Comparative Analysis and Phylogenetic Study of the Chloroplast Genome Sequences of Two Korean Endemic Primula Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Collection, DNA Extraction, and Next-Generation Genome Sequencing
2.2. CP Genome Assembly and Annotation
2.3. Genome Comparison
2.4. Divergent Hotspot Identification
2.5. Relative Synonymous Codon Usage Analysis
2.6. SSR and Long Repeat Sequence Analysis
2.7. Phylogenetic Analysis
3. Results
3.1. Common Features of the CP Genomes
3.2. Comparison of the CP Genomes of the Two Primula Varieties
3.3. Divergent Hotspots in the Primula CP genomes
3.4. Relative Synonymous Codon Usage Analysis
3.5. SSR and Long Repeat Analyses
3.6. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, W.; Xia, B.; Li, X. The complete chloroplast genome sequences of five pinnate-leaved Primula species and phylogenetic analyses. Sci. Rep. 2020, 10, 20782. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.F.; He, C.H.; Peng, C.I.; Hu, C.M.; Hao, G. Circumscription of Primula subgenus Auganthus (Primulaceae) based on chloroplast DNA sequences. J. Syst. Evol. 2010, 48, 123–132. [Google Scholar] [CrossRef]
- Mast, A.R.; Kelso, S.; Richards, A.J.; Lang, D.J.; Feller, D.M.; Conti, E. Phylogenetic relationships in Primula L. and related genera (Primulaceae) based on noncoding chloroplast DNA. Int. J. Plant Sci. 2001, 162, 1381–1400. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Ali, S.; Singh, M. Biological screening of plants extract showing hypoglycaemic and wound healing properties: Capparis zeylanica and Primula denticulata. Am. J. Phytomed. Clin. Ther. 2014, 12, 1338–1345. [Google Scholar]
- Korea National Arboretum. Checklist of Vascular Plants in Korea (Native Plants); Korea National Arboretum: Pocheon, Korea, 2020. [Google Scholar]
- Chung, J.M.; Son, S.W.; Kim, S.Y.; Park, G.W.; Kim, S.S. Genetic diversity and geographic differentiation in the endangered Primula farinosa subsp. modesta, a subalpine endemic to Korea. Korean J. Plant Taxon. 2013, 43, 236–243. [Google Scholar] [CrossRef]
- Korea National Arboretum. Rare Plants Data Book in Korea; Geobook: Seoul, Korea, 2008; p. 148. (In Korean) [Google Scholar]
- Chung, G.Y.; Chang, K.S.; Chung, J.M.; Choi, H.J.; Paik, W.K.; Hyun, J.O. A checklist of endemic plants on the Korean Peninsula. Korean J. Plant Taxon. 2017, 47, 264–288. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, T. Intraspecific taxa in Primula farinosa L. subsp. modesta (Bisset and Moore) Pax. J. Jpn. Bot. 2003, 78, 295–299. (In Japanese) [Google Scholar]
- Jansen, R.K.; Raubeson, L.A.; Boore, J.L.; de Pamphilis, C.W.; Chumley, T.W.; Haberle, R.C.; Wyman, S.K.; Alverson, A.J.; Peery, R.; Herman, S.J.; et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol. 2005, 395, 348–384. [Google Scholar]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [Green Version]
- Drouin, G.; Daoud, H.; Xia, J. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol. Phylogenet. Evol. 2008, 49, 827–831. [Google Scholar] [CrossRef]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; Yi, T.S.; Li, D.Z. GetOrganelle: A simple and fast pipeline for de novo assembly of a complete circular chloroplast genome using genome skimming data. BioRxiv 2018, 4, 256479. [Google Scholar]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Chan, P.P. TRNAscan-SE On-Line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.; Drechsel, O.; Bock, R. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 2007, 52, 267–274. [Google Scholar] [CrossRef]
- Katoh, K.; Kuma, K.I.; Toh, H.; Miyata, T. MAFFT Version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef]
- Mayor, C.; Brudno, M.; Schwartz, J.R.; Poliakov, A.; Rubin, E.M.; Frazer, K.A.; Pachter, L.S.; Dubchak, I. VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 2000, 16, 1046–1047. [Google Scholar] [CrossRef] [Green Version]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Xie, Z. DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 2001, 92, 371–373. [Google Scholar] [CrossRef] [Green Version]
- Thiel, T.; Michalek, W.; Varshney, R.K.; Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-Markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Richards, J. Primula; Timber: Portland, OR, USA, 1993. [Google Scholar]
- Zhou, T.; Zhao, J.; Chen, C.; Meng, X.; Zhao, G. Characterization of the complete chloroplast genome sequence of Primula veris (Ericales: Primulaceae). Conserv. Genet. Resour. 2016, 8, 455–458. [Google Scholar] [CrossRef]
- Sun, H.Y.; Zhong, L.; Gan, Q.L.; Zhang, T.; Wu, Z.K. The complete chloroplast genome of an endangered endemic herb species in China, Primula filchnerae (Primulaceae). Mitochondrial DNA B Resour. 2019, 4, 2746–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.Y.; Liu, T.J.; Yan, H.F.; Ge, X.J.; Hao, G. The complete chloroplast genome of a rare candelabra primrose Primula stenodonta (Primulaceae). Conserv. Genet. Resour. 2017, 9, 123–125. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Huang, Y.; Wu, Z. The complete chloroplast genome of Primula helodoxa, a species endemic to China. Mitochondrial DNA B Resour. 2020, 5, 194–195. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, L.; Li, W.; Huang, Y.; Wu, Z. The complete chloroplast genome of Primula bulleyana, a popular ornamental species. Mitochondrial DNA B Resour. 2019, 4, 3673–3674. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yuan, X.; Yang, T.; Yan, H.; Liu, T. The complete chloroplast genome of Primula obconica (Primulaceae). Mitochondrial DNA B Resour. 2019, 4, 2189–2190. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.Y.; Zhong, L.; Guo, Y.J.; Zhou, W.; Wu, Z.K. The complete chloroplast genome of a distylous-homostylous species, Primula homogama (Primulaceae). Mitochondrial DNA B Resour. 2021, 6, 393–394. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, X.; Zhang, L.; Huang, Y. The complete chloroplast genome of Primula beesiana, an ornamental alpine plant from SW China. Mitochondrial DNA B Resour. 2020, 5, 182–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.J.; Zhang, C.Y.; Yan, H.F.; Zhang, L.; Ge, X.J.; Hao, G. Complete plastid genome sequence of Primula sinensis (Primulaceae): Structure comparison, sequence variation and evidence for accD transfer to nucleus. PeerJ 2016, 4, e2101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Yan, X.; Hao, G.; Xu, Y. The complete chloroplast genome of Primula tsiangii WW Smith (Primulaceae): A karst endemic primrose in Southwest China. Mitochondrial DNA B Resour. 2019, 4, 2627–2628. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Liu, P.L.; Sun, Y.F.; Li, S.F. The complete chloroplast genome sequence of Primula filchnerae Knuth (Primulaceae), an endangered species in China. Mitochondrial DNA B Resour. 2020, 5, 2047–2048. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Liu, T.J.; Yan, H.F.; Xu, Y. The complete chloroplast genome of Primula persimilis (Primulaceae). Conserv. Genet. Resour. 2017, 9, 189–191. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Liu, T.J.; Xu, Y.; Yan, H.F.; Hao, G.; Ge, X.J. Characterization of the whole chloroplast genome of an endangered species Primula kwangtungensis (Primulaceae). Conserv. Genet. Resour. 2017, 9, 87–89. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Ren, T.; Han, K.; Zeng, S.; Biffin, E.; Liu, Z.L. Characterization of the complete chloroplast genome of the Cortusa matthioli subsp. pekinensis (Primulaceae). Conserv. Genet. Resour. 2017, 9, 603–605. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Liu, T.J.; Xu, Y.; Yan, H.F. Characterization of the whole chloroplast genome of a rare candelabra primrose Primula chrysochlora (Primulaceae). Conserv. Genet. Resour. 2017, 9, 361–363. [Google Scholar] [CrossRef]
- Ren, T.; Yang, Y.; Zhou, T.; Liu, Z.L. Comparative plastid genomes of Primula species: Sequence divergence and phylogenetic relationships. Int. J. Mol. Sci. 2018, 19, 1050. [Google Scholar] [CrossRef] [Green Version]
- Wicke, S.; Schneeweiss, G.M.; Depamphilis, C.W.; Müller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krech, K.; Fu, H.Y.; Thiele, W.; Ruf, S.; Schöttler, M.A.; Bock, R. Reverse genetics in complex multigene operons by co-transformation of the plastid genome and its application to the open reading frame previously designated psbN. Plant J. 2013, 75, 1062–1074. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Asaf, S.; Khan, A.L.; Al-Harrasi, A.; Al-Sudairy, O.; AbdulKareem, N.M.; Khan, A.; Shehzad, T.; Alsaady, N.; Al-Lawati, A.; et al. First complete chloroplast genomics and comparative phylogenetic analysis of Commiphora gileadensis and C. foliacea: Myrrh producing trees. PLoS ONE 2019, 14, e0208511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassi, F.; Labra, M.; Scienza, A.; Imazio, S. Chloroplast SSR markers to assess DNA diversity in wild and cultivated grapevines. Vitis 2002, 41, 157–158. [Google Scholar]
- He, S.L.; Wang, Y.S.; Volis, S.; Li, D.Z.; Yi, T.S. Genetic diversity and population structure: Implications for conservation of wild soybean (Glycine soja Sieb. et Zucc) based on nuclear and chloroplast microsatellite variation. Int. J. Mol. Sci. 2012, 13, 12608–12628. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Wang, S.; Zhou, S.L. Polymorphic chloroplast microsatellite loci in Nelumbo (Nelumbonaceae). Am. J. Bot. 2012, 99, e240–e244. [Google Scholar] [CrossRef]
- Kim, S.C.; Lee, J.W.; Choi, B.K. Seven complete chloroplast genomes from Symplocos: Genome organization and comparative analysis. Forests 2021, 12, 608. [Google Scholar] [CrossRef]
- Särkinen, T.; George, M. Predicting plastid marker variation: Can complete plastid genomes from closely related species help? PLoS ONE 2013, 8, e82266. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.F.; Zhang, Y.X.; Zeng, C.X.; Guo, Z.H.; Li, D.Z. Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (Poaceae). Syst. Biol. 2014, 63, 933–950. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.W.; Wu, Y.F.; Kan, X.Z.; Liang, T.J.; Zhang, X.P. Reappraisal of Primula ranunculoides (Primulaceae), an endangered species endemic to China, based on morphological, molecular genetic and reproductive characters. Bot. J. Linn. Soc. 2012, 169, 338–349. [Google Scholar] [CrossRef] [Green Version]
- Gang, H.A.O.; Chi-Ming, H.U.; Nam-Sook, L.E.E. Circumscriptions and phylogenetic relationships of Primula Sects. Auganthus and Ranunculoides: Evidence from nrDNA ITS sequences. J. Integr. Plant Biol. 2002, 44, 72. [Google Scholar]
Feature | P. modesta var. koreana | P. modesta var. hannasanensis |
---|---|---|
Accession number | MZ779113 | MZ779112 |
Genome size [GC(%)] | 154,667 [37.0] | 154,772 [36.9] |
LSC [GC(%)] | 85,152 [34.8] | 85,238 [34.8] |
SSC [GC(%)] | 17,771 [30.3] | 17,790 [30.3] |
IR [GC(%)] | 25,872 [42.7] | 25,872 [42.7] |
Gene Category | Gene Group | Gene Names |
---|---|---|
Self-replication | Large subunit ribosomal proteins | rpl2(×2) *, rpl14, rpl16 *, rpl20, rpl22, rpl23(×2), rpl32, rpl33, rpl36 |
DNA dependent RNA polymerase | rpoA, rpoB, rpoC1 *, rpoC2 | |
Small subunit ribosomal proteins | rps2, rps3, rps4, rps7(×2), rps8, rps11, rps12(×2) *, rps14, rps15, rps16 *, rps18, rps19 | |
rRNAs | rrn4.5S(×2), rrn5S(×2), rrn16S(×2), rrn23S(×2) | |
tRNAs | trnA-UGC(×2) *, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC, trnG-UCC *, trnH-GUG, trnI-GAU(×2) *, trnI-CAU(×2), trnK-UUU *, trnL-CAA(×2), trnL-UAA *, trnL-UAG, trnM-CAU, trnN-GUU(×2), trnP-UGG, trnQ-UUG, trnR-ACG(×2), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(×2), trnV-UAC *, trnW-CCA, trnY-GUA | |
Photosynthesis | Subunits of ATP synthase | atpA, atpB, atpE, atpF *, atpH, atpI |
Subunits of NADH-dehydrogenase | ndhA *, ndhB(×2) *, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
Subunits of cytochrome b/f complex | petA, petB *, petD, petG, petL, petN | |
Subunits of photosystem I | psaA, psaB, psaC, psaI, psaJ | |
Subunits of photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbT, psbZ | |
Subunit of rubisco | rbcL | |
Photosystem assembly factors | pafI **, pafII | |
Photosystem biogenesis factor | pbf1 | |
Other genes | Subunit of acetyl-CoA-carboxylase | accD |
C-type cytochrome synthesis gene | ccsA | |
Envelop membrane protein | cemA | |
ATP-dependent protease subunit P | clpP1 ** | |
Maturase | matK | |
Unknown function | Conserved open reading frames | ycf1, ycf2(×2) |
SSR Type | Repeat Unit | Primula modesta var. koreana | Primula modesta var. hannasanensis | Total |
---|---|---|---|---|
Mononucleotide | A/T | 43 | 48 | 92 |
C/G | 1 | 0 | ||
Dinucleotide | AT/AT | 4 | 6 | 10 |
Tetranucleotide | AGAT/ATCT | 2 | 2 | 4 |
Pentanucleotide | AAAGT/ACTTT | 1 | 0 | 1 |
Hexanucleotide | AAATAG/ATTTCT | 1 | 1 | 4 |
AAGATG/ATCTTC | 1 | 1 | ||
Total | 53 | 58 | 111 |
Type of Repeat | Primula modesta var. koreana | Primula modesta var. hannasanensis |
---|---|---|
Forward | 12 | 13 |
Reverse | 0 | 1 |
Palindromic | 18 | 18 |
Total | 30 | 32 |
Length of repeat (bp) | ||
30–39 | 22 | 24 |
40–49 | 7 | 8 |
50–59 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-C.; Ha, Y.-H.; Kim, D.-K.; Son, D.C.; Kim, H.-J.; Choi, K. Comparative Analysis and Phylogenetic Study of the Chloroplast Genome Sequences of Two Korean Endemic Primula Varieties. Diversity 2022, 14, 458. https://doi.org/10.3390/d14060458
Kim S-C, Ha Y-H, Kim D-K, Son DC, Kim H-J, Choi K. Comparative Analysis and Phylogenetic Study of the Chloroplast Genome Sequences of Two Korean Endemic Primula Varieties. Diversity. 2022; 14(6):458. https://doi.org/10.3390/d14060458
Chicago/Turabian StyleKim, Sang-Chul, Young-Ho Ha, Dong-Kap Kim, Dong Chan Son, Hyuk-Jin Kim, and Kyung Choi. 2022. "Comparative Analysis and Phylogenetic Study of the Chloroplast Genome Sequences of Two Korean Endemic Primula Varieties" Diversity 14, no. 6: 458. https://doi.org/10.3390/d14060458
APA StyleKim, S. -C., Ha, Y. -H., Kim, D. -K., Son, D. C., Kim, H. -J., & Choi, K. (2022). Comparative Analysis and Phylogenetic Study of the Chloroplast Genome Sequences of Two Korean Endemic Primula Varieties. Diversity, 14(6), 458. https://doi.org/10.3390/d14060458