How Might Climate Change Affect Adaptive Responses of Polar Arthropods?
Abstract
:1. Introduction
2. Polar Arthropods Are Abundant and Diverse, and Exhibit a Range of Adaptations to the Cold
2.1. Abundance and Diversity
2.2. Adaptations to the Cold
2.2.1. Thermal Tolerance
Freeze-Avoidance
Freeze-Tolerance
Cryoprotective Dehydration
Rapid Cold Hardening
2.2.2. Metabolism
2.2.3. Body Size
3. Climate Change Will Bring New Challenges for Polar Arthropods: How Might They Cope?
3.1. Challenges of Climate Change
3.2. Potential Responses to a Changing Climate
3.2.1. Invasive Species
3.2.2. Plastic and Genetic Responses to a Changing Climate
Phenotypic Plasticity
Genetic Responses
4. Future Steps
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pörtner, H.O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R.; et al. Climate change 2022: Impacts, adaptation and vulnerability. In IPCC Sixth Assessment Report; IPCC: Geneva, The Netherlands, 2022; pp. 37–118. [Google Scholar]
- Shadwick, E.H.; De Meo, O.A.; Schroeter, S.; Arroyo, M.C.; Martinson, D.G.; Ducklow, H. Sea ice suppression of CO2 outgassing in the West Antarctic Peninsula: Implications for the evolving southern ocean carbon sink. Geophys. Res. Lett. 2021, 48, e2020GL091835. [Google Scholar] [CrossRef]
- Monteiro, M.R.; Marshall, A.J.; Hawes, I.; Lee, C.K.; McDonald, I.R.; Cary, S.C. Geochemically defined space-for-time transects successfully capture microbial dynamics along lacustrine chronosequences in a polar desert. Front. Microbiol. 2022, 12, 4201. [Google Scholar] [CrossRef] [PubMed]
- Diffenbaugh, N.S.; Field, C.B. Changes in ecologically critical terrestrial climate conditions. Science 2013, 341, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Koenigk, T.; Key, J.; Vihma, T. Climate change in the Arctic. In Physics and Chemistry of the Arctic Atmosphere; Kokhanovsky, A., Tomasi, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 673–705. [Google Scholar]
- Hughes, K.A.; Convey, P.; Turner, J. Developing resilience to climate change impacts in Antarctica: An evaluation of Antarctic Treaty System protected area policy. Environ. Sci. Policy 2021, 124, 12–22. [Google Scholar] [CrossRef]
- Høye, T.T. Arthropods and climate change–Arctic challenges and opportunities. Curr. Opin. Insect Sci. 2020, 41, 40–45. [Google Scholar] [CrossRef]
- Rudkin, D.M.; Young, G.A. Horseshoe crabs–an ancient ancestry revealed. In Biology and Conservation of Horseshoe Crabs; Tanacredi, J.T., Botton, M.L., Smith, D., Eds.; Springer: Boston, MA, USA, 2009; pp. 25–44. [Google Scholar]
- Høye, T.T.; Culler, L.E. Tundra arthropods provide key insights into ecological responses to environmental change. Polar Biol. 2018, 41, 1523–1529. [Google Scholar] [CrossRef] [Green Version]
- Convey, P.; Gibson, J.A.; Hillenbrand, C.D.; Hodgson, D.A.; Pugh, P.J.; Smellie, J.L.; Stevens, M.I. Antarctic terrestrial life--challenging the history of the frozen continent? Biol. Rev. 2008, 83, 103–117. [Google Scholar] [CrossRef]
- Hughes, K.A.; Worland, M.R. Spatial distribution, habitat preference and colonization status of two alien terrestrial invertebrate species in Antarctica. Antarct. Sci. 2010, 22, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Michaud, M.R.; Benoit, J.B.; Lopez-Martinez, G.; Elnitsky, M.A.; Lee, R.E., Jr.; Denlinger, D.L. Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica Antarctica. J. Insect Physiol. 2008, 54, 645–655. [Google Scholar] [CrossRef]
- Turner, J.; Lu, H.; King, J.; Marshall, G.J.; Phillips, T.; Bannister, D.; Colwell, S. Extreme temperatures in the Antarctic. J. Clim. 2021, 34, 2653–2668. [Google Scholar] [CrossRef]
- Vanstreels, R.E.T.; Palma, R.L.; Mironov, S.V. Arthropod parasites of Antarctic and sub-Antarctic birds and pinnipeds: A review of host-parasite associations. Int. J. Parasitol. Parasites Wildl. 2020, 12, 275–290. [Google Scholar] [CrossRef] [PubMed]
- Hodkinson, I.D.; Coulson, S.J.; Webb, N.R. Community assembly along proglacial chronosequences in the high Arctic: Vegetation and soil development in north-west Svalbard. J. Ecol. 2003, 91, 651–663. [Google Scholar] [CrossRef]
- Giribet, G.; Edgecombe, G.D. The phylogeny and evolutionary history of arthropods. Curr. Biol. 2019, 29, R592–R602. [Google Scholar] [CrossRef] [PubMed]
- Maurice, H.; Philippe, V. Terrestrial macro-arthropods of the sub-Antarctic islands of Possession (Crozet Archipelago) and Kerguelen: Inventory of native and non-native species. Zoosystema 2021, 43, 549–561. [Google Scholar] [CrossRef]
- Sinclair, B.J.; Terblanche, J.S.; Scott, M.B.; Blatch, G.L.; Jaco Klok, C.; Chown, S.L. Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. J. Insect Physiol. 2006, 52, 29–50. [Google Scholar] [CrossRef]
- Høye, T.T.; Forchhammer, M.C. Phenology of high-Arctic arthropods: Effects of climate on spatial, seasonal, and inter-annual variation. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 2008; Volume 40, pp. 299–324. [Google Scholar]
- Sinclair, B.J.; Coello Alvarado, L.E.; Ferguson, L.V. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J. Therm. Biol. 2015, 53, 180–197. [Google Scholar] [CrossRef] [Green Version]
- Rozsypal, J.; Košťál, V. Supercooling and freezing as eco-physiological alternatives rather than mutually exclusive strategies: A case study in Pyrrhocoris apterus. J. Insect Physiol. 2018, 111, 53–62. [Google Scholar] [CrossRef]
- Duman, J.G.; Bennett, V.; Sformo, T.; Hochstrasser, R.; Barnes, B.M. Antifreeze proteins in Alaskan insects and spiders. J. Insect Physiol. 2004, 50, 259–266. [Google Scholar] [CrossRef]
- Worland, M.R. Factors that influence freezing in the sub-Antarctic springtail Tullbergia antarctica. J. Insect Physiol. 2005, 51, 881–894. [Google Scholar] [CrossRef]
- Zettel, J. The significance of temperature and barometric pressure changes for the snow surface activity of Isotoma hiemalis (Collembola). Experientia 1984, 40, 1369–1372. [Google Scholar] [CrossRef]
- Sinclair, B.J.; Sjursen, H. Cold tolerance of the Antarctic springtail Gomphiocephalus hodgsoni (Collembola, Hypogastruridae). Antarct. Sci. 2001, 13, 271–279. [Google Scholar] [CrossRef]
- Rinehart, J.P.; Li, A.; Yocum, G.D.; Robich, R.M.; Hayward, S.A.L.; Denlinger, D.L. Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc. Natl. Acad. Sci. USA 2007, 104, 11130–11137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storey, K.B.; Storey, J.M. Insect cold hardiness: Metabolic, gene, and protein adaptation. Can. J. Zool. 2012, 90, 456–475. [Google Scholar] [CrossRef]
- Walters, K.R., Jr.; Sformo, T.; Barnes, B.M.; Duman, J.G. Freeze tolerance in an arctic Alaska stonefly. J. Exp. Biol. 2009, 212, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.S.; Thorne, M.A.S.; Purać, J.; Burns, G.; Hillyard, G.; Popović, Ž.D.; Grubor-Lajšić, G.; Worland, M.R. Surviving the cold: Molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg). BMC Genom. 2009, 10, 328. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, J.G.; Holmstrup, M. Cryoprotective dehydration is widespread in Arctic springtails. J. Insect Physiol. 2011, 57, 1147–1153. [Google Scholar] [CrossRef]
- Sformo, T.; Walters, K.; Jeannet, K.; Wowk, B.; Fahy, G.M.; Barnes, B.M.; Duman, J.G. Deep supercooling, vitrification and limited survival to –100°C in the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. J. Exp. Biol. 2010, 213, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Elnitsky, M.A.; Hayward, S.A.; Rinehart, J.P.; Denlinger, D.L.; Lee, R.E., Jr. Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. J. Exp. Biol. 2008, 211, 524–530. [Google Scholar] [CrossRef] [Green Version]
- Teets, N.M.; Gantz, J.D.; Kawarasaki, Y. Rapid cold hardening: Ecological relevance, physiological mechanisms and new perspectives. J. Exp. Biol. 2020, 223, jeb203448. [Google Scholar] [CrossRef]
- Teets, N.M.; Denlinger, D.L. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol. Entomol. 2013, 38, 105–116. [Google Scholar] [CrossRef]
- Worland, M.R.; Convey, P. Rapid cold hardening in Antarctic microarthropods. Funct. Ecol. 2001, 15, 515–524. [Google Scholar] [CrossRef]
- Hawes, T.C.; Couldridge, C.E.; Bale, J.S.; Worland, M.R.; Convey, P. Habitat temperature and the temporal scaling of cold hardening in the high Arctic collembolan, Hypogastrura tullbergi (Schäffer). Ecol. Entomol. 2006, 31, 450–459. [Google Scholar] [CrossRef]
- Clarke, A.; Fraser, K.P.P. Why does metabolism scale with temperature? Funct. Ecol. 2004, 18, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Schulte, P.M. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 2015, 218, 1856–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.M.; Szejner-Sigal, A.; Morgan, T.J.; Edison, A.S.; Allison, D.B.; Hahn, D.A. Adaptation to low temperature exposure increases metabolic rates independently of growth rates. Integr. Comp. Biol. 2016, 56, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Terblanche, J.S.; Clusella-Trullas, S.; Deere, J.A.; Van Vuuren, B.J.; Chown, S.L. Directional evolution of the slope of the metabolic rate–temperature relationship is correlated with climate. Physiol. Biochem. Zool. 2009, 82, 495–503. [Google Scholar] [CrossRef]
- Addo-Bediako, A.; Chown, S.L.; Gaston, K.J. Metabolic cold adaptation in insects: A large-scale perspective. Funct. Ecol. 2002, 16, 332–338. [Google Scholar] [CrossRef]
- Ayres, M.P.; Scriber, J.M. Local adaptation to regional climates in Papilio canadensis (Lepidoptera: Papilionidae). Ecol. Monogr. 1994, 64, 465–482. [Google Scholar] [CrossRef]
- Lardies, M.A.; Bacigalupe, L.D.; Bozinovic, F. Testing the metabolic cold adaptation hypothesis: An intraspecific latitudinal comparison in the common woodlouse. Evol. Ecol. Res. 2004, 6, 567–578. [Google Scholar]
- Nespolo, R.F.; Lardies, M.A.; Bozinovic, F. Intrapopulational variation in the standard metabolic rate of insects: Repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket. J. Exp. Biol. 2003, 206, 4309–4315. [Google Scholar] [CrossRef] [Green Version]
- MacMillan, H.A.; Sinclair, B.J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 2011, 57, 12–20. [Google Scholar] [CrossRef]
- David, J.R.; Gibert, P.; Moreteau, B.; Gilchrist, G.W.; Huey, R.B. The fly that came in from the cold: Geographic variation of recovery time from low-temperature exposure in Drosophila subobscura. Funct. Ecol. 2003, 17, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Marden, J.H. Nature’s inordinate fondness for metabolic enzymes: Why metabolic enzyme loci are so frequently targets of selection. Mol. Ecol. 2013, 22, 5743–5764. [Google Scholar] [CrossRef] [PubMed]
- Noer, N.K.; Sørensen, M.H.; Colinet, H.; Renault, D.; Bahrndorff, S.; Kristensen, T.N. Adjustments in thermal tolerance and the metabolome to daily environmental changes-a field study of the arctic seed bug Nysius groenlandicus. Front. Physiol. 2022, 13, 818485. [Google Scholar] [CrossRef] [PubMed]
- Horne, C.R.; Hirst, A.G.; Atkinson, D. Seasonal body size reductions with warming covary with major body size gradients in arthropod species. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170238. [Google Scholar] [CrossRef] [Green Version]
- Verberk, W.C.E.P.; Atkinson, D.; Hoefnagel, K.N.; Hirst, A.G.; Horne, C.R.; Siepel, H. Shrinking body sizes in response to warming: Explanations for the temperature–size rule with special emphasis on the role of oxygen. Biol. Rev. 2021, 96, 247–268. [Google Scholar] [CrossRef]
- Klok, C.J.; Harrison, J.F. The temperature size rule in arthropods: Independent of macro-environmental variables but size dependent. Integr. Comp. Biol. 2013, 53, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Bowden, J.J.; Eskildsen, A.; Hansen, R.R.; Olsen, K.; Kurle, C.M.; Høye, T.T. High-Arctic butterflies become smaller with rising temperatures. Biol. Lett. 2015, 11, 20150574. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Alberola, J.A.; Mesquita-Joanes, F. Breaking the temperature-size rule: Thermal effects on growth, development and fecundity of a crustacean from temporary waters. J. Therm. Biol. 2014, 42, 15–24. [Google Scholar] [CrossRef]
- Scriven, J.J.; Whitehorn, P.R.; Goulson, D.; Tinsley, M.C. Bergmann’s body size rule operates in facultatively endothermic insects: Evidence from a complex of cryptic bumblebee species. PLoS One 2016, 11, e0163307. [Google Scholar] [CrossRef]
- Shelomi, M. Where are we now? Bergmann’s rule sensu lato in insects. Am. Nat. 2012, 180, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Danks, H.V. Seasonal adaptations in Arctic insects. Integr. Comp. Biol. 2004, 44, 85–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thuiller, W.; Albert, C.; Araújo, M.B.; Berry, P.M.; Cabeza, M.; Guisan, A.; Hickler, T.; Midgley, G.F.; Paterson, J.; Schurr, F.M.; et al. Predicting global change impacts on plant species’ distributions: Future challenges. Perspect. Plant Ecol. Evol. Syst. 2008, 9, 137–152. [Google Scholar] [CrossRef]
- Cohen, J.; Zhang, X.; Francis, J.; Jung, T.; Kwok, R.; Overland, J.; Ballinger, T.J.; Bhatt, U.S.; Chen, H.W.; Coumou, D.; et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Chang. 2020, 10, 20–29. [Google Scholar] [CrossRef]
- Meier, W.N.; Hovelsrud, G.K.; van Oort, B.E.H.; Key, J.R.; Kovacs, K.M.; Michel, C.; Haas, C.; Granskog, M.A.; Gerland, S.; Perovich, D.K.; et al. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 2014, 52, 185–217. [Google Scholar] [CrossRef]
- Maksym, T. Arctic and Antarctic sea ice change: Contrasts, commonalities, and causes. Annu. Rev. Mar. Sci. 2019, 11, 187–213. [Google Scholar] [CrossRef] [Green Version]
- Wunderling, N.; Willeit, M.; Donges, J.F.; Winkelmann, R. Global warming due to loss of large ice masses and Arctic summer sea ice. Nat. Commun. 2020, 11, 5177. [Google Scholar] [CrossRef]
- Jahn, A. Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming. Nat. Clim. Chang. 2018, 8, 409–413. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M. When will the summer Arctic be nearly sea ice free? Geophys. Res. Lett. 2013, 40, 2097–2101. [Google Scholar] [CrossRef]
- Convey, P.; Peck, L.S. Antarctic environmental change and biological responses. Sci. Adv. 2019, 5, eaaz0888. [Google Scholar] [CrossRef] [Green Version]
- Contador, T.; Gañan, M.; Bizama, G.; Fuentes-Jaque, G.; Morales, L.; Rendoll, J.; Simoes, F.; Kennedy, J.; Rozzi, R.; Convey, P. Assessing distribution shifts and ecophysiological characteristics of the only Antarctic winged midge under climate change scenarios. Sci. Rep. 2020, 10, 9087. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Comiso, J.C.; Marshall, G.J.; Lachlan-Cope, T.A.; Bracegirdle, T.; Maksym, T.; Meredith, M.P.; Wang, Z.; Orr, A. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett. 2009, 36, L08502. [Google Scholar] [CrossRef] [Green Version]
- Bandoro, J.; Solomon, S.; Donohoe, A.; Thompson, D.W.J.; Santer, B.D. Influences of the Antarctic ozone hole on southern hemispheric summer climate change. J. Clim. 2014, 27, 6245–6264. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Ivy, D.J.; Kinnison, D.; Mills, M.J.; Neely, R.R.; Schmidt, A. Emergence of healing in the Antarctic ozone layer. Science 2016, 353, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Lassuy, D.R.; Lewis, P.N. Invasive species: Human-induced. In Arcticbiodiversityassessment. Status and Trends in Arctic Biodiversity; Meltofte, H.H., Josefson, A.B., Payer, D., Eds.; CAFF: Akureyri, Iceland, 2013; pp. 558–565. [Google Scholar]
- Kellermann, V.; van Heerwaarden, B. Terrestrial insects and climate change: Adaptive responses in key traits. Physiol. Entomol. 2019, 44, 99–115. [Google Scholar] [CrossRef] [Green Version]
- Bush, A.; Mokany, K.; Catullo, R.; Hoffmann, A.; Kellermann, V.; Sgrò, C.; McEvey, S.; Ferrier, S. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 2016, 19, 1468–1478. [Google Scholar] [CrossRef]
- Lee, R.E., Jr.; Elnitsky, M.A.; Rinehart, J.P.; Hayward, S.A.; Sandro, L.H.; Denlinger, D.L. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. J. Exp. Biol. 2006, 209, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Pertierra, L.R.; Escribano-Álvarez, P.; Olalla-Tárraga, M.Á. Cold tolerance is similar but heat tolerance is higher in the alien insect Trichocera maculipennis than in the native Parochlus steinenii in Antarctica. Polar Biol. 2021, 44, 1203–1208. [Google Scholar] [CrossRef]
- Bennett, V.A.; Lee, R.E., Jr.; Nauman, J.S.; Kukal, O. Selection of overwintering microhabitats used by the Arctic woollybear caterpillar, Gynaephora groenlandica. Cryo Lett. 2003, 24, 191–200. [Google Scholar]
- Harvey, J.A.; Tougeron, K.; Gols, R.; Heinen, R.; Abarca, M.; Abram, P.K.; Basset, Y.; Berg, M.; Boggs, C.; Brodeur, J.; et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 2022, 0, e1553. [Google Scholar] [CrossRef]
- Van Dyck, H.; Bonte, D.; Puls, R.; Gotthard, K.; Maes, D. The lost generation hypothesis: Could climate change drive ectotherms into a developmental trap? Oikos 2015, 124, 54–61. [Google Scholar] [CrossRef]
- Kerr, N.Z.; Wepprich, T.; Grevstad, F.S.; Dopman, E.B.; Chew, F.S.; Crone, E.E. Developmental trap or demographic bonanza? Opposing consequences of earlier phenology in a changing climate for a multivoltine butterfly. Glob. Chang. Biol. 2020, 26, 2014–2027. [Google Scholar] [CrossRef] [PubMed]
- Tougeron, K.; Brodeur, J.; Le Lann, C.; van Baaren, J. How climate change affects the seasonal ecology of insect parasitoids. Ecol. Entomol. 2020, 45, 167–181. [Google Scholar] [CrossRef] [Green Version]
- Nürnberger, F.; Härtel, S.; Steffan-Dewenter, I. Seasonal timing in honeybee colonies: Phenology shifts affect honey stores and varroa infestation levels. Oecologia 2019, 189, 1121–1131. [Google Scholar] [CrossRef]
- Renner, S.S.; Zohner, C.M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 165–182. [Google Scholar] [CrossRef]
- Cooper, E.J. Warmer shorter winters disrupt Arctic terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 271–295. [Google Scholar] [CrossRef]
- De Sassi, C.; Tylianakis, J.M. Climate change disproportionately increases herbivore over plant or parasitoid biomass. PLoS One 2012, 7, e40557. [Google Scholar] [CrossRef]
- Hodkinson, I.D.; Webb, N.R.; Bale, J.S.; Block, W.; Coulson, S.J.; Strathdee, A.T. Global change and Arctic ecosystems: Conclusions and predictions from experiments with terrestrial invertebrates on Spitsbergen. Arct. Alp. Res. 1998, 30, 306–313. [Google Scholar] [CrossRef]
- Wallingford, P.D.; Morelli, T.L.; Allen, J.M.; Beaury, E.M.; Blumenthal, D.M.; Bradley, B.A.; Dukes, J.S.; Early, R.; Fusco, E.J.; Goldberg, D.E.; et al. Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts. Nat. Clim. Chang. 2020, 10, 398–405. [Google Scholar] [CrossRef]
- Block, W.; Webb, N.R.; Coulson, S.; Hodkinson, I.D.; Worland, M.R. Thermal adaptation in the Arctic collembolan Onychiurus arcticus (Tullberg). J. Insect Physiol. 1994, 40, 715–722. [Google Scholar] [CrossRef]
- Schmidt, N.M.; Mosbacher, J.B.; Nielsen, P.S.; Rasmussen, C.; Høye, T.T.; Roslin, T. An ecological function in crisis? The temporal overlap between plant flowering and pollinator function shrinks as the Arctic warms. Ecography 2016, 39, 1250–1252. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, T.M.; Pyšek, P.; Bacher, S.; Carlton, J.T.; Duncan, R.P.; Jarošík, V.; Wilson, J.R.U.; Richardson, D.M. A proposed unified framework for biological invasions. Trends Ecol. Evol. 2011, 26, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Houghton, M.; McQuillan, P.B.; Bergstrom, D.M.; Frost, L.; van den Hoff, J.; Shaw, J. Pathways of alien invertebrate transfer to the Antarctic region. Polar Biol. 2016, 39, 23–33. [Google Scholar] [CrossRef]
- Williamson, M.; Fitter, A. The Varying Success of Invaders. Ecology 1996, 77, 1661–1666. [Google Scholar] [CrossRef]
- Frenot, Y.; Chown, S.L.; Whinam, J.; Selkirk, P.M.; Convey, P.; Skotnicki, M.; Bergstrom, D.M. Biological invasions in the Antarctic: Extent, impacts and implications. Biol. Rev. 2005, 80, 45–72. [Google Scholar] [CrossRef] [Green Version]
- Stachowicz, J.J.; Terwin, J.R.; Whitlatch, R.B.; Osman, R.W. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions. Proc. Natl. Acad. Sci. USA 2002, 99, 15497–15500. [Google Scholar] [CrossRef] [Green Version]
- Alsos, I.G.; Ware, C.; Elven, R. Past Arctic aliens have passed away, current ones may stay. Biol. Invasions 2015, 17, 3113–3123. [Google Scholar] [CrossRef] [Green Version]
- Baird, H.P.; Moon, K.L.; Janion-Scheepers, C.; Chown, S.L. Springtail phylogeography highlights biosecurity risks of repeated invasions and intraregional transfers among remote islands. Evol. Appl. 2020, 13, 960–973. [Google Scholar] [CrossRef] [Green Version]
- Duffy, G.A.; Coetzee, B.W.T.; Latombe, G.; Akerman, A.H.; McGeoch, M.A.; Chown, S.L. Barriers to globally invasive species are weakening across the Antarctic. Divers. Distrib. 2017, 23, 982–996. [Google Scholar] [CrossRef] [Green Version]
- Hughes, K.A.; Pescott, O.L.; Peyton, J.; Adriaens, T.; Cottier-Cook, E.J.; Key, G.; Rabitsch, W.; Tricarico, E.; Barnes, D.K.A.; Baxter, N.; et al. Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Glob. Change Biol. 2020, 26, 2702–2716. [Google Scholar] [CrossRef]
- Coulson, S.J. The alien terrestrial invertebrate fauna of the high Arctic archipelago of Svalbard: Potential implications for the native flora and fauna. Polar Res. 2015, 34, 27364. [Google Scholar] [CrossRef]
- Everatt, M.J.; Worland, M.R.; Bale, J.S.; Convey, P.; Hayward, S.A.L. Pre-adapted to the maritime Antarctic?–Rapid cold hardening of the midge, Eretmoptera murphyi. J. Insect Physiol. 2012, 58, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- Worland, M.R. Eretmoptera murphyi: Pre-adapted to survive a colder climate. Physiol. Entomol. 2010, 35, 140–147. [Google Scholar] [CrossRef]
- Hughes, K.A.; Worland, M.R.; Thorne, M.A.S.; Convey, P. The non-native chironomid Eretmoptera murphyi in Antarctica: Erosion of the barriers to invasion. Biol. Invasions 2013, 15, 269–281. [Google Scholar] [CrossRef]
- Bartlett, J.C.; Convey, P.; Hughes, K.A.; Thorpe, S.E.; Hayward, S.A.L. Ocean currents as a potential dispersal pathway for Antarctica’s most persistent non-native terrestrial insect. Polar Biol. 2021, 44, 209–216. [Google Scholar] [CrossRef]
- Chown, S.L.; Convey, P. Antarctic entomology. Annu. Rev. Entomol. 2016, 61, 119–137. [Google Scholar] [CrossRef]
- Hughes, K.A.; Convey, P.; Pertierra, L.R.; Vega, G.C.; Aragón, P.; Olalla-Tárraga, M.Á. Human mediated dispersal of terrestrial species between Antarctic biogrographic regions: A preliminary risk assessment. J. Environ. Manag. 2019, 232, 73–89. [Google Scholar] [CrossRef]
- Zhao, C.; Guo, Y.; Liu, Z.; Xia, Y.; Li, Y.; Song, Z.; Zhang, B.; Li, D. Temperature and photoperiodic response of diapause induction in Anastatus japonicus, an egg parasitoid of stink bugs. Insects 2021, 12, 872. [Google Scholar] [CrossRef]
- Rodrigues, Y.K.; Beldade, P. Thermal plasticity in insects’ response to climate change and to multifactorial environments. Front. Ecol. Evol. 2020, 8, 271. [Google Scholar] [CrossRef]
- Memmott, J.; Craze, P.G.; Waser, N.M.; Price, M.V. Global warming and the disruption of plant-pollinator interactions. Ecol. Lett. 2007, 10, 710–717. [Google Scholar] [CrossRef]
- Bahrndorff, S.; Lauritzen, J.M.S.; Sørensen, M.H.; Noer, N.K.; Kristensen, T.N. Responses of terrestrial polar arthropods to high and increasing temperatures. J. Exp. Biol. 2021, 224, jeb230797. [Google Scholar] [CrossRef] [PubMed]
- Sgrò, C.M.; Terblanche, J.S.; Hoffmann, A.A. What can plasticity contribute to insect responses to climate change? Annu. Rev. Entomol. 2016, 61, 433–451. [Google Scholar] [CrossRef] [PubMed]
- Little, C.M.; Chapman, T.W.; Hillier, N.K. Plasticity is key to success of Drosophila suzukii (Diptera: Drosophilidae) invasion. J. Insect Sci. 2020, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Tepolt, C.K.; Somero, G.N. Master of all trades: Thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas. J. Exp. Biol. 2014, 217, 1129–1138. [Google Scholar] [CrossRef] [Green Version]
- Powell, S.J.; Bale, J.S. Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae). J. Insect Physiol. 2004, 50, 277–284. [Google Scholar] [CrossRef]
- Nunamaker, R.A. Rapid vold-hardening in Culicoides variipennis sonorensis (Diptera: Ceratopogonidae). J. Med. Entomol. 1993, 30, 913–917. [Google Scholar] [CrossRef]
- Park, Y.; Kim, Y. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella. J. Insect Physiol. 2014, 67, 56–63. [Google Scholar] [CrossRef]
- Findsen, A.; Andersen, J.L.; Calderon, S.; Overgaard, J. Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory locust, Locusta migratoria. J. Exp. Biol. 2013, 216, 1630–1637. [Google Scholar] [CrossRef] [Green Version]
- Simons, A.M. Modes of response to environmental change and the elusive empirical evidence for bet hedging. Proc. R. Soc. Ser. B 2011, 278, 1601–1609. [Google Scholar] [CrossRef] [Green Version]
- González-Aravena, M.; Rondon, R.; Font, A.; Cárdenas, C.A.; Toullec, J.-Y.; Corre, E.; Paschke, K. Low transcriptomic plasticity of Antarctic giant isopod Glyptonotus antarcticus juveniles exposed to acute thermal stress. Front. Mar. Sci. 2021, 8, 761866. [Google Scholar] [CrossRef]
- Chu, X.-L.; Zhang, B.-W.; Zhang, Q.-G.; Zhu, B.-R.; Lin, K.; Zhang, D.-Y. Temperature responses of mutation rate and mutational spectrum in an Escherichia coli strain and the correlation with metabolic rate. BMC Evol. Biol. 2018, 18, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGaughran, A.; Laver, R.; Fraser, C. Evolutionary responses to warming. Trends Ecol. Evol. 2021, 36, 591–600. [Google Scholar] [CrossRef]
- De La Torre, A.R.; Wilhite, B.; Neale, D.B. Environmental genome-wide association reveals climate adaptation is shaped by subtle to moderate allele frequency shifts in loblolly pine. Genome Biol. Evol. 2019, 11, 2976–2989. [Google Scholar] [CrossRef]
- Barrick, J.E.; Lenski, R.E. Genome dynamics during experimental evolution. Nat. Rev. Genet. 2013, 14, 827–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedi, A.; Zhou, J.; Raeymaekers, J.A.M.; Czypionka, T.; Orsini, L.; Jackson, C.E.; Spanier, K.I.; Shaw, J.R.; Colbourne, J.K.; De Meester, L. Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia. Nat. Commun. 2021, 12, 4306. [Google Scholar] [CrossRef] [PubMed]
- Waldvogel, A.M.; Pfenninger, M. Temperature dependence of spontaneous mutation rates. Genome Res. 2021, 31, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.-L.; Zhang, D.-Y.; Buckling, A.; Zhang, Q.-G. Warmer temperatures enhance beneficial mutation effects. J. Evol. Biol. 2020, 33, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Berteaux, D.; Réale, D.; McAdam, A.G.; Boutin, S. Keeping pace with fast climate change: Can Arctic life count on evolution? Integr. Comp. Biol. 2004, 44, 140–151. [Google Scholar] [CrossRef]
- Troczka, B.; Zimmer, C.T.; Elias, J.; Schorn, C.; Bass, C.; Davies, T.E.; Field, L.M.; Williamson, M.S.; Slater, R.; Nauen, R. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Insect Biochem. Mol. Biol. 2012, 42, 873–880. [Google Scholar] [CrossRef]
- Foster, B.J.; McCulloch, G.A.; Vogel, M.F.S.; Ingram, T.; Waters, J.M. Anthropogenic evolution in an insect wing polymorphism following widespread deforestation. Biol. Lett. 2021, 17, 20210069. [Google Scholar] [CrossRef]
- Foster, B.J.; McCulloch, G.A.; Foster, Y.; Kroos, G.C.; Waters, J.M. Ebony underpins Batesian mimicry in an insect melanic polymorphism. bioRxiv 2022. bioRxiv:22.06.13.495778. [Google Scholar] [CrossRef]
- McCulloch, G.A.; Waters, J.M. Rapid adaptation in a fast-changing world: Emerging insights from insect genomics. Glob. Change Biol. 2022, 00, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Krehenwinkel, H.; Rödder, D.; Tautz, D. Eco-genomic analysis of the poleward range expansion of the wasp spider Argiope bruennichi shows rapid adaptation and genomic admixture. Glob. Change Biol. 2015, 21, 4320–4332. [Google Scholar] [CrossRef]
- Snoeck, S.; Wybouw, N.; Van Leeuwen, T.; Dermauw, W. Transcriptomic plasticity in the arthropod generalist Tetranychus urticae upon long term acclimation to different host plants. G3 Genes|Genomes|Genet. 2018, 8, 3865–3879. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matheson, P.; McGaughran, A. How Might Climate Change Affect Adaptive Responses of Polar Arthropods? Diversity 2023, 15, 47. https://doi.org/10.3390/d15010047
Matheson P, McGaughran A. How Might Climate Change Affect Adaptive Responses of Polar Arthropods? Diversity. 2023; 15(1):47. https://doi.org/10.3390/d15010047
Chicago/Turabian StyleMatheson, Paige, and Angela McGaughran. 2023. "How Might Climate Change Affect Adaptive Responses of Polar Arthropods?" Diversity 15, no. 1: 47. https://doi.org/10.3390/d15010047
APA StyleMatheson, P., & McGaughran, A. (2023). How Might Climate Change Affect Adaptive Responses of Polar Arthropods? Diversity, 15(1), 47. https://doi.org/10.3390/d15010047