Tracking the Effects of Climate Change on the Distribution of Plecia nearctica (Diptera, Bibionidae) in the USA Using MaxEnt and GIS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Occurrence Data
2.2. Environmental Variables
2.3. Habitat Suitability Modeling Using MaxEnt
2.4. GIS Analysis
2.5. Contribution Percentages and Model Performance
3. Results
3.1. Contribution Percentages and Model Performance
3.2. Historic/Current Distribution of Plecia nearctica
3.3. Prediction about Future Suitable Habitat for Plecia nearctica
3.4. Gain/Loss Due to Climate Change
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hung, K.-L.J.; Kingston, J.M.; Albrecht, M.; Holway, D.A.; Kohn, J.R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B Biol. Sci. 2018, 285, 20172140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winfree, R.; Gross, B.J.; Kremen, C. Valuing pollination services to agriculture. Ecol. Econ. 2011, 71, 80–88. [Google Scholar] [CrossRef]
- Brittain, C.; Williams, N.; Kremen, C.; Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breeze, T.D.; Bailey, A.P.; Balcombe, K.G.; Potts, S.G. Pollination services in the UK: How important are honeybees? Agric. Ecosyst. Environ. 2011, 142, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Hanley, N.; Breeze, T.D.; Ellis, C.; Goulson, D. Measuring the economic value of pollination services: Principles, evidence and knowledge gaps. Ecosyst. Serv. 2015, 14, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, M.H.; Harpur, B.A. Genetic past, present, and future of the honey bee (Apis mellifera) in the United States of America. Apidologie 2021, 52, 63–79. [Google Scholar] [CrossRef]
- Bauer, D.M.; Sue Wing, I. The macroeconomic cost of catastrophic pollinator declines. Ecol. Econ. 2016, 126, 1–13. [Google Scholar] [CrossRef]
- Calderone, N.W. Insect pollinated crops, insect pollinators and US agriculture: Trend analysis of aggregate aata for the period 1992–2009. PLoS ONE 2012, 7, e37235. [Google Scholar] [CrossRef] [Green Version]
- Greenleaf, S.S.; Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl. Acad. Sci. USA 2006, 103, 13890–13895. [Google Scholar] [CrossRef] [Green Version]
- Abou-Shaara, H.F. The foraging behaviour of honey bees, Apis mellifera: A review. Vet. Med. 2014, 59, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kirk, W.D.J.; Ali, M.; Breadmore, K.N. The effects of pollen beetles on the foraging behaviour of honey bees. J. Apic. Res. 1995, 34, 15–22. [Google Scholar] [CrossRef]
- Leppla, N.C. Living With Lovebugs; University of Florida IFAS Extension Publication #ENY-840; Department of Entomology and Nematology: Gainesville, FL, USA, 2018; pp. 1–7. Available online: https://edis.ifas.ufl.edu/publication/IN694 (accessed on 10 December 2018).
- Tumlison, C.R.; Robison, H.W. New records and notes on the natural history of selected invertebrates from southern Arkansas. J. Ark. Acad. Sci. 2010, 64, 141–144. [Google Scholar]
- Arthurs, S.P.; Tofangsazi, N.; Meagher, R.L.; Cherry, R. Attraction of Plecia nearctica (Diptera: Bibionidae) to floral lures containing phenylacetaldehyde. Fla. Entomol. 2012, 95, 199–201. [Google Scholar] [CrossRef]
- Cherry, R. Attraction of the lovebug, Plecia nearctica (Diptera: Bibionidae) to anethole. Fla. Entomol. 1998, 81, 559–562. [Google Scholar] [CrossRef]
- Arthurs, S.P.; Tofangsazi, N.; Cherry, R. Attraction of lovebugs (Diptera: Bibionidae) to visual and olfactory stimuli. J. Entomol. Sci. 2016, 48, 291–298. [Google Scholar] [CrossRef]
- Cherry, R.; Raid, R. Seasonal flight of Plecia nearctica (Diptera: Bibionidae) in Southern Florida. Fla. Entomol. 2000, 83, 94–96. [Google Scholar] [CrossRef]
- Hetrick, L.A. Biology of the “Love-Bug”, Plecia Nearctica (Diptera: Bibionidae). Fla. Entomol. 1970, 53, 23–26. [Google Scholar] [CrossRef]
- Abou-Shaara, H.F.; Al-Khalaf, A.A. Using maximum entropy algorithm to analyze current and future distribution of the Asian hornet, Vespa velutina, in Europe and North Africa under climate change conditions. J. Entomol. Res. Soc. 2022, 24, 07–21. [Google Scholar] [CrossRef]
- Alkhalaf, A.A. Utilizing ecological modeling to follow the potential spread of honey bee pest (Megaselia scalaris) from nearby countries towards Saudi Arabia under climate change conditions. Diversity 2022, 14, 261. [Google Scholar] [CrossRef]
- Mulieri, P.R.; Patitucci, L.D. Using ecological niche models to describe the geographical distribution of the myiasis-causing Cochliomyia hominivorax (Diptera: Calliphoridae) in southern South America. Parasitol. Res. 2019, 118, 1077–1086. [Google Scholar] [CrossRef]
- Villemant, C.; Barbet-Massin, M.; Perrard, A.; Muller, F.; Gargominy, O.; Jiguet, F.; Rome, Q. Predicting the invasion risk by the alien bee-hawking Yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biol. Conserv. 2011, 144, 2142–2150. [Google Scholar] [CrossRef]
- Abou-Shaara, H.; Alashaal, S.A.; Hosni, E.M.; Nasser, M.G.; Ansari, M.J.; Alharbi, S.A. Modeling the invasion of the Large Hive Beetle, Oplostomus fuligineus, into North Africa and South Europe under a changing climate. Insects 2021, 12, 275. [Google Scholar] [CrossRef] [PubMed]
- Abou-Shaara, H.F.; Darwish, A.A.E. Expected prevalence of the facultative parasitoid Megaselia scalaris of honey bees in Africa and the Mediterranean region under climate change conditions. Int. J. Trop. Insect Sci. 2021, 41, 3137–3145. [Google Scholar] [CrossRef]
- Hosni, E.M.; Nasser, M.G.; Al-Ashaal, S.A.; Rady, M.H.; Kenawy, M.A. Modeling current and future global distribution of Chrysomya bezziana under changing climate. Sci. Rep. 2020, 10, 4947. [Google Scholar] [CrossRef]
- Jamal, Z.A.; Abou-Shaara, H.F.; Qamer, S.; Alhumaidi Alotaibi, M.; Ali Khan, K.; Fiaz Khan, M.; Amjad Bashir, M.; Hannan, A.; Al-Kahtani, S.N.; Taha, E.-K.A.; et al. Future expansion of small hive beetles, Aethina tumida, towards North Africa and South Europe based on temperature factors using maximum entropy algorithm. J. King Saud. Univ. Sci. 2021, 33, 101242. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Wang, R.; Hou, K.; Wang, X.; Wu, W. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob. Ecol. Conserv. 2018, 16, e00477. [Google Scholar] [CrossRef]
- Chen, W.; Wei, J.; Zhu, K.; Lu, Y.; Cai, Y.; Wu, Q.; Huang, Z.; Wang, Y. Predicting potential distribution of Emmenopterys henryi in Southwest China based on the Maxent model and influencing factors. Trop. Ecol. 2022, 1–12. [Google Scholar] [CrossRef]
- Brito, J.C.; Acosta, A.L.; Álvares, F.; Cuzin, F. Biogeography and conservation of taxa from remote regions: An application of ecological-niche based models and GIS to North-African canids. Biol. Conserv. 2009, 142, 3020–3029. [Google Scholar] [CrossRef]
- Kalboussi, M.; Achour, H. Modelling the spatial distribution of snake species in northwestern Tunisia using maximum entropy (Maxent) and Geographic Information System (GIS). J. For. Res. 2018, 29, 233–245. [Google Scholar] [CrossRef]
- Leanza, P.M.; Valenti, F.; D’Urso, P.R.; Arcidiacono, C. A combined MaxEnt and GIS-based methodology to estimate cactus pear biomass distribution: Application to an area of southern Italy. Biofuels Bioprod. Biorefining 2022, 16, 54–67. [Google Scholar] [CrossRef]
- Le Conte, Y.; Navajas, M. Climate change: Impact on honey bee populations and diseases. Rev. Sci. Tech. 2008, 27, 499–510. [Google Scholar]
- Neumann, P.; Elzen, P.J. The biology of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae): Gaps in our knowledge of an invasive species. Apidologie 2004, 35, 229–247. [Google Scholar] [CrossRef] [Green Version]
- Neumann, P.; Pettis, J.S.; Schäfer, M.O. Quo vadis Aethina tumida? Biology and control of small hive beetles. Apidologie 2016, 47, 427–466. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, B.; Neumann, P.; Schweiger, O. Global warming promotes biological invasion of a honey bee pest. Global Change Biol. 2019, 25, 3642–3655. [Google Scholar] [CrossRef] [Green Version]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 25 July 2021).
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Sharp, J.L.; Leppla, N.C.; Bennett, D.R.; Turner, W.K.; Hamilton, E.W. Flight Ability of Plecia nearctica in the Laboratory. Ann. Entomol. Soc. Am. 1974, 67, 735–738. [Google Scholar] [CrossRef]
- Thornhill, R. Reproductive behavior of the lovebug, Plecia nearctica (Diptera: Bibionidae). Ann. Entomol. Soc. Am. 1976, 69, 843–847. [Google Scholar] [CrossRef]
- Thornhill, R. Sexual selection within mating swarms of the lovebug, Plecia nearctica (Diptera: Bibionidae). Anim. Behav. 1980, 28, 405–412. [Google Scholar] [CrossRef]
- Hieber, C.S.; Cohen, J.A. Sexual selection in the lovebug, Plecia Nearctica: The role of male choice. Evolution 1983, 37, 987–992. [Google Scholar] [CrossRef]
- Held, D.W.; Gelhaus, J.K. Damage in centipede sod associated with crane fly and March fly larvae (Diptera: Tipulidae, Bibionidae) in Mississippi. Fla. Entomol. 2006, 89, 89–90. [Google Scholar] [CrossRef]
- Buschman, L.L. Invasion of Florida by the ”lovebug” Plecia nearctica (Diptera: Bibionidae). Fla. Entomol. 1976, 59, 191–194. [Google Scholar] [CrossRef]
- D’Arcy-Burt, S.; Blackshaw, R.P. Bibionids (Diptera: Bibionidae) in agricultural land: A review of damage, benefits, natural enemies and control. Ann. Appl. Biol. 1991, 118, 695–708. [Google Scholar] [CrossRef]
- Kish, L.P.; Terry, I.; Allen, G.E. Three fungi tested against the lovebug, Plecia nearctica, in Florida. Fla. Entomol. 1977, 60, 291–295. [Google Scholar] [CrossRef]
- Arthurs, S.P.; Morales-Reyes, C.; Cherry, R.H. Trap design for lovebugs, Plecia nearctica (Diptera: Bibionidae). Fla. Entomol. 2015, 98, 892–898. [Google Scholar] [CrossRef]
Number | Variable | Abbreviation |
---|---|---|
1 | Annual mean temperature (°C) | bio1 |
2 | Temperature seasonality (standard deviation ×100 in °C) | bio4 |
3 | Minimum temperature of coldest month (°C) | bio6 |
4 | Temperature annual range (°C) | bio7 |
5 | Mean temperature of warmest quarter (°C) | bio10 |
6 | Precipitation of wettest month (mm) | bio13 |
Institution | Code | Institution ID |
---|---|---|
The Beijing Climate Center Climate System Model | BCC-CSM2-MR | BCC |
The Meteorological Research Institute | MRI-ESM2-0 | MRI |
Settings | Value |
---|---|
Records | 933 records |
Random test percentage | 25% |
Environmental layers | Continuous |
Background and presence points | 10909 |
Linear/quadratic/product | 0.050 |
Categorical | 0.250 |
Threshold | 1.000 |
Hinge | 0.500 |
Output format | Cumulative |
Replicates | 10 |
Replicate run type | Cross validate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou-Shaara, H.F.; Amiri, E.; Parys, K.A. Tracking the Effects of Climate Change on the Distribution of Plecia nearctica (Diptera, Bibionidae) in the USA Using MaxEnt and GIS. Diversity 2022, 14, 690. https://doi.org/10.3390/d14080690
Abou-Shaara HF, Amiri E, Parys KA. Tracking the Effects of Climate Change on the Distribution of Plecia nearctica (Diptera, Bibionidae) in the USA Using MaxEnt and GIS. Diversity. 2022; 14(8):690. https://doi.org/10.3390/d14080690
Chicago/Turabian StyleAbou-Shaara, Hossam F., Esmaeil Amiri, and Katherine A. Parys. 2022. "Tracking the Effects of Climate Change on the Distribution of Plecia nearctica (Diptera, Bibionidae) in the USA Using MaxEnt and GIS" Diversity 14, no. 8: 690. https://doi.org/10.3390/d14080690
APA StyleAbou-Shaara, H. F., Amiri, E., & Parys, K. A. (2022). Tracking the Effects of Climate Change on the Distribution of Plecia nearctica (Diptera, Bibionidae) in the USA Using MaxEnt and GIS. Diversity, 14(8), 690. https://doi.org/10.3390/d14080690