98, 256–261. [Google Scholar] [CrossRef]
- Kepler, R.M.; Luangsa-ard, J.J.; Hywel-Jones, N.L.; Quandt, C.A.; Sung, G.H.; Rehner, S.A. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 2017, 8, 335–353. [Google Scholar] [CrossRef] [Green Version]
- Lebert, H. Ueber einige neue oder unvollkommen gekannte Krankheiten der Insekten, welche durch Entwicklung niederer Pflanzen im lebenden Körper enstehen. Z. Wiss. Zool. 1858, 9, 439–453. [Google Scholar]
- Hodge, K.T.; Gams, W.; Samson, R.A.; Korf, R.P.; Seifert, K.A. Lectotypification and status of Isaria Pers.: Fr. Taxon 2005, 54, 485–489. [Google Scholar] [CrossRef]
- Mongkolsamrit, S.; Noisripoom, W.; Thanakitpipattana, D.; Wutikhun, T.; Spatafora, J.W.; Luangsaard, J. Disentangling cryptic species with Isaria-like morphs in Cordycipitaceae. Mycologia 2018, 110, 230–257. [Google Scholar] [CrossRef] [PubMed]
- Aini, A.N.; Mongkolsamrit, S.; Wijanarka, W.; Thanakitpipattana, D.; Luangsa-ard, J.J.; Budiharjo, A. Diversity of Akanthomyces on moths (Lepidoptera) in Thailand. MycoKeys 2020, 71, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Mains, E.B. Entomogenous species of Akanthomyces, Hymenostilbe and Insecticola in North America. Mycologia 1950, 42, 566–589. [Google Scholar] [CrossRef]
- Chen, W.H.; Han, Y.F.; Liang, Z.Q.; Jin, D.C. Lecanicillium araneogenum sp. nov., a new araneogenous fungus. Phytotaxa 2017, 305, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.H.; Chang, L.; Han, Y.F.; Liang, J.D.; Tian, W.Y.; Liang, Z.Q. Akanthomyces araenicola, a new araneogenous species from Southwest China. Phytotaxa 2020, 409, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.H.; Han, Y.F.; Liang, J.D.; Liang, Z.Q. Akanthomyces lepidopterorum, a new Lecanicillium-like species. Phytotaxa 2020, 459, 117–123. [Google Scholar] [CrossRef]
- Chen, W.H.; Han, Y.F.; Liang, J.D.; Liang, Z.Q. Akanthomyces neocoleopterorum, a new Verticillium-like species. Phytotaxa 2020, 432, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.P.; Wanasinghe, D.N.; Chaiwat, T.A.; Hyde, K.D. Lecanicillium uredinophilum known from rusts, also occurs on animal hosts with chitinous bodies. Asian J. Mycol. 2018, 1, 63–73. [Google Scholar] [CrossRef]
- Meng, Y.; Wellabada Hewage Don, P.I.D.; Wang, D. A New Strain of Lecanicillium uredinophilum isolated from Tibetan Plateau and its insecticidal activity. Microorganisms 2022, 10, 1832. [Google Scholar] [CrossRef]
- Romina, M.G.; Christina, S.; Katharina, S.; Claudia, C.L.L.; Andreas, L. Genetic characterization, pathogenicity and benomyl susceptibility of Lecanicillium fungal isolates from Argentina. J. Appl. Entomol. 2018, 143, 204–213. [Google Scholar] [CrossRef]
- Goettel, M.S.; Inglis, G.D. Fungi: Hyphomycetes. In Manual of Techniques in Insect Pathology; Lacey, L., Ed.; Academic Press: London, UK, 1997; pp. 213–249. [Google Scholar]
- Humber, R.A. Fungi: Identifcation. In Manual of Techniques in Insect Pathology; Lacey, L., Ed.; Academic Press: San Diego, CA, USA, 1997; pp. 153–189. [Google Scholar]
- Scorsetti, A.C.; Humber, R.A.; García, J.J.; López Lastra, C.C. Natural occurrence of entomopathogenic fungi (Zygomycetes: Entomophthorales) of aphid (Hemiptera: Aphididae) pests of horticultural crops in Argentina. BioControl 2007, 52, 641–655. [Google Scholar] [CrossRef]
- Landa, Z.; Osborne, L.S.; Lopez, F.; Eyal, J. A bioassay for determining pathogenicity of entomogenous fungi on whiteflies. Biol. Control 1994, 4, 341–350. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA 6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Snisky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-a sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Stiller, J.W.; Hall, D. The origin of red algae: Implications for plastid evolution. Proc. Natl. Acad. Sci. USA 1997, 94, 4520–4525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goetsch, L.; Eckert, A.J.; Hall, B.D. The molecular systematics of Rhododendron (ericaceae): A phylogeny based upon RPB2 gene sequences. Syst. Bot. 2005, 30, 616–626. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. ClustalW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Marshall, R.K.; Lester, M.T.; Glare, T.R.; Christeller, J.T. The fungus, Lecanicillium muscarium, is an entomopathogen of passionvine hopper (Scolypopa australis). N. Z. J. Crop Hortic. Sci. 2003, 31, 1–7. [Google Scholar] [CrossRef]
- Kouvelis, V.N.; Sialakouma, A.; Typas, M.A. Mitochondrial gene sequences alone or combined with ITS region sequences provide firm molecular criteria for the classification of Lecanicillium species. Mycol. Res. 2008, 112, 829–844. [Google Scholar] [CrossRef]
- Johnston, S.R.; Boddy, L.; Weightman, A.J. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol. 2016, 92, fiw179. [Google Scholar] [CrossRef] [PubMed]
- Shahriari, M.; Zibaee, A.; Khodaparast, S.A.; Fazeli-Dinan, M. Screening and virulence of the entomopathogenic fungi associated with Chilo suppressalis Walker. J. Fungi 2021, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Askary, H.; Carrière, Y.; Bélanger, R.R.; Brodeur, J. Pathogenicity of the fungus Verticillium lecanii to aphids and powdery mildew. Biocontrol. Sci. Technol. 1998, 8, 23–32. [Google Scholar] [CrossRef]
- Wang, D.; Deng, J.; Pei, Y.; Li, T.; Jin, Z.; Liang, L.; Wang, W.; Li, L.; Dong, X. 2017. Identification and virulence characterization of entomopathogenic fungus Lecanicillium attenuatum against the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Appl. Entomol. Zool. 2017, 52, 511–518. [Google Scholar] [CrossRef]
- Kim, J.J.; Goettel, M.S.; Gillespie, D.R. Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus, Sphaerotheca fuliginea. Biol. Control. 2007, 40, 327–332. [Google Scholar] [CrossRef]
- Kim, J.J.; Goettel, M.S.; Gillespie, D.R. Evaluation of Lecanicillium longisporum, Vertalec for simultaneous suppression of cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea, on potted cucumbers. Biol. Control. 2008, 45, 404–409. [Google Scholar] [CrossRef]
- Broumandnia, F.; Rajabpour, A.; Hamed Ghodoum Parizipour, M.; Yarahmadi, F. Morphological and molecular identification of four isolates of the entomopathogenic fungal genus Akanthomyces and their effects against Bemisia tabaci on cucumber. Bull. Entomol. Res. 2021, 111, 628–636. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, P.; Ali, A.; Sheng, Z.L. Molecular identification and virulence of four strains of entomopathogenic fungi against the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). J. Econ. Entomol. 2022, 115, 731–738. [Google Scholar] [CrossRef]
- Bamisile, B.S.; Akutse, K.S.; Siddiqui, J.A.; Xu, Y. Model application of entomopathogenic fungi as alternatives to chemical pesticides: Prospects, challenges, and insights for next-generation sustainable agriculture. Front. Plant Sci. 2021, 12, 741804. [Google Scholar] [CrossRef]
Primer Designation | Primer Sequence | Annealing Temperature (°C) | Elongation Time (s) | Reference |
---|---|---|---|---|
LR0R LR5 | 5′-GTACCCGCTGAACTTAAGC 5′-ATCCTGAGGGAAACTTC | 58 | 120 | [42] |
ITS4 | 5′-TCCTCCGCTTATTGATATGC | 52 | 120 | [43] |
ITS5 | 5′-GGAAGTAAAAGTCGTAACAAGG | |||
EF1A-983F | 5′-GCYCCYGGHCAYCGTGAYTTYAT | 52 | 120 | [44] |
EF1A-2218R | 5′-ATGACACCRACRGCRACRGTYTG | |||
EF1A-1567R | 5′-ACHGTRCCRATACCACCSATCTT | sequencing primer | ||
EF1A-1577F | 5′-CARGAYGTBTACAAGATYGGTGG | sequencing primer | this study | |
RPB1Af | 5′-GARTGYCCDGGDCAYTTYGG | 50 | 90 | [45] |
RPB1Cr | 5′-CCNGCDATNTCRTTRTCCATRTA | |||
RPB2-5f | 5′-GAYGAYMGWGATCAYTTYGG | 50 | 120 | [16] |
RPB2-7r | 5′-CCCATRGCTTGYTTRCCCAT | |||
RPB2-6f | 5′-TGGGGKWTGGTYTGYCCTGC | sequencing primer sequencing primer | [46] | |
RPB2-6r | 5′-GCAGGRCARACCAWMCCCCA |
Original Taxonomic Assignment | Strain Designation | Accession Number ITS | Accession Number LSU | Geographic Origin | Source/Natural Host | Reference |
---|---|---|---|---|---|---|
“Verticillium zealandica”, “Lecanicillium muscarium” | 64-9W | AF317540 | n.a. | New Zealand | Passionwine hopper Scolypopa australis (Hemiptera) | [48] |
“Lecanicillium lecanii” | IMI 321293 | EF513008 | n.a. | Colombia | Hemileia vastatrix (Basidiomycota; Uredinales) on coffee plant | [49] |
“Fungal sp.” | NM826 | KJ867414 | n.a. | California, USA | From leafs of California bay laurel (Umbellularia californica) | [50] |
“Akanthomyces attenuatus” | CSB F042 | KU574698 | n.a. | Kenya | Endophyte of Native African Grass (Brachiaria spp.) | Genbank entry 2016 |
“Lecanicillium sp.” | ICMP 21611 | MF687199 | n.a. | New Zealand | Octopus stinkhorn (Clathrus archeri) (Basidiomycota; Phallales) | Genbank entry 2017 |
“Akanthomyces muscarius” | CBS 318.70B | MH859686 | MH871438 | Germany | n.a. | [51] |
“Akanthomyces muscarius” | Nesta 08 | MN080299 | n.a. | South Africa | Hemileia vastatrix (Basidiomycota; Uredinales) on coffee plant | Genbank entry 2019 |
“Akanthomyces muscarius” | AMRT | MW143523 | n.a. | Iran | Asiatic rice borer Chilo suppressalis (Lepidoptera)) | [52] |
“Akanthomyces muscarius” | xiajiNamtso39 | MZ544575 | n.a. | Tibet, China | Water sample, Lake Nam | Genbank entry 2021 |
“Akanthomyces attenuatus” | CBF16 | OL351559 | n.a. | Mexico | Unidentified Thrips (Thysanoptera) | Genbank entry 2021 |
“Akanthomyces muscarius” | DOA1 | OM397086 | n.a. | Turkey | Frankliniella occidentalis (Thysanoptera) | Genbank entry 2022 |
“Lecanicillium sp.”, “Lecanicillium zaquensis” | HMAS 246917 * | MT789698 | MT789696 | Tibet, China | Chinese caterpillar fungus Ophiocordyceps sinensis (Ascomycota; Hypocreales) | Genbank entry 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manfrino, R.; Gutierrez, A.; Diez del Valle, F.; Schuster, C.; Ben Gharsa, H.; López Lastra, C.; Leclerque, A. First Description of Akanthomyces uredinophilus comb. nov. from Hemipteran Insects in America. Diversity 2022, 14, 1118. https://doi.org/10.3390/d14121118
Manfrino R, Gutierrez A, Diez del Valle F, Schuster C, Ben Gharsa H, López Lastra C, Leclerque A. First Description of Akanthomyces uredinophilus comb. nov. from Hemipteran Insects in America. Diversity. 2022; 14(12):1118. https://doi.org/10.3390/d14121118
Chicago/Turabian StyleManfrino, Romina, Alejandra Gutierrez, Flavia Diez del Valle, Christina Schuster, Haifa Ben Gharsa, Claudia López Lastra, and Andreas Leclerque. 2022. "First Description of Akanthomyces uredinophilus comb. nov. from Hemipteran Insects in America" Diversity 14, no. 12: 1118. https://doi.org/10.3390/d14121118
APA StyleManfrino, R., Gutierrez, A., Diez del Valle, F., Schuster, C., Ben Gharsa, H., López Lastra, C., & Leclerque, A. (2022). First Description of Akanthomyces uredinophilus comb. nov. from Hemipteran Insects in America. Diversity, 14(12), 1118. https://doi.org/10.3390/d14121118