Biology, Genetic Diversity, and Ecology of Nitzschia acidoclinata Lange-Bertalot (Bacillariophyta)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Culture
2.2. Microscopy
2.3. Mating Experiments
2.4. DNA Extraction, Amplification, and Sequence Analysis
2.5. Phylogenetic Analysis
3. Results
3.1. Phylogenetic Tree of Plastid-Encoded rbcL Gene
3.2. Vegetative Cell Morphology
3.3. Auxosporulation
4. Discussion
4.1. Reproductive Biology
4.2. Cell Size Reduction
4.3. Cardinal Points
4.4. Ecology and Geography
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hemalatha, A.; Girija, K.; Parthiban, C.; Saranya, C.; Anantharaman, P. Antioxidant properties and total phenolic content of a marine diatom, Navicula clavata and green microalgae, Chlorella marina and Dunaliella salina. Adv. Appl. Sci. Res. 2013, 4, 151–157. [Google Scholar]
- Davidovich, N.A.; Davidovich, O.; Podunai, Y.A.; Shorenko, K.I.; Kulikovskii, M.S. reproductive properties of diatoms significant for their cultivation and biotechnology. Russ. J. Plant Physiol. 2015, 62, 153–160. [Google Scholar] [CrossRef]
- Hess, S.K.; Lepetit, B.; Kroth, P.G.; Mecking, S. Production of chemicals from microalgae lipids–status and perspectives. Eur. J. Lipid Sci. Technol. 2018, 120, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Yu, Z.; Peng, S.; Feng, K.E.; Zhang, L.; Zhou, X. The characterization and comparison of exopolysaccharides from two benthic diatoms with different biofilm formation abilities. An. Acad. Bras. Ciências 2018, 90, 1503–1519. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, F.; Gao, B.; Huang, L.; Zhang, C. An integrated biorefinery process: Stepwise extraction of fucoxanthin, eicosapentaenoic acid and chrysolaminarin from the same Phaeodactylum tricornutum biomass. Algal Res. 2018, 32, 193–200. [Google Scholar] [CrossRef]
- Akyil, S.; İlter, I.; Koç, M.; Demirel, Z.; Erdoğan, A.; Conk-Dalay, M.; Kaymak-Ertekin, F. Effects of Extraction Methods and Conditions on Bioactive Compounds Extracted from Phaeodactylum Tricornutum. Acta Chim. Slov. 2020, 67, 1250–1261. [Google Scholar] [CrossRef]
- Roshchin, A.M. Zhiznennye Tsikly Diatomovykh Vodoroslei (Life Cycles of Diatoms); Naukova Dumka Publishing House: Kiev, Ukraine, 1994; 171p. (In Russian) [Google Scholar]
- Edlund, M.B.; Stoermer, E.F. Ecological, evolutionary, and systematic significance of diatom life histories. J. Phycol. 1997, 33, 897–918. [Google Scholar] [CrossRef]
- Chepurnov, V.A.; Mann, D.G.; Sabbe, K.; Vyverman, W. Experimental studies on sexual reproduction in diatoms. Int. Rev. Cytol. 2004, 237, 91–154. [Google Scholar] [CrossRef] [PubMed]
- Drebes, G. Sexuality. In The Biology of Diatoms: Botanical Monographs; Werner, D., Ed.; Blackwell Scientific Publications: Oxford, UK, 1977; pp. 250–283. [Google Scholar]
- Mann, D.G. Patterns of Sexual Reproduction in Diatoms. Hydrobiologia 1993, 269, 11–20. [Google Scholar] [CrossRef]
- Davidovich, N.A. Photoregulation of sexual reproduction in Bacillariophyta (review). Int. J. Algae 2002, 4, 56–71. [Google Scholar] [CrossRef]
- Amato, A.; Orsini, L.; D’Alelio, D.; Montresor, M. Life cycle, size reduction patterns, and ultrastructure of the pennate planktonic diatom Pseudo-nitzschia delicatissima (Bacillariophyceae). J. Phycol. 2005, 41, 542–556. [Google Scholar] [CrossRef]
- Trobajo, R.; Mann, D.G.; Cox, E.J. Sexual reproduction in Nitzschia fonticola: The importance of studying the entire life cycle in diatoms. Phycologia 2005, 44, 103. [Google Scholar]
- Trobajo, R.; Mann, D.G.; Chepurnov, V.A.; Clavero, E.; Cox, E.J. Taxonomy, life cycle, and auxosporulation of Nitzschia fonticola (Bacillariophyta). J. Phycol. 2006, 42, 1353–1372. [Google Scholar] [CrossRef]
- Fuchs, N.; Scalco, E.; Kooistra, W.H.C.F.; Assmy, P.; Montresor, M. Genetic Characterization and life cycle of the diatom Fragilariopsis kerguelensis. Eur. J. Phycol. 2013, 48, 411–426. [Google Scholar] [CrossRef] [Green Version]
- Geitler, L. Der Formwechsel der pennaten Diatomeen (Kieselalgen). Archiv fur Protistenkunde 1932, 78, 1–226. (In German) [Google Scholar]
- Davidovich, N.A. Definitions and concepts of reproductive biology of diatoms (terminological glossary). Nov. Sist. Nizsh. Rast. 2017, 51, 71–105. [Google Scholar] [CrossRef]
- Mann, D.G.; Trobajo, R.; Sato, S.; Li, C.; Witkowski, A.; Rimet, F.; Ashworth, M.P.; Hollands, R.M.; Theriot, E.C. Ripe for reassessment: A synthesis of available molecular data for the speciose diatom family Bacillariaceae. Mol. Phylogenetics Evol. 2021, 158, 106985. [Google Scholar] [CrossRef]
- Lin, C.S.; Chou, T.L.; Wu, J.T. Biodiversity of soil algae in the farmlands of mid-Taiwan. Bot. Stud. 2013, 54, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hamsher, S.E.; Kopalová, K.; Kociolek, J.P.; Zidarova, R.; Vijver, B.V. The genus Nitzschia on the South Shetland Islands and James Ross Island. Fottea 2016, 16, 79–102. [Google Scholar] [CrossRef] [Green Version]
- Bagmet, V.B.; Abdullin, S.R.; Mazina, S.E.; Nikulin, A.Y.; Gontcharov, A.A. Life cycle of Nitzschia palea (Kutzing) W. Smith (Bacillariophyta). Russ. J. Dev. Biol. 2020, 51, 106–114. [Google Scholar] [CrossRef]
- Binea, H.K.; Kassim, T.I.; Binea, A.K. Antibacterial activity of diatom Nitzschia palea (Kutz.) W. Sm. Extract. Iraqi J. Biotechnol. 2009, 8, 562–566. [Google Scholar]
- Abdel-Hamid, M.I.; El-Refaay, D.A.; Abdel-Mogib, M.; Azab, Y.A. Studies on Biomass and Lipid Production of Seven Diatom Species with Special Emphasis on Lipid Composition of Nitzschia Palea (Bacillariophyceae) as Reliable Biodiesel Feedstock. Algol. Stud. 2013, 143, 65–87. [Google Scholar] [CrossRef]
- Hassan, F.M.; Aljbory, I.F.; Kassim, T.I. An attempt to stimulate lipids for biodiesel production from locally isolated microalgae in Iraq. Baghdad Sci. J. 2013, 10, 97–108. [Google Scholar]
- Abdullin, S.R.; Urazbakhtina, D.; Bagmet, V.B. Preliminary study of fungicidal and fungistatic activity of some cave micro-algae. In Proceedings of the Abstracts of BIT’s 3rd Annual International Congress of Algae-2014, Dalian, China, 16–18 October 2014; p. 203. [Google Scholar]
- Wen, Z.Y.; Chen, F. A perfusion-cell bleeding culture strategy for enhancing the productivity of eicosapentaenoic acid by Nitzschia laevis. Appl. Microbiol. Biotechnol. 2001, 57, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.Y.; Chen, F. Application of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom Nitzschia laevis. Biotechnol. Bioeng. 2001, 75, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Gutu, T.; Jiao, J.; Chang, C.H.; Rorrer, G.L. Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum. ACS Nano 2008, 2, 1296–1304. [Google Scholar] [CrossRef]
- Kitano, M.; Matsukawa, R.; Karube, I. Changes in eicosapentaenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions. J. Appl. Phycol. 1997, 9, 559–563. [Google Scholar] [CrossRef]
- Jiang, A.; Ji, H.; Liu, H.; Zhu, H.; Ai, G.; Guo, X. Culture of benthic diatom Nitzschia sp. with macroalgae carriers and its application as feed of juveniles Stichopus japonicus. Helgol. Mar. Res. 2020, 74, 11. [Google Scholar] [CrossRef]
- Witkowski, A.; Li, C.; Zgłobicka, I.; Yu, S.; Ashworth, M.; Dąbek, P.; Qin, S.; Tang, C.; Krzywda, M.; Ruppel, M.; et al. Multigene assessment of biodiversity of diatom(Bacillariophyceae) assemblages from the littoral zone of the Bohai and Yellow seas in Yantai region of Northeast China with some remarks on ubiquitous taxa. J. Coast. Res. 2016, 74, 166–195. [Google Scholar] [CrossRef] [Green Version]
- Suriyanti, S.N.P.; Usup, G. Morphology and molecular phylogeny of the marine diatom Nitzschia dentatum sp. nov. and N. johorensis sp. nov. (Bacillariophyceae) from Malaysia. Bangladesh J. Plant Taxon. 2017, 24, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Lobban, C.S.; Ashworth, M.P.; Calaor, J.J.M.; Theriot, E.C. Extreme diversity in fine-grained morphology reveals fourteen new species of conopeate Nitzschia (Bacillariophyta: Bacillariales). Phytotaxa 2019, 401, 199–238. [Google Scholar] [CrossRef]
- Alakananda, B.; Mahesh, M.K.; Hamilton, P.B.; Supriya, G.; Karthick, B.; Ramachandra, T.V. Two New Species of Nitzschia (Bacillariophyta) from Shallow Wetlands of Peninsular India. Phytotaxa 2012, 54, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Blanco, I.; Blanco, S. Nitzschia imae sp. nov. (Bacillariophyta, Nitzschiaceae) from Iceland, with a redescription of Hannaea arcus var. linearis. An. Jardín Botánico Madr. 2013, 70, 144–151. [Google Scholar] [CrossRef]
- Liu, B.; Blanco, S.; Huang, B. Two new Nitzschia species (Bacillariophyceae) from China, possessing a canal-raphe-conopeum system. Phytotaxa 2015, 231, 260–270. [Google Scholar] [CrossRef]
- Geissler, U. Die Schalenmerkmale der Diatomeen-Ursachen ihrer Variabilitat und Bedeutung fur die Taxonomie. Nova Hedwig. Beih. 1970, 31, 511–535. [Google Scholar] [CrossRef]
- Lange-Bertalot, H. Eine revision zur taxonomie der Nitzschiae lanceolatae Grunow. Die "klassischen" bis 1930 beschribenen Süsswasserarten Europas. Nova Hedwig. 1976, 28, 253–307. [Google Scholar]
- Kuzyakhmetov, G.G.; Dubovik, I.E. Metody Izucheniya Pochvennyh Vodorosley [Methods for Studying Soil Algae]; Izdatelstvo RIO BashGU: Ufa, Russia, 2001. (In Russian) [Google Scholar]
- Andersen, R.A. Algal Culturing Techniques; Elsevier Academic Press: Burlington, MA, USA, 2005; ISBN 0-12-088426-7. [Google Scholar]
- McFadden, G.I.; Melkonian, M. Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 1986, 25, 551–557. [Google Scholar] [CrossRef]
- Elyashev, A.A. O prostom sposobe prigotovleniya vysokoprelomlyayushchej sredy dlya diatomovogo analiza [On a simple method for preparing a highly refractive medium for diatom analysis]. Tr. NII Geol. Arktiki 1957, 4, 74–76. (In Russian) [Google Scholar]
- Lange-Bertalot, H.; Ulrich, S. Contributions to the taxonomy of needle-shaped Fragilaria and Ulnaria species. Lauterbornia 2014, 78, 1–73. [Google Scholar]
- Bagmet, V.B.; Abdullin, S.R.; Kuluev, B.R.; Davidovich, O.I.; Davidovich, N.A. The effect of salinity on the reproduction rate of Nitzschia palea (Kützing) W. Smith (Bacillariophyta) clones. Russ. J. Ecol. 2017, 48, 287–289. [Google Scholar] [CrossRef]
- Poulíčková, A.; Mann, D.G. Sexual reproduction in Navicula cryptocephala (Bacillariophyceae). J. Phycol. 2006, 42, 872–886. [Google Scholar] [CrossRef]
- Poulíčková, A.; Mayama, S.; Chepurnov, V.A.; Mann, D.G. Heterothallic auxosporulation, incunabula and perizonium in Pinnularia (Bacillariophyceae). Eur. J. Phycol. 2007, 42, 367–390. [Google Scholar] [CrossRef]
- Abdullin, S.R.; Nikulin, A.Y.; Bagmet, V.B.; Nikulin, V.Y.; Gontcharov, A.A. New cyanobacterium Aliterella vladivostokensis sp. nov. (Aliterellaceae, Chroococcidiopsidales), isolated from temperate monsoon climate zone (Vladivostok, Russia). Phytotaxa 2021, 527, 221–233. [Google Scholar] [CrossRef]
- Daugbjerg, N.; Andersen, R.A. Phylogenetic analyses of the rbcL sequences from haptophytes and heterokont algae suggest their chloroplasts are unrelated. Mol. Biol. Evol. 1997, 14, 1242–1251. [Google Scholar] [CrossRef] [Green Version]
- Bonfield, J.K.; Smith, K.F.; Staden, R. A new DNA sequence assembly program. Nucleic Acids Res. 1995, 23, 4992–4999. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Galtier, N.; Gouy, M.; Gautier, C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics 1996, 12, 543–548. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef] [Green Version]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, G.; Werum, M.; Lange-Bertalot, H. Diatomeen im Süßwasser-Benthos von Mitteleuropa; Koeltz Scientific Books: Königstein, Germany, 2011. (In German) [Google Scholar]
- Mann, D.G.; Sato, S.; Rovira, L.; Trobajo, R. Paedogamy and auxosporulation in Nitzschia sect. lanceolatae (Bacillariophyta). Phycologia 2013, 52, 204–220. [Google Scholar] [CrossRef]
- Rovira, L.; Trobajo, R.; Sato, S.; Ibáñez, C.; Mann, D.G. Genetic and physiological diversity in the diatom Nitzschia inconspicua. J. Eukaryot. Microbiol. 2015, 62, 815–832. [Google Scholar] [CrossRef] [PubMed]
- Round, F.E.; Crawford, R.M.; Mann, D.G. The Diatoms: Biology and Morphology of the Genera; Cambridge University Press: Cambridge, UK, 1990; 747p, ISBN 978-0-521-36318-1. [Google Scholar]
- Davidovich, N.A.; Davidovich, O.I. Reproduktivnaya biologiya diatomovykh vodorosley [Reproductive biology of diatoms]; LLC «Arial»: Simferopol, Russia, 2022. (In Russian) [Google Scholar]
- Geitler, L. Die Auxosporenbildung von Nitzschia amphibian [The auxospore formation of Nitzschia amphibia]. Osterr. Bot. Z. 1969, 117, 404–410. (In German) [Google Scholar] [CrossRef]
- Archibald, R.E.M.; Schoeman, F.R. Taxonomic notes on diatoms (Bacillariophyceae) from the great usutu river in Swaziland. South Afr. J. Bot. 1987, 53, 75–92. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, P.; Kirilova, E.; Ector, L. Diatom species composition from the river Iskar in the Sofia region, Bulgaria. In Advances in Phycological Studies Festschrift in Honour of Prof. Dobrina Temniskova-Topalova; Ognjanova-Rumenova, N., Manoylov, K., Eds.; Pensoft Publishers: Sofia, Bulgaria, 2006; pp. 167–190. [Google Scholar]
- Kulikovskiy, M.S.; Genkal, S.I.; Mikheyeva, T.M. Novye dlya Belarusi vidy diatomovyh vodoroslej. 2. Nitzschia Hassall, Hantzschia Grunow i Denticula Kützing [New diatom species in belarus. 2. Nitzschia Hassall, Hantzschia Grunow and Denticula Kützing]. Nat. Resour. 2011, 2, 68–77. (In Russian) [Google Scholar]
- Noga, T.; Stanek-Tarkowska, J.; Kochman, N.; Peszek, Ł.; Pajączek, A.; Woźniak, K. Application of diatoms to assess the quality of the waters of the Baryczka stream, left-side tributary of the river San. J. Ecol. Eng. 2013, 14, 8–23. [Google Scholar] [CrossRef]
- Fang, J.; Liu, Y.; Wang, T.; Yan, X.; Shuo, Y.; Zhang, L.; Qu, Y. Estimation of organic pollution of the jinyaoshi lake based on the diatom assemblage of the lake sediments. E3S Web Conf. 2020, 206, 02007. [Google Scholar] [CrossRef]
- Antonelli, M.; Wetzel, C.E.; Ector, L.; Teuling, A.J.; Pfister, L. On the potential for terrestrial diatom communities and diatom indices to identify anthropic disturbance in soils. Ecol. Indic. 2017, 75, 73–81. [Google Scholar] [CrossRef]
- Kulikovskiy, M.S.; Lange-Bertalot, H.; Witkowski, A.; Dorofeyuk, N.I.; Genkal, S.I. Diatom assemblages from Sphagnum bogs of the world. I. Nur bog in northern Mongolia. Bibl. Diatomol. 2010, 55, 1–326. [Google Scholar]
- Chen, X.; McGowan, S.; Bu, Z.-J.; Yang, X.-D.; Cao, Y.-M.; Bai, X.; Zeng, L.-H.; Liang, J.; Qiao, Q.-L. Diatom-Based Water-Table Reconstruction in Sphagnum Peatlands of Northeastern China. Water Res. 2020, 174, 115648. [Google Scholar] [CrossRef]
- Khaw, Y.S.; Khong, N.M.H.; Shaharuddin, N.A.; Yusoff, F.M.D. A simple 18S rDNA approach for the identification of cultured eukaryotic microalgae with an emphasis on primers. J. Microbiol. Methods 2020, 172, 105890. [Google Scholar] [CrossRef] [PubMed]
- Loseva, E.I.; Stenina, A.S.; Marchenko-Vagapova, T.I. Kadastr Iskopayemykh i Sovremennykh Diatomovykh Vodorosley Evropeyskogo Severo-Vostoka [Cadastre of the Fossil and Recent Diatoms from Northeastern Europe]; Geoprint: Syktyvkar, Russia, 2004. (In Russian) [Google Scholar]
- Korneva, L.G. Fitoplankton Vodokhranilishch Basseyna Volgi [Phytoplankton of Volga River Basin Reservoirs]; Kostromskoy Pechatniy dom: Kostroma, Russia, 2015. (In Russian) [Google Scholar]
- Chudaev, D.A.; Gololobova, M.A. Diatomoviye Vodorosli Ozera glubokogo (Moskovskaya Oblast’) [Diatoms of Lake Glubokoe (Moscow Region)]; Tovarishchestvo Nauchnykh Izdaniy KMK: Moscow, Russia, 2016. (In Russian) [Google Scholar]
- Lange-Bertalot, H.; Genkal, S.I. Diatoms from Siberia I. Iconogr. Diatomol. 1999, 6, 7–271. [Google Scholar]
- Genkal, S.I.; Vekhov, N.V. Diatomovyye Vodorosli Vodoyemov Russkoy Arktiki: Arkhipelag Novaya Zemlya i Ostrov Vaygach [Diatoms of Water Bodies of the Russian Arctic: Novaya Zemlya Archipelago and Vaygach Island]; Nauka: Moscow, Russia, 2007. (In Russian) [Google Scholar]
- Genkal, S.I.; Yarushina, M.I. Diatomoviye Vodorosli Slaboizuchennykh Vodnykh Ekosistem Kraynego Severa Zapadnoy Sibiri [Diatom Algae of Poorly Studied Aquatic Ecosystem in the Far North of Western Siberia]; Nauchniy Mir: Moscow, Russia, 2018. (In Russian) [Google Scholar]
- Kharitonov, V.G. Diatomovyye Vodorosli Kolymy [Diatoms of the Kolyma]; Kordis: Magadan, Russia, 2014. (In Russian) [Google Scholar]
- Genkal, S.I.; Gabyshev, V.A. Broadening the taxonomic composition of diatoms (Bacillariophyta) in the flora of the Lena river (streams of the Western slope of the Kharaulakh range, Yakutia). Inland Water Biol. 2021, 14, 349–356. [Google Scholar] [CrossRef]
Strain | Valve Length (μm) | Valve Width (μm) | Fibulae (in 10 μm) | Striae (in 10 μm) | Areolae (in 10 μm) | Shape Index |
---|---|---|---|---|---|---|
min–max (X ± s) | ||||||
VCA-7 (vegetative cells) | 8.2–15.9 (12.0 ± 1.7) (n = 30) | 2.6–3.5 (3.1 ± 0.3) (n = 30) | 8–12 (10.1 ± 1.2) (n = 30) | 28–31 (29.5 ± 1.1) (n = 30) | 34–44 (38.7 ± 2.8) (n = 30) | 3.87 |
VCA-7 (initial cells) | 34.9–47.2 (40.1 ± 3.8) (n = 30) | 2.7–3.3 (2.9 ± 0.2) (n = 30) | 8–11 (9.5 ± 1.1) (n = 30) | 26–28 (27.0 ± 0.9) (n = 30) | 31–41 (37.9 ± 2.1) (n = 30) | 13.83 |
VCA-48 (vegetative cells) | 18.6–21.5 (20.0 ± 0.9) (n = 30) | 2.6–3.1 (2.9 ± 0.1) (n = 30) | 9–14 (10.5 ± 1.3) (n = 30) | 27–29 (27.9 ± 0.7) (n = 30) | 32–38 (34.8 ± 1.8) (n = 30) | 6.90 |
VCA-48 (initial cells) | 41.–52.3 (47.1 ± 3.4) (n = 30) | 2.5–2.9 (2.6 ± 0.1) (n = 30) | 8–10 (8.9 ± 0.8) (n = 30) | 26–29 (27.1 ± 1.1) (n = 30) | 32–37 (35.2 ± 1.6) (n = 30) | 18.12 |
VCA-49 (vegetative cells) | 8.9–12.4 (10.5 ± 1.1) (n = 32) | 2.7–3.0 (2.8 ± 0.1) (n = 32) | 8–10 (9.0 ± 0.8) (n = 32) | 28–32 (29.8 ± 1.2) (n = 32) | 40–43 (41.7 ± 1.1) (n = 32) | 3.75 |
VCA-49 (initial cells) | 43.2–45.2 (44.1 ± 0.6) (n = 30) | 2.3–3.0 (2.6 ± 0.2) (n = 30) | 9.5–10.6 (10.0 ± 0.4) (n = 30) | 28–31 (29.3 ± 1.0) (n = 30) | 40–42 (41.0 ± 0.7) (n = 30) | 16.96 |
VCA-51 (vegetative cells) | 9.4–13.3 (10.6 ± 1.2) (n = 30) | 2.4–2.8 (2.6 ± 0.1) (n = 30) | 8–12 (10.5 ± 1.0) (n = 30) | 29–32 (29.9 ± 0.9) (n = 30) | 38–43 (40.0 ± 1.6) (n = 30) | 4.08 |
VCA-51 (initial cells) | 45.0–49.3 (46.8 ± 1.3) (n = 30) | 2.5–3.0 (2.8 ± 0.1) (n = 30) | 10.0–11.7 (10.7 ± 0.4) (n = 30) | 28–31 (29.7 ± 0.8) (n = 30) | 37–42 (39.3 ± 1.6) (n = 30) | 16.71 |
VCA-50 (vegetative cells) | 19.0–26.3 (23.5 ± 2.2) (n = 30) | 2.5–3.3 (2.8 ± 0.2) (n = 30) | 10–12 (10.9 ± 0.8) (n = 30) | 28–32 (29.9 ± 1.1) (n = 30) | 37–44 (40.0 ± 2.4) (n = 30) | 8.39 |
VCA-52 (vegetative cells) | 17.3–19.5 (18.5 ± 0.7) (n = 30) | 2.6–2.9 (2.7 ± 0.1) (n = 30) | 10–11 (10.5 ± 0.5) (n = 30) | 26–28 (27.0 ± 0.9) (n = 30) | 33–37 (35.2 ± 1.3) (n = 30) | 6.85 |
Lange-Bertalot [39] | 8–40 | 2–3 | 11–14 | 27–32 | nd | nd |
Hofmann et al. [57] | 8–45 | 2.5–3 | 10–16 | 27–34 | nd | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagmet, V.B.; Abdullin, S.R.; Nikulin, A.Y.; Nikulin, V.Y.; Gontcharov, A.A. Biology, Genetic Diversity, and Ecology of Nitzschia acidoclinata Lange-Bertalot (Bacillariophyta). Diversity 2022, 14, 1133. https://doi.org/10.3390/d14121133
Bagmet VB, Abdullin SR, Nikulin AY, Nikulin VY, Gontcharov AA. Biology, Genetic Diversity, and Ecology of Nitzschia acidoclinata Lange-Bertalot (Bacillariophyta). Diversity. 2022; 14(12):1133. https://doi.org/10.3390/d14121133
Chicago/Turabian StyleBagmet, Veronika B., Shamil R. Abdullin, Arthur Yu. Nikulin, Vyacheslav Yu. Nikulin, and Andrey A. Gontcharov. 2022. "Biology, Genetic Diversity, and Ecology of Nitzschia acidoclinata Lange-Bertalot (Bacillariophyta)" Diversity 14, no. 12: 1133. https://doi.org/10.3390/d14121133
APA StyleBagmet, V. B., Abdullin, S. R., Nikulin, A. Y., Nikulin, V. Y., & Gontcharov, A. A. (2022). Biology, Genetic Diversity, and Ecology of Nitzschia acidoclinata Lange-Bertalot (Bacillariophyta). Diversity, 14(12), 1133. https://doi.org/10.3390/d14121133