First Eastern Mediterranean Record of Xenoligophoroides cobitis, the Only Dactylogyrid Monogenean Infecting Mediterranean Gobies: Just Arrived or Missed the Boat?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Morphological Characterization of Parasites
2.2. Molecular and Genetic Analysis
3. Results
3.1. Host Records
3.2. Parasite Identification
3.3. Sequence Analyses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fricke, R.; Eschmeyer, W.N.; Fong, J.D. Eschmeyer’s Catalog of Fishes: Genera/Species by Family/Subfamily. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (accessed on 28 May 2022).
- Schwarzhans, W.; Agiadi, K.; Carnevale, G. Late Miocene–Early Pliocene evolution of Mediterranean gobies and their environmental and biogeographic significance. Riv. Ital. Paleontol. Stratigr. 2020, 126, 657–724. [Google Scholar]
- Kovačić, M.; Renaoult, J.P.; Pillon, R.; Svensen, R.; Bogorodsky, S.; Engin, S.; Louisy, P. Identification of Mediterranean marine gobies (Actinopterygii: Gobiidae) of the continental shelf from photographs of “in situ” individuals. Zootaxa 2022, 5144. [Google Scholar] [CrossRef]
- McCraney, W.T.; Thacker, C.E.; Alfaro, M.E. Supermatrix phylogeny resolves goby lineages and reveals unstable root of Gobiaria. Mol. Phylogenet. Evol. 2020, 151, 106862. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, Y.Y.; Takeshima, H.; Kano, Y.; Oseko, N.; Suzuki, T.; Nishida, M.; Watanabe, K. Ecosystem size predicts the probability of speciation in migratory freshwater fish. Mol. Ecol. 2020, 29, 3071–3083. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, G. Inter-island local adaptation in the Galápagos Archipelago: Genomics of the Galápagos blue-banded goby, Lythrypnus gilberti. Coral Reefs 2021, 41, 625–633. [Google Scholar] [CrossRef]
- Ito, R.K.; Harada, S.; Tabata, R.; Watanabe, K. Molecular evolution and convergence of the rhodopsin gene in Gymnogobius, a goby group having diverged into coastal to freshwater habitats. J. Evol. Biol. 2022, 35, 333–346. [Google Scholar] [CrossRef]
- Adrian-Kalchhauser, I.; Blomberg, A.; Larsson, T.; Musilova, Z.; Peart, C.R.; Pippel, M.; Solbakken, M.H.; Suurväli, J.; Walser, J.-C.; Wilson, J.Y.; et al. The round goby genome provides insights into mechanisms that may facilitate biological invasions. BMC Biol. 2020, 18, 11. [Google Scholar] [CrossRef] [Green Version]
- Huyse, T.; Vanhove, M.P.M.; Mombaerts, M.; Volckaert, F.A.M.; Verreycken, H. Parasite introduction with an invasive goby in Belgium: Double trouble? Parasitol. Res. 2015, 114, 2789–2793. [Google Scholar] [CrossRef]
- Huyse, T.; Volckaert, F.A.M. Identification of a host associated species complex using molecular and morphometric analyses, with the description of Gyrodactylus rugiensioides n. sp. (Gyrodactylidae, Monogenea). Int. J. Parasitol. 2002, 32, 907–919. [Google Scholar] [CrossRef]
- Huyse, T.; Volckaert, F.A.M. Comparing host and parasite phylogenies: Gyrodactylus flatworms jumping from goby to goby. Syst. Biol. 2005, 54, 710–718. [Google Scholar] [CrossRef] [Green Version]
- Bakke, T.A.; Cable, J.; Harris, P.D. The biology of gyrodactylid monogeneans: The “Russian-doll killers”. Adv. Parasitol. 2007, 64, 161–460. [Google Scholar] [CrossRef] [PubMed]
- Pariselle, A.; Morand, S.; Deveney, M.; Pouyaud, L. Parasite species richness of closely related hosts: Historical scenario and “genetic” hypothesis. In Hommage à Louis Euzet—Taxonomie, Écologie et Évolution des Métazoaires Parasites. Taxonomy, Ecology and Evolution of Metazoan Parasites; Combes, C., Jourdane, J., Eds.; Presses Universitaires de Perpignan: Perpignan, France, 2003; pp. 147–166. [Google Scholar]
- Vanhove, M.P.M.; Economou, A.N.; Zogaris, S.; Giakoumi, S.; Zanella, D.; Volckaert, F.A.M.; Huyse, T. The Gyrodactylus (Monogenea, Gyrodactylidae) parasite fauna of freshwater sand gobies (Teleostei, Gobioidei) in their centre of endemism, with description of seven new species. Parasitol. Res. 2014, 113, 653–668. [Google Scholar] [CrossRef] [PubMed]
- Longshaw, M.; Pursglove, M.; Shinn, A.P. Gyrodactylus quadratidigitus n. sp. (Monogenea: Gyrodactylidae), a parasite of the leopard-spotted goby Thorogobius ephippiatus (Lowe) from the south-western coast of the UK. Syst. Parasitol. 2003, 55, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Sasal, P.; Pagès, J.R.; Euzet, L. Haliotrema cupensis n. sp. (Monogenea, Ancyrocephalidae) from a marine gobiid (Teleostei, Perciformes) of the Mediterranean coast. Syst. Parasitol. 1998, 39, 107–112. [Google Scholar] [CrossRef]
- Dmitrieva, E.V.; Sanna, D.; Piras, M.C.; Garippa, G.; Merella, P. Xenoligophoroides cobitis (Ergens, 1963) n. g., n. comb. (Monogenea: Ancyrocephalidae), a parasite of Gobius cobitis Pallas (Perciformes: Gobiidae) from the Mediterranean and Black seas. Syst. Parasitol. 2018, 95, 625–643. [Google Scholar] [CrossRef]
- Appeltans, W.; Ahyong, S.T.; Anderson, G.; Angel, M.V.; Artois, T.; Bailly, N.; Bamber, R.; Barber, A.; Bartsch, I.; Berta, A.; et al. The magnitude of global marine species diversity. Curr. Biol. 2012, 22, 2189–2202. [Google Scholar] [CrossRef] [Green Version]
- Vanhove, M.P.M.; Economou, A.N.; Zogaris, S.; Larmuseau, M.H.D.; Giakoumi, S.; Kalogianni, E.; Volckaert, F.A.M.; Huyse, T. Phylogenetics and biogeography of the Balkan “sand gobies” (Teleostei, Gobiidae): Vulnerable species in need of taxonomic revision. Biol. J. Linn. Soc. 2012, 105, 73–91. [Google Scholar] [CrossRef]
- Miller, P.J. Gobiidae. In Fishes of the North-Eastern Atlantic and the Mediterranean 3; Whitehead, P.J.P., Bauchot, M.-L., Hureau, J.-C., Nielsen, J., Tortonese, E., Eds.; UNESCO: Paris, France, 1986; pp. 1019–1085. [Google Scholar]
- Kovačić, M. Checklist of gobies (Actinopterii: Gobiidae) of the Mediterranean Sea and a key for species identification. Zootaxa 2020, 4877, 75–101. [Google Scholar] [CrossRef]
- Vanhove, M.P.M.; Tessens, B.; Schoelinck, C.; Jondelius, U.; Littlewood, D.T.J.; Artois, T.; Huyse, T. Problematic barcoding in flatworms: A case-study on monogeneans and rhabdocoels (Platyhelminthes). ZooKeys 2013, 365, 355–379. [Google Scholar] [CrossRef] [Green Version]
- Kmentová, N.; Cruz-Laufer, A.J.; Pariselle, A.; Smeets, K.; Artois, T.; Vanhove, M.P.M. Dactylogyridae 2022: A meta-analysis of phylogenetic studies and generic diagnoses of parasitic flatworms using published genetic and morphological data. Int. J. Parasitol. 2022, 52, 427–457. [Google Scholar] [CrossRef]
- Vanhove, M.P.M.; Pariselle, A.; Van Steenberge, M.; Raeymaekers, J.A.M.; Hablützel, P.I.; Gillardin, C.; Hellemans, B.; Breman, F.C.; Koblmüller, S.; Sturmbauer, C.; et al. Hidden biodiversity in an ancient lake: Phylogenetic congruence between Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites. Sci. Rep. 2015, 5, 13669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huyse, T.; Pampoulie, C.; Audenaert, V.; Volckaert, F.A.M. First report of Gyrodactylus spp. (Platyhelminthes: Monogenea) in the western Mediterranean sea: Molecular and morphological descriptions. J. Parasitol. 2006, 92, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Jorissen, M.W.P.; Vanhove, M.P.M.; Pariselle, A.; Snoeks, J.; Vreven, E.; Šimková, A.; Wamuini Lunkayilakio, S.; Chocha Manda, A.; Kapepula Kasembele, G.; Muterezi Bukinga, F.; et al. Molecular footprint of parasite co-introduction with Nile tilapia in the Congo Basin. Org. Divers. Evol. 2022. [Google Scholar] [CrossRef]
- Hassouna, N.; Michot, B.; Bachellerie, J.P. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res. 1984, 12, 3563–3583. [Google Scholar] [CrossRef] [Green Version]
- Matějusová, I.; Gelnar, M.; McBeath, A.J.A.; Collins, C.M.; Cunningham, C.O. Molecular markers for gyrodactylids (Gyrodactylidae: Monogenea) from five fish families (Teleostei). Int. J. Parasitol. 2001, 31, 738–745. [Google Scholar] [CrossRef]
- Littlewood, D.T.J.; Rohde, K.; Clough, K.A. Parasite speciation within or between host species? Phylogenetic evidence from site-specific polystome monogeneans. Int. J. Parasitol. 1997, 27, 1289–1297. [Google Scholar] [CrossRef]
- Lockyer, A.E.; Olson, P.D.; Østergaard, P.; Rollinson, D.; Johnston, D.A.; Attwood, S.W.; Southgate, V.R.; Horak, P.; Snyder, S.D.; Le, T.H.; et al. The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology 2003, 126, 203–224. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Higgins, D.; Thompson, J.; Gibson, T.; Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Bandelt, H.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- QGIS Association. QGIS Geographic Information System. 2021. Available online: http://www.qgis.org (accessed on 30 May 2022).
- Justine, J.L.; Rahmouni, C.; Gey, D.; Schoelinck, C.; Hoberg, E.P. The monogenean which lost its clamps. PLoS ONE 2013, 8, e79155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renoult, J.P.; Pillon, R.; Kovačić, M.; Louisy, P. Frontiers in Fishwatching Series—Gobies of the North-eastern Atlantic and the Mediterranean: Gobius and Thorogobius. In Les Cahiers de la Fondation Biotope; Fondation Biotope: Cayenne, France, 2022; Volume 37, pp. 1–237. [Google Scholar]
- Řehulková, E.; Mendlová, M.; Šimková, A. Two new species of Cichlidogyrus (Monogenea: Dactylogyridae) parasitizing the gills of African cichlid fishes (Perciformes) from Senegal: Morphometric and molecular characterization. Parasitol. Res. 2013, 112, 1399–1410. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, M.P.M.; Briscoe, A.G.; Jorissen, M.W.P.; Littlewood, D.T.J.; Huyse, T. The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenean parasites (Platyhelminthes: Gyrodactylidae and Dactylogyridae). BMC Genom. 2018, 19, 520. [Google Scholar] [CrossRef]
- Kmentová, N.; Koblmüller, S.; Van Steenberge, M.; Raeymaekers, J.A.M.; Artois, T.; De Keyzer, E.L.R.; Milec, L.; Muterezi Bukinga, F.; Mulimbwa N’sibula, T.; Masilya Mulungula, P.; et al. Weak population structure and expansive demographic history of the monogenean parasite Kapentagyrus spp. infecting clupeid fishes of Lake Tanganyika, East Africa. Int. J. Parasitol. 2020, 50, 471–486. [Google Scholar] [CrossRef]
- Plaisance, L.; Rousset, V.; Morand, S.; Littlewood, D.T.J. Colonization of Pacific islands by parasites of low dispersal ability: Phylogeography of two monogenean species parasitizing butterflyfishes in the South Pacific Ocean. J. Biogeogr. 2008, 35, 76–87. [Google Scholar] [CrossRef]
- Santacruz, A.; Barluenga, M.; Pérez-Ponce de León, G. The macroparasite fauna of cichlid fish from Nicaraguan lakes, a model system for understanding host-parasite diversification and speciation. Sci. Rep. 2022, 12, 3944. [Google Scholar] [CrossRef]
- Ergens, R. Über Pseudochetostoma leucisci n. sp. (Trematoidea) und Ancyrocephalus cobitis n. sp. (Monogenoidea), zwei neue parasitische Würmer der fische Albaniens. Z. Parasitenkd. 1963, 22, 287–291. [Google Scholar] [CrossRef]
- Merella, P.; Dmitrieva, E.V.; Piras, M.C.; Huyse, T.; Gerasev, P.; Garippa, G. Two monogenean species (Platyhelminthes) infecting Gobius cobitis Pallas, 1811 (Osteichthyes: Gobiidae) off Sardinia, western Mediterranean Sea. SOIPA XXVI Abstracts. Parassitologia 2010, 52, 359. [Google Scholar]
- Baker, T.G.; Viricel, A.; Meraziz, L.; de Buron, I. Size variation of adult polyopisthocotylid Metamicrocotyla macracantha (Monogenea) in relation to host size. Comp. Parasitol. 2005, 72, 179–182. [Google Scholar] [CrossRef]
- Lakshmi Perera, K.M. The effect of host size on large hamuli length of Kuhnia scombri (Monogenea: Polyopisthocotylea) from Eden, New South Wales, Australia. Int. J. Parasitol. 1992, 22, 123–124. [Google Scholar] [CrossRef]
- Ziętara, M.S.; Lumme, J. Speciation by host-switching and adaptive radiation in a fish parasite genus Gyrodactylus (Monogenea, Gyrodactylidae). Evolution 2002, 56, 2445–2458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, W.X.; Zou, H.; Wu, S.G.; Li, M.; Jakovlić, I.; Zhang, J.; Chen, R.; Wang, G. Homoplasy or plesiomorphy? Reconstruction of the evolutionary history of mitochondrial gene order rearrangements in the subphylum Neodermata. Int. J. Parasitol. 2019, 49, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zou, H.; Jakovlić, I.; Wu, S.G.; Li, M.; Zhang, J.; Chen, R.; Li, W.X.; Wang, G.T. Mitochondrial genomes of two Thaparocleidus species (Platyhelminthes: Monogenea) reveal the first rRNA gene rearrangement among the Neodermata. Int. J. Mol. Sci. 2019, 20, 4214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitta, M.; Nagasawa, K. Gobioecetes longibasis n. sp. (Monogenea: Dactylogyridae) from Rhinogobius similis Gill (Perciformes: Gobiidae) from Okinawa-jima Island, the Ryukyu Archipelago, southern Japan, with a new host record for Gobioecetes biwaensis Ogawa & Itoh, 2017. Syst. Parasitol. 2020, 97, 193–200. [Google Scholar] [CrossRef]
- Pugachev, O.N.; Gerasev, P.I.; Gussev, A.V.; Ergens, R.; Khotenowsky, I. Guide to Monogenoidea of Freshwater Fish of Palaeartic and Amur Regions; Galli, P., Pugachev, O.N., Kritsky, D., Eds.; Ledizione-LediPublishing: Milan, Italy, 2009. [Google Scholar]
- Agorreta, A.; San Mauro, D.; Schliewen, U.; Van Tassell, J.L.; Kovačić, M.; Zardoya, R.; Rüber, L. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Mol. Phylogenet. Evol. 2013, 69, 619–633. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.P.; Adams, R.J.; Page, R.D.M.; Clayton, D.H. When do parasites fail to speciate in response to host speciation? Syst. Biol. 2003, 52, 37–47. [Google Scholar] [CrossRef]
- Huyse, T.; Audenaert, V.; Volckaert, F.A.M. Speciation and host-parasite relationships in the parasite genus Gyrodactylus (Monogenea, Platyhelminthes) infecting gobies of the genus Pomatoschistus (Gobiidae, Teleostei). Int. J. Parasitol. 2003, 33, 1679–1689. [Google Scholar] [CrossRef]
- Kmentová, N.; Van Steenberge, M.; Raeymaekers, J.A.M.; Koblmüller, S.; Hablützel, P.I.; Muterezi Bukinga, F.; Mulimbwa N’sibula, T.; Masilya Mulungula, P.; Nzigidahera, B.; Ntakimazi, G.; et al. Monogenean parasites of sardines in Lake Tanganyika: Diversity, origin and intra-specific variability. Contrib. Zool. 2018, 87, 105–132. [Google Scholar] [CrossRef] [Green Version]
Protocol | Large Subunit 28S rDNA (ca. 700–900 bp) | Internal Transcribed Spacer rDNA (ca. 900–1200 bp) | Cytochrome c Oxidase Subunit 1 (ca. 445 bp) |
---|---|---|---|
initial denaturation | 2 min/94 °C | 3 min/96 °C | 5 min/95 °C |
cycle: denaturation annealing elongation | 20 s/94 °C 30 s/56 °C 1 min 30 s/72 °C | 50 s/95 °C 50 s/52 °C 50 s/72 °C | 1 min/94 °C 1 min/50 °C 1 min/72 °C |
final elongation | 10 min/72 °C | 7 min/72 °C | 7 min/72 °C |
cooling | 4 °C | 4 °C | 4 °C |
Species | Locality | Sampling Date | Number of Host Specimens Inspected for Parasites/Sequenced | Voucher Specimens | GenBank Accession Numbers |
---|---|---|---|---|---|
Gobius cobitis Pallas, 1814 | Acheloos Delta 38°20′17.6″ N 21°07′39.0″ E | 10 June 2008 | 1/- | PMR VP 3175 | / |
Kryoneri Estuary 38°22′23.4″ N 21°51′55.0″ E | 7 June 2008 | 1/1 | PMR VP 3215 | ON847338 (16S rDNA), ON853912 (12S rDNA) | |
Gobius couchi1 Miller & El-Tawil 1974 | Lake Heraion 38°01′31.8″ N 22°52′34.6″ E | 8 September 2008 | 1/- | PMR VP 3208 | / |
Gobius niger Linnaeus, 1758 | Drepano Beach 39°30′54.3″ N 20°12′39.4″ E | 8 June 2008 | 16/2 | PMR VP 3179 to PMR VP 3194 | ON847339-40 (16S rDNA), ON853913-14 (12S rDNA) |
Lake Heraion 38°01′31.8″ N 22°52′34.6″ E | 8 September 2008 | 11/2 | PMR VP 3195 to PMR VP 3206, PMR VP 3207, and PMR VP 3209 | ON847341-42 (16S rDNA), ON853915-16 (12S rDNA) | |
Gobius ophiocephalus Pallas, 1814 | Acheloos Delta 38°20′17.6″ N 21°07′39.0″ E | 10 June 2008 | 2/1 | PMR VP 3176, PMR VP 3178 | ON847343 (16S rDNA), ON853917 (12S rDNA) |
Gobius paganellus Linnaeus, 1758 | Acheloos Delta 38°20′17.6″ N 21°07′39.0″ E | 10 June 2008 | 1/1 | PMR VP 3177 | ON847344 (16S rDNA), ON853918 (12S rDNA) |
Euboea Island (Livadaki, Karystos) 38°00′15.8″ N 24°23′30.3″ E | 3 June 2008 | 1/1 | PMR VP 3210 | ON847345 (16S rDNA), ON853919 (12S rDNA) |
Parameter | Acheloos Delta Population | Kryoneri Estuary Population |
---|---|---|
Body | ||
Total length | 387.6–476.2 (425.7, n = 4) | 337.3–408.3 (369.3, n = 4) |
Total width | 140.1–181.4 (160.0, n = 4) | 134.5–203.7 (157.0, n = 4) |
Dorsal anchor | ||
Total length (a) | 43.0–46.4 (44.5, n = 4) | 49.6–53.7 (51.2, n = 3) |
Length to notch (b) | 32.3–34.1 (33.2, n = 4) | 36.4–40.7 (38.6, n = 3) |
Inner root length (c) | 18.3–22.9 (20.3, n = 4) | 23.7–24.6 (24.2, n = 3) |
Outer root length (d) | 5.1–9.6 (8.0, n = 4) | 9.5–11.5 (10.5, n = 3) |
Point length (e) | 11.8–16.4 (14.4, n = 4) | 13.5–20.0 (17.0, n = 3) |
Ventral anchor | ||
Total length (a) | 34.0–40.1 (37.4, n = 4) | 36.8–40.1 (38.0, n = 3) |
Length to notch (b) | 40.4–44.2 (42.0, n = 4) | 42.8–46.2 (45.0, n = 3) |
Inner root length (c) | 10.3–10.9 (10.6, n = 2) | 9.8–10.9 (10.4, n = 3) |
Outer root length (d) | 5.4–6.3 (6.0, n = 3) | 6.4–9.3 (8.2, n = 3) |
Point length (e) | 4.3–5.5 (4.7, n = 4) | 5.6–6.3 (6.1, n = 3) |
Dorsal bar | ||
Branch length (h) | 35.2–38.4 (36.2, n = 4) | 40.1–43.3 (41.7, n = 3) |
Thickness at mid-length (w) | 8.7–13.5 (11.7, n = 4) | 12.8–19.3 (15.4, n = 3) |
Total straight width (x) | 37.2–59.3 (50.7, n = 4) | 56.6–72.4 (67.0, n = 3) |
Ventral bar | ||
Thickness at mid-length (w) | 4.6–6.2 (5.5, n = 4) | 7.7–9.2 (8.4, n = 3) |
Total straight width (x) | 41.1–45.0 (43.0, n = 4) | 50.6–54.0 (52.3, n = 3) |
Hook | ||
Pair I: total length (o) | 15.5–18.1 (16.9, n = 4) | 16.9–19.2 (17.7, n = 3) |
Pair I: shank length (p) | 9.1–12.2 (10.9, n = 4) | 10.7–12.7 (11.5, n = 3) |
Pair V: total length (o) | 13.8–16.0 (14.9, n = 4) | 14.6–15.5 (15.1, n = 3) |
Pair V: shank length (p) | 8.6–9.5 (9.1, n = 4) | 8.3–10.2 (9.2, n = 3) |
Other pairs: total length (o) | 14.2–18.4 (16.4, n = 20) | 14.1–20.7 (17.5, n = 18) |
Other pairs: shank length (p) | 8.7–11.7 (10.4, n = 20) | 8.7–14.4 (11.5, n = 18) |
Male copulatory organ | ||
Copulatory tube total straight length (q) | 23.3–31.6 (26.7, n = 4) | 14.7–35.2 (24.5, n = 4) |
Total straight length of the base of the copulatory tube (r) | 15.3–19.2 (16.5, n = 4) | 13.9–21.0 (17.5, n = 4) |
Copulatory tube total curved length (s) | 46.7–53.7 (50.4, n = 4) | 53.3–60.9 (56.2, n = 4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanhove, M.P.M.; Giakoumi, S.; Zogaris, D.; Kovačić, M.; Huyse, T. First Eastern Mediterranean Record of Xenoligophoroides cobitis, the Only Dactylogyrid Monogenean Infecting Mediterranean Gobies: Just Arrived or Missed the Boat? Diversity 2022, 14, 580. https://doi.org/10.3390/d14080580
Vanhove MPM, Giakoumi S, Zogaris D, Kovačić M, Huyse T. First Eastern Mediterranean Record of Xenoligophoroides cobitis, the Only Dactylogyrid Monogenean Infecting Mediterranean Gobies: Just Arrived or Missed the Boat? Diversity. 2022; 14(8):580. https://doi.org/10.3390/d14080580
Chicago/Turabian StyleVanhove, Maarten P. M., Sofia Giakoumi, Dimitris Zogaris, Marcelo Kovačić, and Tine Huyse. 2022. "First Eastern Mediterranean Record of Xenoligophoroides cobitis, the Only Dactylogyrid Monogenean Infecting Mediterranean Gobies: Just Arrived or Missed the Boat?" Diversity 14, no. 8: 580. https://doi.org/10.3390/d14080580
APA StyleVanhove, M. P. M., Giakoumi, S., Zogaris, D., Kovačić, M., & Huyse, T. (2022). First Eastern Mediterranean Record of Xenoligophoroides cobitis, the Only Dactylogyrid Monogenean Infecting Mediterranean Gobies: Just Arrived or Missed the Boat? Diversity, 14(8), 580. https://doi.org/10.3390/d14080580