Invasion of the Land of Samurai: Potential Spread of Old-World Screwworm to Japan under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Occurrence Records
2.2. Bioclimatic Data Layers
2.3. Invasion Modeling
2.4. Performance of Models
3. Results
3.1. Modeling Evaluation
3.2. OWS Risk Maps under Two Climate Change Scenarios: 2050
3.3. OWS Risk Maps under Two Climate Change Scenarios: 2070
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, K.R.; Jung, H.D.; Choi, Y.S. Study on economy-wide effects of livestock industry. Korean J. Agric. Manag. Policy 2006, 32, 692–709. [Google Scholar]
- Aleme, A.; Zemedu, L.; Adigrat, E. The contribution of livestock sector in Ethiopian economy. Rev. Adv. Life Sci. Technol. 2015, 29, 79–90. [Google Scholar]
- Islam, M.M.; Anjum, S.; Modi, R.J.; Wadhwani, K.N. Scenario of livestock and poultry in India and their contribution to national economy. Int. J. Sci. Environ. Technol. 2016, 5, 956–965. [Google Scholar]
- Grannis, J.L.; Bruch, M.L. The role of USDA-APHIS in livestock disease management within the USA. In The Economics of Livestock Disease Insurance: Concepts, Issues and International Case Studies; CABI: Wallingford, UK, 2006; pp. 19–28. [Google Scholar]
- Temple, G. (Ed.) Livestock Handling and Transport; CABI: Wallingford, UK, 2007; p. 5. [Google Scholar]
- Williams, G.W.; David, P.A. The Latin American Livestock Industry: Growth and Challenges. Choices 2020, 34, 1–11. [Google Scholar]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Adesehinwa, A.O.K.; Okunola, J.O.; Adewumi, M.K. Socio-economic characteristics of ruminant livestock farmers and their production constraints in some parts of South-western Nigeria. Livest. Res. Rural. Dev. 2004, 16, 8. [Google Scholar]
- Liao, I.C.; Chao, N.-H. Aquaculture and food crisis: Opportunities and constraints. Asia Pac. J. Clin. Nutr. 2009, 18, 564–569. [Google Scholar]
- Hanh, H.Q.; Ton, V.D.; Lebailly, P. Dynamics and constraints of livestock production systems in Cam Giang district, Hai Duong Province, North Vietnam. Livest. Res. Rural. Dev. 2013, 25, 9. [Google Scholar]
- IPCC. Climate Change 2013: The physical science basis. In Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D.H., Plattner, G.K., Tignor, M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Gomez-Zavaglia, A.; Mejuto, J.; Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 2020, 134, 109256. [Google Scholar] [CrossRef]
- Nissim, S.; Koluman, N. Impact of climate change on the dairy industry in temperate zones: Predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Rumin. Res. 2015, 123, 27–34. [Google Scholar]
- Tadeusz, K.; Blanes-Vidal, V.; Li, B.; Gates, R.S.; de Alencar Naas, I.; Moura, D.J.; Berckmans, D.; Banhazi, T.M. Impact of global climate change on the health, welfare and productivity of intensively housed livestock. Int. J. Agric. Biol. Eng. 2011, 4, 1–22. [Google Scholar]
- Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front. 2019, 9, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojima, D.S.; Aicher, R.; Archer, S.R.; Bailey, D.W.; Casby-Horton, S.M.; Cavallaro, N.; Reyes, J.J.; Tanaka, J.A.; Washington-Allen, R.A. A climate change indicator framework for rangelands and pastures of the USA. Clim. Chang. 2020, 163, 1733–1750. [Google Scholar] [CrossRef]
- Early, R.; Bradley, B.; Dukes, J.S.; Lawler, J.J.; Olden, J.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef]
- Gerhardt, R.R.; Lawrence, J.H. Flies (Diptera). In Medical and Veterinary Entomology; Academic Press: Oxford, UK, 2019; pp. 171–190. [Google Scholar]
- Kynkäänniemi, S.-M.; Kortet, R.; Härkönen, L.; Kaitala, A.; Paakkonen, T.; Mustonen, A.-M.; Nieminen, P.; Härkönen, S.; Ylönen, H.; Laaksonen, S. Threat of An Invasive Parasitic Fly, the Deer Ked (Lipoptena cervi), to the Reindeer (Rangifer Tarandus Tarandus): Experimental Infection and Treatment. Ann. Zoöl. Fenn. 2010, 47, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Scholl, P.J.; Douglas, D.C.; Cepeda-Palacios, R. Myiasis (Muscoidea, Oestroidea). In Medical and Veterinary Entomology; Academic Press: Oxford, UK, 2019; pp. 383–419. [Google Scholar]
- Hall, M.J.R. Screwworm flies as agents of wound myiasis. World Anim. Rev. 1991, 8–17. Available online: http://forensicentomologist.com/wp-content/uploads/2008/05/screwworm-agents-of-myiasis.pdf (accessed on 10 May 2021).
- Ali, A.; Zaidi, F.; Fatima, S.H.; Munir, S. Modeling the occurrence and spatial distribution of screwworm species in Northern Pakistan. Environ. Monit. Assess. 2021, 193, 1–13. [Google Scholar] [CrossRef]
- Zumpt, F. Myiasis in Man and Animals in the Old World; Butterworths: London, UK, 1965. [Google Scholar]
- Spradbery, J.P. Screw-worm fly: A tale of two species. Agric. Zool. Rev. 1994, 6, 1–62. [Google Scholar]
- Reichard, R. Case studies of emergency management of screwworm. Rev. Sci. Tech. l’OIE 1999, 18, 145–163. [Google Scholar] [CrossRef]
- Anonymous Screwworm (Old World & NEW World). Available online: https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/SCREWWORM.pdf (accessed on 10 May 2021).
- Fruean, S.N.; East, I.J. Spatial analysis of targeted surveillance for screw-worm fly (C hrysomya bezziana or Cochliomyia hominivorax) in A ustralia. Aust. Vet. J. 2014, 92, 254–262. [Google Scholar] [CrossRef]
- Umeda, A. Japan Atlas: A Bilingual Guide, 3rd ed.; Kodanshausa: New York, NY, USA, 2012. [Google Scholar]
- Smith, S.B.; Gotoh, T.; Greenwood, P.L. Current situation and future prospects for global beef production: Overview of special issue. Asian-Australas. J. Anim. Sci. 2018, 31, 927–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelmann, J. Livestock Production Value of Agricultural Sector in Japan 2009–2018. Available online: https://www.statista.com/statistics/644994/japan-livestock-production-value/2020 (accessed on 10 July 2021).
- Tominaga, S. Agriculture in the Islands of Kagoshima; Kagoshima University Research Center for the Pacific Islands: Kagoshima, Japan, 2013. [Google Scholar]
- Hall, M.J.R.; Edge, W.; Testa, J.M.; Adams, Z.J.O.; Ready, P.D. Old World screwworm fly, Chrysomya bezziana, occurs as two geographical races. Med. Vet. Èntomol. 2001, 15, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Hosni, E.M.; Nasser, M.; Al-Ashaal, S.; Rady, M.H.; Kenawy, M.A. Modeling current and future global distribution of Chrysomya bezziana under changing climate. Sci. Rep. 2020, 10, 4947. [Google Scholar] [CrossRef] [PubMed]
- Midgley, G.F.; Hannah, L.; Millar, D.; Rutherford, M.C.; Powrie, L.W. Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob. Ecol. Biogeogr. 2002, 11, 445–451. [Google Scholar] [CrossRef]
- Guo, S.; Ge, X.; Zou, Y.; Zhou, Y.; Wang, T.; Zong, S. Projecting the Potential Global Distribution of Carpomya vesuviana (Diptera: Tephritidae), Considering Climate Change and Irrigation Patterns. Forests 2019, 10, 355. [Google Scholar] [CrossRef] [Green Version]
- Byeon, D.H.; Jung, J.M.; Jung, S.; Lee, W.H. Prediction of global geographic distribution of Metcalfa pruinosa using CLIMEX. Entomol. Res. 2018, 48, 99–107. [Google Scholar] [CrossRef]
- Wei, B.; Wang, R.; Hou, K.; Wang, X.; Wu, W. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob. Ecol. Conserv. 2018, 16, e00477. [Google Scholar] [CrossRef]
- Zurell, D.; Franklin, J.; König, C.; Bouchet, P.J.; Dormann, C.F.; Elith, J.; Fandos, G.; Feng, X.; Guillera-Arroita, G.; Guisan, A.; et al. A standard protocol for reporting species distribution models. Ecography 2020, 43, 1261–1277. [Google Scholar] [CrossRef]
- Abou-Shaara, H.; Alashaal, S.A.; Hosni, E.M.; Nasser, M.G.; Ansari, M.J.; Alharbi, S.A. Modeling the Invasion of the Large Hive Beetle, Oplostomus fuligineus, into North Africa and South Europe under a Changing Climate. Insects 2021, 12, 275. [Google Scholar] [CrossRef]
- Ge, X.; He, S.; Wang, T.; Yan, W.; Zong, S. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios. PLoS ONE 2015, 10, e0141111. [Google Scholar] [CrossRef] [PubMed]
- Wardhana, A.; Hall, M.; Mahamdallie, S.; Muharsini, S.; Cameron, M.; Ready, P. Phylogenetics of the Old World screwworm fly and its significance for planning control and monitoring invasions in Asia. Int. J. Parasitol. 2012, 42, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.A.; Urech, R. An improved real-time PCR assay for the detection of Old World screwworm flies. Acta Trop. 2014, 138, S76–S81. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.R. The evolution of myiasis in blowflies (Calliphoridae). Int. J. Parasitol. 2003, 33, 1105–1113. [Google Scholar] [CrossRef]
- Zaidi, F.; Fatima, S.H.; Khisroon, M.; Gul, A. Distribution Modeling of three screwworm species in the ecologically diverse landscape of North West Pakistan. Acta Trop. 2016, 162, 56–65. [Google Scholar] [CrossRef] [PubMed]
- CABI. Chrysomya Bezziana (Old-World Screwworm). In Invasive Species Compendium; CABI: Wallingford, UK, 2021; Available online: https://www.cabi.org/isc/datasheet/88417 (accessed on 10 May 2021).
- Escobar, L.E.; Lira-Noriega, A.; Medina-Vogel, G.; Peterson, A.T. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to assure strict model transference. Geospat. Health 2014, 9, 221–229. [Google Scholar] [CrossRef]
- Mohammadi, S.; Ebrahimi, E.; Moghadam, M.S.; Bosso, L. Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecol. Inform. 2019, 52, 7–13. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Kessler, W.H.; Ganser, C.; Glass, G.E. Modeling the Distribution of Medically Important Tick Species in Florida. Insects 2019, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Mulieri, P.R.; Patitucci, L.D. Using ecological niche models to describe the geographical distribution of the myiasis-causing Cochliomyia hominivorax (Diptera: Calliphoridae) in southern South America. Parasitol. Res. 2019, 118, 1077–1086. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Wardhana, A.; Cecchi, G.; Muharsini, S.; Cameron, M.; Ready, P.; Hall, M. Environmental and phylogeographical determinants of the distribution of the Old World screwworm fly in Indonesia. Acta Trop. 2014, 138, S62–S68. [Google Scholar] [CrossRef] [PubMed]
- Nasser, M.G.; Hosni, E.M.; Kenawy, M.A.; Alharbi, S.A.; Almoallim, H.S.; Rady, M.H.; Merdan, B.A.; Pont, A.C.; Al-Ashaal, S.A. Evolutionary profile of the family Calliphoridae, with notes on the origin of myiasis. Saudi J. Biol. Sci. 2021, 28, 2056–2066. [Google Scholar] [CrossRef] [PubMed]
- Siddig, A.; Al Jowary, S.; Al Izzi, M.; Hopkins, J.; Hall, M.J.R.; Slingenbergh, J. Seasonality of Old World screwworm myiasis in the Mesopotamia valley in Iraq. Med. Vet. Èntomol. 2005, 19, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Al-Taweel, A.A.; Okaily, R.A.; Salman, Q.S.; Al-Temimi, F.A.; Al-Adhadh, B.N.; Hamad, B.S.; Urech, R. Elative performance of surveys for the Old World screwworm fly, Chrysomya bezziana, in Iraq based on fly trapping and myiasis monitoring. Acta Trop. 2014, 138, S56–S61. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, P.L.; E Gardner, G.; Ferguson, D.M. Current situation and future prospects for the Australian beef industry—A review. Asian-Australas. J. Anim. Sci. 2018, 31, 992–1006. [Google Scholar] [CrossRef]
- Forman, S.; Hungerford, N.; Yamakawa, M.; Yanase, T.; Tsai, J.; Joo, Y.-S.; Yang, D.-K.; Nha, J.-J. Efectos del cambio climático y riesgos zoosanitarios en Asia. Rev. Sci. Tech. l’OIE 2008, 27, 581–597. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosni, E.M.; Nasser, M.; Al-Khalaf, A.A.; Al-Shammery, K.A.; Al-Ashaal, S.; Soliman, D. Invasion of the Land of Samurai: Potential Spread of Old-World Screwworm to Japan under Climate Change. Diversity 2022, 14, 99. https://doi.org/10.3390/d14020099
Hosni EM, Nasser M, Al-Khalaf AA, Al-Shammery KA, Al-Ashaal S, Soliman D. Invasion of the Land of Samurai: Potential Spread of Old-World Screwworm to Japan under Climate Change. Diversity. 2022; 14(2):99. https://doi.org/10.3390/d14020099
Chicago/Turabian StyleHosni, Eslam M., Mohamed Nasser, Areej A. Al-Khalaf, Kholoud A. Al-Shammery, Sara Al-Ashaal, and Doaa Soliman. 2022. "Invasion of the Land of Samurai: Potential Spread of Old-World Screwworm to Japan under Climate Change" Diversity 14, no. 2: 99. https://doi.org/10.3390/d14020099
APA StyleHosni, E. M., Nasser, M., Al-Khalaf, A. A., Al-Shammery, K. A., Al-Ashaal, S., & Soliman, D. (2022). Invasion of the Land of Samurai: Potential Spread of Old-World Screwworm to Japan under Climate Change. Diversity, 14(2), 99. https://doi.org/10.3390/d14020099