Photobacterium halophilum sp. nov. and a Salt-Loving Bacterium Isolated from Marine Sediment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Culture Conditions
2.2. Phylogenetic Analysis
2.3. Phenotypic and Biochemical Characteristics
2.4. Chemotaxonomic Analyses
2.5. Whole-genome Sequencing and Genome Analyses
3. Results and Discussion
3.1. Phylogenetic, Phylogenomic, and Genome Features
3.2. Physiology and Chemotaxonomy
3.3. Description of Photobacterium halophilum sp. nov.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Vandamme, P.; Pot, B.; Gillis, M.; de Vos, P.; Kersters, K.; Swings, J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 1996, 60, 407–438. [Google Scholar] [CrossRef] [PubMed]
- Yarza, P.; Yilmaz, P.; Pruesse, E.; Glockner, F.O.; Ludwig, W.; Schleifer, K.H.; Whitman, W.B.; Euzeby, J.; Amann, R.; Rossello-Mora, R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 2014, 12, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Rossello-Mora, R.; Whitman, W.B. Dialogue on the nomenclature and classification of prokaryotes. Syst. Appl. Microbiol. 2019, 42, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Rossello-Mora, R.; Amann, R. Past and future species definitions for Bacteria and Archaea. Syst. Appl. Microbiol. 2015, 38, 209–216. [Google Scholar] [CrossRef]
- Hugenholtz, P.; Chuvochina, M.; Oren, A.; Parks, D.H.; Soo, R.M. Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME J. 2021, 15, 1879–1892. [Google Scholar] [CrossRef]
- Muller, P.A.; Epstein, S.S. In Silico Genome-Genome Hybridization Values Accurately and Precisely Predict Empirical DNA-DNA Hybridization Values for Classifying Prokaryotes. arXiv 2012, arXiv:1202.5211. [Google Scholar]
- Kampfer, P.; Glaeser, S.P. Prokaryotic taxonomy in the sequencing era−the polyphasic approach revisited. Env. Microbiol. 2012, 14, 291–317. [Google Scholar] [CrossRef]
- Konstantinidis, K.T.; Rossello-Mora, R.; Amann, R. Advantages outweigh concerns about using genome sequence as type material for prokaryotic taxonomy. Environ. Microbiol. 2020, 22, 819–822. [Google Scholar] [CrossRef]
- Gupta, R.S.; Patel, S.; Saini, N.; Chen, S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: Description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int. J. Syst. Evol. Microbiol. 2020, 70, 5753–5798. [Google Scholar]
- Hördt, A.; Lopez, M.G.; Meier-Kolthoff, J.P.; Schleuning, M.; Weinhold, L.M.; Tindall, B.J.; Gronow, S.; Kyrpides, N.C.; Woyke, T.; Goker, M. Analysis of 1000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front. Microbiol. 2020, 11, 468. [Google Scholar] [CrossRef]
- Saati-Santamaría, Z.; Peral-Aranega, E.; Velázquez, E.; Rivas, R.; García-Fraile, P. Phylogenomic analyses of the genus Pseudomonas lead to the rearrangement of several species and the definition of new genera. Biology 2021, 10, 782. [Google Scholar] [CrossRef]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.-W.; de Meyer, S. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Rossello-Mora, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auch, A.F.; von Jan, M.; Klenk, H.P.; Goker, M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genom. Sci. 2010, 2, 117–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossello-Mora, R. Updating prokaryotic taxonomy. J. Bacteriol. 2005, 187, 6255–6257. [Google Scholar] [CrossRef] [Green Version]
- Beijerinck, M. Le Photobacterium luminosum, Bactérie lumineuse de la mer de nord. Arch. Néerl. Sci. Exactes Nat. 1889, 23, 401–427. [Google Scholar]
- Gomez-Gil, B.; Roque, A.; Rotllant, G.; Peinado, L.; Romalde, J.L.; Doce, A.; Cabanillas-Beltran, H.; Chimetto, L.A.; Thompson, F.L. Photobacterium swingsii sp. nov., isolated from marine organisms. Int. J. Syst. Evol. Microbiol. 2011, 61, 315–319. [Google Scholar] [CrossRef]
- Gomez-Gil, B.; Roque, A.; Rotllant, G.; Romalde, J.L.; Doce, A.; Eggermont, M.; Defoirdt, T. Photobacterium sanguinicancri sp. nov. isolated from marine animals. Antonie Van Leeuwenhoek 2016, 109, 817–825. [Google Scholar] [CrossRef]
- Thompson, F.L.; Thompson, C.C.; Naser, S.; Hoste, B.; Vandemeulebroecke, K.; Munn, C.; Bourne, D.; Swings, J. Photobacterium rosenbergii sp. nov. and Enterovibrio coralii sp. nov., vibrios associated with coral bleaching. Int. J. Syst. Evol. Microbiol. 2005, 55, 913–917. [Google Scholar] [CrossRef] [Green Version]
- Figge, M.J.; Cleenwerck, I.; van Uijen, A.; de Vos, P.; Huys, G.; Robertson, L. Photobacterium piscicola sp. nov., isolated from marine fish and spoiled packed cod. Syst. Appl. Microbiol. 2014, 37, 329–335. [Google Scholar] [CrossRef]
- Deep, K.; Poddar, A.; Das, S.K. Photobacterium panuliri sp. nov., an alkalitolerant marine bacterium isolated from eggs of spiny lobster, Panulirus penicillatus from Andaman Sea. Curr. Microbiol. 2014, 69, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Ast, J.C.; Cleenwerck, I.; Engelbeen, K.; Urbanczyk, H.; Thompson, F.L.; de Vos, P.; Dunlap, P.V. Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes. Int. J. Syst. Evol. Microbiol. 2007, 57, 2073–2078. [Google Scholar] [CrossRef] [PubMed]
- Chimetto, L.A.; Cleenwerck, I.; Thompson, C.C.; Brocchi, M.; Willems, A.; de Vos, P.; Thompson, F.L. Photobacterium jeanii sp. nov., isolated from corals and zoanthids. Int. J. Syst. Evol. Microbiol. 2010, 60, 2843–2848. [Google Scholar] [CrossRef] [PubMed]
- Machado, H.; Giubergia, S.; Mateiu, R.V.; Gram, L. Photobacterium galatheae sp. nov., a bioactive bacterium isolated from a mussel in the Solomon Sea. Int. J. Syst. Evol. Microbiol. 2015, 65, 4503–4507. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.J.; Bae, S.S.; Yang, S.H.; Lee, J.H.; Kim, S.J. Photobacterium aplysiae sp. nov., a lipolytic marine bacterium isolated from eggs of the sea hare Aplysia kurodai. Int. J. Syst. Evol. Microbiol. 2005, 55, 2293–2296. [Google Scholar] [CrossRef]
- Urbanczyk, H.; Ast, J.C.; Dunlap, P.V. Phylogeny, genomics, and symbiosis of Photobacterium. FEMS Microbiol. Rev. 2011, 35, 324–342. [Google Scholar] [CrossRef]
- Kim, M.; Cha, I.T.; Lee, K.E.; Lee, B.H.; Park, S.J. Kineobactrum salinum sp. nov., isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 2021, 71. [Google Scholar] [CrossRef]
- Li, M.; Kong, D.; Wang, Y.; Ma, Q.; Han, X.; Zhou, Y.; Jiang, X.; Zhang, Y.; Ruan, Z.; Zhang, Q. Photobacterium salinisoli sp. nov., isolated from a sulfonylurea herbicide-degrading consortium enriched with saline soil. Int. J. Syst. Evol. Microbiol. 2019, 69, 3910–3916. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Koh, H.W.; Hong, H.; Min, U.G.; Kang, M.S.; Kim, S.G.; Na, J.G.; Rhee, S.K.; Park, S.J. Rhodanobacter aciditrophus sp. nov., an acidophilic bacterium isolated from mine wastewater. Int. J. Syst. Evol. Microbiol. 2015, 65, 4574–4579. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, M. The neutral theory of molecular evolution and the world view of the neutralists. Genome 1989, 31, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Fitch, W.M. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Biol. 1971, 20, 406–416. [Google Scholar] [CrossRef]
- Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Webley, D.M. A simple method for producing microcultures in hanging drops with special reference to organisms utilizing oils. J. Gen. Microbiol. 1953, 8, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Smibert, R.; Kreig, N. Phenotypic characterization. In Methods for General and Molecular Bacteriology; Gerhardt, P.M.R., Wood, W.A., Krieg, N.R., Eds.; American Society for Microbiology: Washington, DC, USA, 1994; pp. 607–654. [Google Scholar]
- Hu, H.Y.; Fujie, K.; Urano, K. Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J. Biosci. Bioeng. 1999, 87, 378–382. [Google Scholar] [CrossRef]
- Minnikin, D.; O’donnell, A.; Goodfellow, M.; Alderson, G.; Athalye, M.; Schaal, A.; Parlett, J. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 1984, 2, 233–241. [Google Scholar] [CrossRef]
- Minnikin, D.; Patel, P.; Alshamaony, L.; Goodfellow, M. Polar lipid composition in the classification of Nocardia and related bacteria. Int. J. Syst. Evol. Microbiol. 1977, 27, 104–117. [Google Scholar] [CrossRef] [Green Version]
- Chin, C.S.; Alexander, D.H.; Marks, P.; Klammer, A.A.; Drake, J.; Heiner, C.; Clum, A.; Copeland, A.; Huddleston, J.; Eichler, E.E.; et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 2013, 10, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, K.T.; Tiedje, J.M. Prokaryotic taxonomy and phylogeny in the genomic era: Advancements and challenges ahead. Curr. Opin. Microbiol. 2007, 10, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, K.T.; Tiedje, J.M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 2005, 187, 6258–6264. [Google Scholar] [CrossRef] [Green Version]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Goker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Goker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Goker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2021, 50, D801–D807. [Google Scholar] [CrossRef]
- Lefort, V.; Desper, R.; Gascuel, O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 2015, 32, 2798–2800. [Google Scholar] [CrossRef] [Green Version]
- Farris, J.S. Estimating phylogenetic trees from distance matrices. Am. Nat. 1972, 106, 645–668. [Google Scholar] [CrossRef]
- Kreft, L.; Botzki, A.; Coppens, F.; Vandepoele, K.; van Bel, M. PhyD3: A phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017, 33, 2946–2947. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef] [PubMed]
- Grissa, I.; Vergnaud, G.; Pourcel, C. CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007, 35, W52–W57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unden, G.; Becker, S.; Bongaerts, J.; Schirawski, J.; Six, S. Oxygen regulated gene expression in facultatively anaerobic bacteria. Antonie Van Leeuwenhoek 1994, 66, 3–22. [Google Scholar] [CrossRef]
- Maklashina, E.; Berthold, D.A.; Cecchini, G. Anaerobic expression of Escherichia coli succinate dehydrogenase: Functional replacement of fumarate reductase in the respiratory chain during anaerobic growth. J. Bacteriol. 1998, 180, 5989–5996. [Google Scholar] [CrossRef] [Green Version]
- Empadinhas, N.; da Costa, M.S. Osmoadaptation mechanisms in prokaryotes: Distribution of compatible solutes. Int. Microbiol. 2008, 11, 151–161. [Google Scholar]
- Machado, H.; Gram, L. Comparative genomics reveals high genomic diversity in the genus Photobacterium. Front. Microbiol. 2017, 8, 1204. [Google Scholar] [CrossRef] [Green Version]
- Rimando, A.M.; Baerson, S.R. Polyketides: Biosynthesis, Biological Activity, and Genetic Engineering; American Chemical Society: Washington, DC, USA, 2007. [Google Scholar]
- Takano, E. γ-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 2006, 9, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, G.C.; Gifford, S.M.; Septer, A.N. A Model Roseobacter, Ruegeria pomeroyi DSS-3, employs a diffusible killing mechanism to eliminate competitors. mSystems 2020, 5, e00443-20. [Google Scholar] [CrossRef]
- Osorio, C.R.; Juiz-Rio, S.; Lemos, M.L. A siderophore biosynthesis gene cluster from the fish pathogen Photobacterium damselae subsp. piscicida is structurally and functionally related to the Yersinia high-pathogenicity island. Int. J. Syst. Evol. Microbiol. 2006, 152, 3327–3341. [Google Scholar] [CrossRef] [Green Version]
- Russo, T.A.; Olson, R.; Macdonald, U.; Metzger, D.; Maltese, L.M.; Drake, E.J.; Gulick, A.M. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect. Immun. 2014, 82, 2356–2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thode, S.K.; Rojek, E.; Kozlowski, M.; Ahmad, R.; Haugen, P. Distribution of siderophore gene systems on a Vibrionaceae phylogeny: Database searches, phylogenetic analyses and evolutionary perspectives. PLoS ONE 2018, 13, e0191860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, D.C.; Lo, S.C.; Mathew, G.M.; Chang, K.H.; Huang, C.C. Genomic sequence analysis of a plant-associated Photobacterium halotolerans MELD1: From marine to terrestrial environment? Stand Genomic. Sci. 2016, 11, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.R.; Pacocha, S.; Pharino, C.; Klepac-Ceraj, V.; Hunt, D.E.; Benoit, J.; Sarma-Rupavtarm, R.; Distel, D.L.; Polz, M.F. Genotypic diversity within a natural coastal bacterioplankton population. Science 2005, 307, 1311–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boto, L. Horizontal gene transfer in evolution: Facts and challenges. Proc. Biol. Sci. 2010, 277, 819–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | 1 | 2 | 3 | 4 * |
---|---|---|---|---|
Temperature range (°C) | 15–37 | 15–40 | 4–37 | 10–40 |
NaCl range (%, w/v) | 0.5–9.0 | 0.5–9.0 | 0–8.0 | 0–9.0 |
Oxidase | + | + | + | − |
Nitrate reduction (NO3− → NO2−) | − | + | + | − |
Glucose acidification | − | + | + | ND |
Utilization of (as sole carbon and energy source): | ||||
D-Mannose | + | − | + | − |
Gluconate | − | − | + | + |
Adipate | − | − | + | ND |
Malate | − | + | + | ND |
D-Mannitol | − | − | − | + |
L-Arabinose | + | − | + | ND |
D-Maltose | − | + | + | ND |
Citrate | − | − | − | + |
Glycogen | − | + | + | + |
Enzyme activity: | ||||
Protease (gelatin hydrolysis) | + | − | + | − |
Esterase (C4) | − | + | + | + |
Esterase lipase (C8) | − | + | + | + |
α-glucosidase | − | − | − | + |
N-Acetyl-D-glucosamine | − | + | + | ND |
DNA G + C content (%, mol/mol) | 50.7 | 49.5 | 49.8 | 50.2 |
1 | 2 | 3 | |
---|---|---|---|
Saturated | |||
C12:0 | 6.37 | 6.14 | 5.17 |
C14:0 | 0.87 | 1.06 | 1.43 |
C16:0 | 15.75 | 17.67 | 17.05 |
C17:0 | 0.88 | 1.47 | 1.29 |
C18:0 | 0.60 | TR | TR |
Unsaturated | |||
C16:1 ω5c | TR | TR | 0.79 |
C16:1 ω9c | 1.79 | 2.00 | 2.62 |
C17:1 ω6c | TR | 0.54 | 0.78 |
C17:1 ω8c | 1.77 | 2.08 | 1.96 |
C18:1 ω9c | 0.87 | TR | 0.56 |
Branched-chain fatty acid | |||
C16:0 iso | 0.79 | 1.53 | 2.34 |
C17:0 iso | TR | TR | 0.68 |
Hydroxy fatty acids | |||
C18:0 2OH | 0.81 | TR | TR |
C12:0 3OH | TR | 4.16 | 4.56 |
Summed feature | |||
2; C12:0 aldehyde | 3.89 | 3.66 | 3.88 |
3; C16:1 ω6c/C16:1 ω7c | 23.71 | 28.98 | 28.36 |
8; C18:1 ω7c/C18:1 ω6c | 38.18 | 26.29 | 23.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Lee, K.-E.; Cha, I.-T.; Park, S.-J. Photobacterium halophilum sp. nov. and a Salt-Loving Bacterium Isolated from Marine Sediment. Diversity 2022, 14, 188. https://doi.org/10.3390/d14030188
Kim M, Lee K-E, Cha I-T, Park S-J. Photobacterium halophilum sp. nov. and a Salt-Loving Bacterium Isolated from Marine Sediment. Diversity. 2022; 14(3):188. https://doi.org/10.3390/d14030188
Chicago/Turabian StyleKim, Minji, Ki-Eun Lee, In-Tae Cha, and Soo-Je Park. 2022. "Photobacterium halophilum sp. nov. and a Salt-Loving Bacterium Isolated from Marine Sediment" Diversity 14, no. 3: 188. https://doi.org/10.3390/d14030188
APA StyleKim, M., Lee, K. -E., Cha, I. -T., & Park, S. -J. (2022). Photobacterium halophilum sp. nov. and a Salt-Loving Bacterium Isolated from Marine Sediment. Diversity, 14(3), 188. https://doi.org/10.3390/d14030188