Diversity, Ecological Characteristics and Identification of Some Problematic Phytopathogenic Fusarium in Soil: A Review
Abstract
:1. Systematics and Taxonomic Position of the Genus Fusarium
2. Ecology of Fusarium
3. The Importance of Fusarium in Agriculture
4. Fusarium Control and Soil Suppressiveness against Fusarium Fungi
4.1. Mitigation Strategies towards Fusarium
4.1.1. Fusarium Detection
4.1.2. Fusarium Control and Its Limitation
4.1.3. Agrotechnical Approach—Fusarium-Resistant Plant Cultivars
4.1.4. Chemical Approach—Fungicides
4.1.5. Biocontrol of Fusarium
4.1.6. Fusarium–Plant Interactions on Molecular Level
4.2. Soil Suppressiveness to Fusarium diseases
5. Research and Diagnostics of Phytopathogenic Fusarium
5.1. Model Laboratory Experiments for Phytopathogenic Fusarium Research
5.2. Molecular Genetic Techniques for Fusarium Identification
Species | Target Gene | Gene Function | Host Plant | Reference |
---|---|---|---|---|
F. culmorum | FcFgl1 | Secreted lipase | Wheat | [95] |
FcFmk1 | Mitogen-activated protein (MAP) kinase | Wheat | [95] | |
FcGls1 | Beta-1,3-glucan synthase | Wheat | [95] | |
FcChsV | Chitin synthase | Wheat | [95] | |
FcChsV | Chitin synthase V, myosin motor domain | Wheat | [95] | |
F. graminearum | CYP51A | Cytochrome P450 lanosterol C-14-alpha demethylase | Arabidopsis thaliana; Barley | [96] |
FgCYP51A; FgCYP51; FgCYP51C | Cytochrome P450lanosterol C-14-alpha demethylase | Barley | [96] | |
Chs3b | Chitin synthase | Wheat | [95] | |
F. graminearum | AGO; DCL | RNA interference (Argonaute, Dicer-like) | Barley | [96] |
F. graminearum | FGSG_03101 | Alpha/beta hydrolase | Wheat | [95] |
F. graminearum | Fg00677; Fg08731 | Protein kinase | Brachypodium distachyon | [97] |
FgCYP51A; FgCYP51; FgCYP51C | Cytochrome P450lanosterol C-14-alpha demethylase | Brachypodium distachyon | [97] | |
F. graminearum | FgCYP51A; FgCYP51; FgCYP51C | Cytochrome P450lanosterol C-14-alpha demethylase | Arabidopsis thaliana | [96] |
F. graminearum | FgDCL1, FgDCL2 | RNA interference Dicer-like proteins | Wheat | [95] |
FgAGO1, FgAGO2 | RNA interference Argonaute 1 and 2 | Wheat | [95] | |
FgQDE3 | RecQ helicase | Wheat | [95] | |
FgQIP | AGO interactive protein | Wheat | [95] | |
FgRdRP1, FgRdRP2, FgRdRP3, FgRdRP4 | RNA-dependent RNA polymerases | Wheat | [95] | |
F. oxysporum f. sp. cubense | Velvet | Transcription factor | Banana | [98] |
ftf1 | Fusarium transcription factor 1 | Banana | [98] | |
F. oxysporum f. sp. cubense | SGE1 | SIX (Secreted In Xylem) Gene Expression 1 | Banana | [98] |
F. oxysporum f. sp. conglutinan | FRP1 | F-box protein | Arabidopsis thaliana | [96] |
F. oxysporum f. sp. conglutinan | ERG6/11 | Ergosterol biosynthesis genes | Banana | [98] |
5.3. Fusarium Identification by Mycotoxins
6. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Abdel-Azeem, A.M.; Abdel-Azeem, M.A.; Darwish, A.G.; Nafady, N.A.; Ibrahim, N.A. Fusarium: Biodiversity, ecological significances, and industrial applications. In Recent Advancement in White Biotechnology through Fungi; Springer: Cham, Switzerland, 2019; pp. 201–261. [Google Scholar] [CrossRef]
- Aoki, T.; O’Donnell, K.; Geiser, D.M. Systematics of key phytopathogenic Fusarium species: Current status and future challenges. J. Gen. Plant Pathol. 2014, 80, 189–201. [Google Scholar] [CrossRef]
- Cobo-Díaz, J.F.; Baroncelli, R.; Floch, G.L.; Picot, A. A novel metabarcoding approach to investigate Fusarium species composition in soil and plant samples. FEMS Microbiol. Ecol. 2019, 95, 7. [Google Scholar] [CrossRef]
- Summerell, B.A. Resolving Fusarium: Current status of the genus. Annu. Rev. Phytopathol. 2019, 57, 323–339. [Google Scholar] [CrossRef]
- Crous, P.; Lombard, L.; Sandoval-Denis, M.; Seifert, K.A.; Schroers, H.J.; Chaverri, P.; Thines, M. Fusarium: More than a node or a foot-shaped basal cell. Stud. Mycol. 2021, 98, 100116. [Google Scholar] [CrossRef]
- Manganiello, G.; Marra, R.; Staropoli, A.; Lombardi, N.; Vinale, F.; Nicoletti, R. The Shifting Mycotoxin Profiles of Endophytic Fusarium Strains: A Case Study. Agriculture 2019, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Starkey, D.E.; Ward, T.J.; Aoki, T.; Gale, L.R.; Kistler, H.C.; Geiser, D.M.; Suga, H.; Toth, B.; Varga, J.; O’Donnell, K. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 2007, 44, 1191–1204. [Google Scholar] [CrossRef]
- Gagkaeva, T.Y.; Levitin, M.M. Current state of the taxonomy of fungi of the complex of Gibberella fuiikuroi. Mikol. Fitopatol. 2005, 39, 3–14. [Google Scholar]
- Torres-Cruz, T.J.; Whitaker, B.K.; Proctor, R.H.; Broders, K.; Laraba, I.; Kim, H.-S.; Brown, D.W.; O’Donnell, K.; Estrada-Rodríguez, T.L.; Lee, Y.-H.; et al. FUSARIUM-ID v.3.0: An Updated, Downloadable Resource for Fusarium Species Identification. Plant Dis. 2022, 106, 1610–1616. [Google Scholar] [CrossRef] [PubMed]
- Moretti, A. Taxonomy of Fusarium genus. A continuous fight between lumpers and splitters. Matica Srp. Proc. Nat. Sci. 2009, 117, 7–13. [Google Scholar] [CrossRef]
- Sharma, L.; Marques, G. Fusarium, an entomopathogen—A myth or reality? Pathogens 2018, 7, 93. [Google Scholar] [CrossRef]
- Goncharov, A.A.; Glebova, A.A.; Tiunov, A.V. Trophic interactions between Fusarium species and soil fauna: A meta-analysis of experimental studies. Appl. Soil Ecol. 2020, 145, 103302. [Google Scholar] [CrossRef]
- Semenov, M.V.; Nikitin, D.A.; Stepanov, A.L.; Semenov, V.M. The Structure of Bacterial and Fungal Communities in the Rhizosphere and Root-Free Loci of Gray Forest Soil. Eurasian Soil Sci. 2019, 52, 319–332. [Google Scholar] [CrossRef]
- Semenov, M.V.; Krasnov, G.S.; Semenov, V.M.; van Bruggen, A. Mineral and Organic Fertilizers Distinctly Affect Fungal Communities in the Crop Rhizosphere. J. Fungi 2022, 8, 251. [Google Scholar] [CrossRef] [PubMed]
- Gagkaeva, T.Y.; Gavrilova, O.P.; Levitin, M.M. Biodiversity and distribution of the main toxigenic Fusarium fungi. Biosfera 2014, 6, 36–45. (In Russian) [Google Scholar]
- Du, S.; Trivedi, P.; Wei, Z.; Feng, J.; Hu, H.W.; Bi, L.; Liu, Y.R. The Proportion of Soil-Borne Fungal Pathogens Increases with Elevated Organic Carbon in Agricultural Soils. Msystems 2022, 7, e01337-21. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, R.H.; Anslan, S.; Bahram, M.; Wurzbacher, C.; Baldrian, P.; Tedersoo, L. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 2019, 17, 95–109. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 40–1351. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, M.M.; Huffaker, A.; Schmelz, E.A.; Dafoe, N.J.; Christensen, S.; Sims, J.; Martins, V.F.; Swerbilow, J.; Romero, M.; Alborn, H.T.; et al. Effects of elevated CO2 on maize defence against mycotoxigenic Fusarium verticillioides. Plant Cell Environ. 2014, 37, 2691–2706. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, M.M.; Huffaker, A.; Schmelz, E.A.; Dafoe, N.J.; Christensen, S.A.; McAuslane, H.J.; Alborn, H.T.; Allen, L.H.; Teal, P.E.A. Interactive effects of elevated CO2 and drought on the maize phytochemical defense response against mycotoxigenic Fusarium verticillioides. PLoS ONE 2016, 11, e0159270. [Google Scholar] [CrossRef] [Green Version]
- Medina, A.; Schmidt-Heydt, M.; Cárdenas-Chávez, D.L.; Parra, R.; Geisen, R.; Magan, N. Integrating toxin gene expression, growth and fumonisin B1 and B2 production by a strain of Fusarium verticillioides under different environmental factors. J. R. Soc. Interface 2013, 10, 20130320. [Google Scholar] [CrossRef] [Green Version]
- Medina, A.; Magan, N. Comparisons of water activity and temperature impacts on growth of Fusarium langsethiae strains from northern Europe on oat based media. Int. J. Food Microbiol. 2010, 142, 365–369. [Google Scholar] [CrossRef]
- Medina, A.; Magan, N. Temperature and water activity effects on production of T-2 and HT-2 by Fusarium langsethiae strains from north European countries. Food Microbiol. 2011, 28, 392–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakhnazarova, V.Y.; Strunnikova, O.K.; Vishnevskaya, N.A. The effect of moisture on the development of Fusarium culmorum in soil. Mikol. Fitopatol. 1999, 33, 53–59. (In Russian) [Google Scholar]
- Toropova, E.Y.; Kirichenko, A.A.; Stetsov, G.Y.; Suhomlinov, V.Y. Soil infections of grain crops with the use of the resource-saving technologies in Western Siberia, Russia. Biosci. Biotechnol. Res. Asia 2015, 12, 1081. [Google Scholar] [CrossRef]
- Oritsejafor, J.J.; Adeniji, M.O. Influence of host and non¬host rhisospheres and organic amendments on survival of Fusarivm oxysporum f. sp. elaedis. Mycol. Res. 1990, 94, 57–63. [Google Scholar] [CrossRef]
- Orr, R.; Nelson, P.N. Impacts of soil abiotic attributes on Fusarium wilt, focusing on bananas. Appl. Soil Ecol. 2018, 132, 20–33. [Google Scholar] [CrossRef]
- Gordon, T.R.; Stueven, M.; Pastrana, A.M.; Henry, P.M.; Dennehy, C.M.; Kirkpatrick, S.C.; Daugovish, O. The effect of pH on spore germination, growth, and infection of strawberry roots by Fusarium oxysporum f. sp. fragariae, cause of Fusarium wilt of strawberry. Plant Dis. 2019, 103, 691–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoper, H.; Steinberg, C.; Alabouvette, C. Involvement of clay type and pH in the mechanisms of soil suppressiveness to Fusarim wilt of flax. Soil Biol. Biochem. 1995, 27, 955–967. [Google Scholar] [CrossRef]
- Hoper, H.; Steinberg, C.; Alabouvette, O. Modification of the saprophytic behavior of a Fusarim oxysporm in sterilised soil supplied with different clay types. In Proceedings of the Sixth International Symposium on Microbial Ecology, Barcelona, Spain, 6–11 September 1992; p. 231. [Google Scholar]
- Steinberg, C.; Gautheron, N.; Burtin, G.; Alabouvette, C. Role of soil structure on the interaction between indigenous and introduced populations of Fusarim. In Proceedings of the Sixth International Symposium on Microbial Ecology, Barcelona, Spain, 6–11 September 1992; p. 235. [Google Scholar]
- Backhouse, D. Global distribution of Fusarium graminearum, F. asiaticum and F. boothii from wheat in relation to climate. Eur. J. Plant Pathol. 2014, 139, 161–173. [Google Scholar] [CrossRef]
- Gagkaeva, T.Y.; Gavrilova, O.P.; Nikonov, I.N.; Laptev, G.Y. The possibilities of biodegradation of mycotoxins produced by fusarium fungi. Mycol. Today 2016, 3, 202–238. (In Russian) [Google Scholar]
- Bakker, M.G.; Brown, D.W.; Kelly, A.C.; Kim, H.S.; Kurtzman, C.P.; Mccormick, S.P.; Ward, T.J. Fusarium mycotoxins: A trans-disciplinary overview. Can. J. Plant Pathol. 2018, 40, 161–171. [Google Scholar] [CrossRef]
- Timmusk, S.; Nevo, E.; Ayele, F.; Noe, S.; Niinemets, Ü. Fighting Fusarium pathogens in the era of climate change: A conceptual approach. Pathogens 2020, 9, 419. [Google Scholar] [CrossRef] [PubMed]
- Rampersad, S.N. Pathogenomics and management of Fusarium diseases in plants. Pathogens 2020, 9, 340. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, I.; Persson, P.; Friberg, H. Fusarium head blight from a microbiome perspective. Front. Microbiol. 2021, 12, 628373. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, L.M.; Mikhailov, V.V.; Beloshapkina, O.O.; Egorova, A.A. About the method of creating an infectious, background of Fusarium for vegetable pea. Agrar. Nauka 2020, 7–8, 92–98. (In Russian) [Google Scholar] [CrossRef]
- Ploetz, R.C. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 2006, 96, 653–656. [Google Scholar] [CrossRef] [Green Version]
- Karangwa, P.; Mostert, D.; Ndayihanzamaso, P.; Dubois, T.; Niere, B.; Zum Felde, A.; Viljoen, A. Genetic diversity of Fusarium oxysporum f. sp. cubense in East and Central Africa. Plant Dis. 2018, 102, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.A.; Gu, A.; Olvey, J.; Wagner, T.A.; Tashpulatov, J.J.; Prom, S.; Liu, J. Detection and characterization of Fusarium oxysporum f. sp. vasinfectum VCG0114 (race 4) isolates of diverse geographic origins. Plant Dis. 2019, 103, 1998–2009. [Google Scholar] [CrossRef]
- McGovern, R.J. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. 2015, 73, 78–92. [Google Scholar] [CrossRef]
- Torbati, M.; Arzanlou, M.; da Silva Santos, A.C. Fungicolous Fusarium Species: Ecology, Diversity, Isolation, and Identification. Curr. Microbiol. 2021, 78, 2850–2859. [Google Scholar] [CrossRef]
- Edel-Hermann, V.; Lecomte, C. Current status of Fusarium oxysporum formae speciales and races. Phytopathology 2019, 109, 512–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gálvez, L.; Palmero, D. Fusarium dry rot of garlic bulbs caused by Fusarium proliferatum: A review. Horticulturae 2022, 8, 628. [Google Scholar] [CrossRef]
- Seefelder, W.; Gossmann, M.; Humpf, H.U. Analysis of fumonisin B1 in Fusarium proliferatum infected asparagus spears and garlic bulbs from Germany by liquid chromatography− electrospray ionization mass spectrometry. J. Agric. Food Chem. 2002, 50, 2778–2781. [Google Scholar] [CrossRef] [PubMed]
- Boutigny, A.L.; Richard-Forget, F.; Barreau, C. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur. J. Plant Pathol. 2008, 121, 411–423. [Google Scholar] [CrossRef]
- Gagkaeva, T.Y.; Gavrilova, O.P.; Orina, A.S.; Kazartsev, I.A.; Gannibal, F.B. Comparison of methods to detect Fusarium toxin-producing fungi in grain. Mikol. Fitopatol. 2017, 51, 292–298. (In Russian) [Google Scholar]
- Gagkaeva, T.Y.; Gavrilova, O.P. Features of lesion of oat by fusariosis (review). Agric. Biol. 2011, 6, 3–10. (In Russian) [Google Scholar]
- Bubici, G.; Kaushal, M.; Prigigallo, M.I.; Gómez-Lama Cabanás, C.; Mercado-Blanco, J. Biological control agents against Fusarium wilt of banana. Front. Microbiol. 2019, 10, 616. [Google Scholar] [CrossRef] [Green Version]
- Munkvold, G.P.; Proctor, R.H.; Moretti, A. Mycotoxin production in Fusarium according to contemporary species concepts. Annu. Rev. Phytopathol. 2021, 59, 373–402. [Google Scholar] [CrossRef]
- Takken, F.; Rep, M. The arms race between tomato and Fusarium oxysporum. Mol. Plant Pathol. 2010, 11, 309–314. [Google Scholar] [CrossRef]
- Murray, J.J.; Hisamutdinova, G.; Sandoya, G.V.; Raid, R.N.; Slinski, S. Genetic Resistance of Lactuca spp. against Fusarium oxysporum f. sp. lactucae Race 1. HortScience 2021, 56, 1552–1564. [Google Scholar] [CrossRef]
- Epstein, L.; Kaur, S.; Henry, P.M. The Emergence of Fusarium oxysporum f. sp. apii Race 4 and Fusarium oxysporum f. sp. coriandrii Highlights Major Obstacles Facing Agricultural Production in Coastal California in a Warming Climate: A Case Study. Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Buchneva, G.N.; Gusev, I.V.; Korabelskaya, O.I.; Dubrovskaya, N.N.; Chekmarev, V.V. Varietal composition and frequency of fusarium presence on winter wheat varieties in the Tambov region. Holoprystan Reg. Employ. Cent. 2019, 2, 4–76. (In Russian) [Google Scholar] [CrossRef]
- Santra, H.K.; Banerjee, D. Natural products as fungicide and their role in crop protection. In Natural Bioactive Products in Sustainable Agriculture; Springer: Singapore, 2020; pp. 131–219. [Google Scholar] [CrossRef]
- Nishioka, T.; Suga, H.; Shimizu, M. The Stimulation of Indigenous Bacterial Antagonists by γ-Glutamyl- S -Allyl- l-Cysteine Increases Soil Suppressiveness to Fusarium Wilt. Appl. Environ. Microbiol. 2022, 88, e01554-22. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, M.S.; Ghareeb, M.A.; Hamed, A.A.; Rashad, E.M.; El-Sawy, E.R.; Saad, I.M.; Ghoneem, K.M. Ethyl acetate extract of Streptomyces spp. isolated from Egyptian soil for management of Fusarium oxysporum: The causing agent of wilt disease of tomato. Biocatal. Agric. Biotechnol. 2021, 37, 102185. [Google Scholar] [CrossRef]
- Scher, F.M. Biological Control of Fusarium wilts by Pseudomonas putida and its Enhancement by EDDHA. In Iron, Siderophores, and Plant Diseases; Swinburne, T.R., Ed.; Springer: Boston, MA, USA, 1986; p. 117. [Google Scholar] [CrossRef]
- Strunnikova, O.K.; Shakhnazarova, V.Y.; Vishnevskaya, N.A.; Chebotar’, V.K.; Tikhonovich, I.A. Development and relations of Fusarium culmorum and Pseudomonas fluorescens in soil. Microbiology 2007, 76, 596–602. [Google Scholar] [CrossRef]
- Masachis, S.; Segorbe, D.; Turrà, D.; Leon-Ruiz, M.; Fürst, U.; El Ghalid, M.; Guy, L.; López-Berges, M.S.; Richards, T.A.; Felix, G.; et al. A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat. Microbiol. 2016, 1, 10643. [Google Scholar] [CrossRef]
- Syrova, D.S.; Shaposhnikov, A.I.; Makarova, N.M.; Gagkaeva, T.Y.; Khrapalova, I.A.; Emelyanov, V.V.; Gogolev, Y.V.; Gannibal, P.B.; Belimov, A.A. Prevalence of the ability to produce abscisic acid in phytopathogenic fungi. Mikol. Fitopatol. 2019, 53, 301–310. (In Russian) [Google Scholar] [CrossRef]
- Hartung, W. The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct. Plant Biol. 2010, 37, 806–812. [Google Scholar] [CrossRef]
- Sokolov, M.S.; Marchenko, A.I.; Sanin, S.S.; Toropova, E.Y.; Chulkina, V.A.; Zakharov, A.F. Soil health of agrocenoses as an attribute of its quality and resistance to biotic and abiotic stressors. Izv. Timiryazevskoy Sel’skokhozyaystvennoy Akad. 2009, 1, 13–22. (In Russian) [Google Scholar]
- Alabouvette, C. Fusarium-wilt suppressive soils from the Châteaurenard region: Review of a 10-year study. Agronomie 1986, 6, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Cook, R.J.; Baker, K.F. The soil ecosystem and biological control. In The Nature and Practice of Biological Control of Plant Pathogens; Cook, R.J., Baker, K.F., Eds.; American Phytopathological Society: St.Paul, MN, USA, 1983; pp. 233–281. [Google Scholar]
- Mazzola, M. Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 2002, 81, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekara, C.; Bhatt, J.C.; Kumar, R.; Chandrashekara, K.N. Suppressive soils in plant disease management. In Eco-Friendly Innovative Approaches in Plant Disease Management; Singh, A., Ed.; International Book Distributors: Delhi, India, 2012; pp. 241–256. [Google Scholar] [CrossRef]
- Janvier, C.; Villeneuve, F.; Alabouvette, C.; Edel-Hermann, V.; Mateille, T.; Steinberg, C. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol. Biochem. 2007, 39, 1–23. [Google Scholar] [CrossRef]
- Nikitin, D.A.; Semenov, M.V.; Chernov, T.I.; Ksenofontova, N.A.; Zhelezova, A.D.; Ivanova, E.A.; Khitrov, N.B.; Stepanov, A.L. Microbiological Indicators of Soil Ecological Functions: A Review. Eurasian Soil Sci. 2022, 55, 221–234. [Google Scholar] [CrossRef]
- De Boer, M.; Bom, P.; Kindt, F.; Keurentjes, J.J.; van der Sluis, I.; van Loon, L.C.; Bakker, P.A. Control of Fusarium Wilt of Radish by Combining Pseudomonas putida Strains that have Different Disease-Suppressive Mechanisms. Phytopathology 2003, 93, 626–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel-Hertz, K.; Edel-Hermann, V.; Chapelle, E.; Terrat, S.; Raaijmakers, J.M.; Steinberg, C. Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Châteaurenard region. Front. Microbiol. 2018, 9, 568. [Google Scholar] [CrossRef]
- Manikandan, R.; Karthikeyan, G.; Raguchander, T. Soil proteomics for exploitation of microbial diversity in Fusarium wilt infected and healthy rhizosphere soils of tomato. Physiol. Mol. Plant Pathol. 2017, 100, 185–193. [Google Scholar] [CrossRef]
- Musheer, N.; Ashraf, S.; Choudhary, A.; Kumar, M.; Saeed, S. Role of Microbiotic Factors Against the Soil-Borne Phytopathogens. In Phytobiomes: Current Insights and Future Vistas; Springer: Singapore, 2020; pp. 251–280. [Google Scholar] [CrossRef]
- Jayaraman, S.; Naorem, A.K.; Lal, R.; Dalal, R.C.; Sinha, N.K.; Patra, A.K.; Chaudhari, S.K. Disease-Suppressive Soils—Beyond Food Production: A Critical Review. J. Soil Sci. Plant Nutr. 2021, 21, 1437–1465. [Google Scholar] [CrossRef]
- Palojärvi, A.; Kellock, M.; Parikka, P.; Jauhiainen, L.; Alakukku, L. Tillage System and Crop Sequence Affect Soil Disease Suppressiveness and Carbon Status in Boreal Climate. Front. Microbiol. 2020, 11, 534786. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Hong, S.; Xiong, W.; Raza, W.; Shen, Z.; Wang, B.; Li, R.; Ruan, Y.; Shen, Q.; Dini-Andreote, F. Development of fungal-mediated soil suppressiveness against Fusarium wilt disease via plant residue manipulation. Microbiome 2021, 9, 1–15. [Google Scholar] [CrossRef]
- Semenov, M.V.; Krasnov, G.S.; Semenov, V.M.; van Bruggen, A.H. Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Appl. Soil Ecol. 2020, 154, 103641. [Google Scholar] [CrossRef]
- Jain, P.; Pundir, R.K. Biocontrol of soil phytopathogens by arbuscular mycorrhiza—A review. In Mycorrhizosphere and Pedogenesis; Varma, A., Choudhary, D., Eds.; Springer: Singapore, 2019; pp. 221–237. [Google Scholar] [CrossRef]
- Filion, M.; St-Arnaud, M.; Fortin, J.A. Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol. 1999, 141, 525–533. [Google Scholar] [CrossRef]
- Buchneva, G.N. Tank compositions of fungicides as one of the factors controlling the development of fungi of the genus Fusarium. Agric. Sci 2020, 7, 37–38. (In Russian) [Google Scholar]
- Bennett, A.; Ponder, M.M.; Garcia-Diaz, J. Phoma infections: Classification, potential food sources, and their clinical impact. Microorganisms 2018, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Galich, M.T.V. Fusarium head blight in Argentina. In Fusarium Head Scab: Global Status and Future Prospects, Proceedings of the Workshop Held at CIMMYT, El Batan, Mexico, 13–17 October 1996; de Octubre, Dubin, H.J., Gilchrist, L., Reeves, J., McNab, A., Eds.; International Maize and Wheat Improvement Center (CIMMYT): El Batan, Mexico, 1996; pp. 19–26. [Google Scholar]
- McCluskey, K. Plant Pathology Related Culture Collection Resources; APSnet Features Online: St. Paul, MN, USA, 2003. [Google Scholar]
- Salem, E.A.; Abd El-Shafea, Y.M. Biological control of potato soft rot caused by Erwinia carotovora subsp. carotovora. Egyptian J. Biol. Pest Control. 2018, 28, 94. [Google Scholar] [CrossRef]
- Bauermeister, A.; Amador, I.R.; Pretti, C.P.; Giese, E.C.; Oliveira, A.L. β-(1 → 3)-Glucanolytic yeasts from Brazilian grape microbiota: Production and characterization of β-glucanolytic enzymes by Aureobasidium pullulans 1WA1 cultivated on fungal Mycelium. J. Agric. Food Chem. 2015, 63, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, I.; Edel-Hermann, V.; Gautheron, N.; Durling, M.B.; Kolseth, A.K.; Steinberg, C.; Persson, P.; Friberg, H. Genus-specific primers for study of Fusarium communities in field samples. Appl. Environ. Microbiol. 2016, 82, 491–501. [Google Scholar] [CrossRef] [Green Version]
- Walder, F.; Schlaeppi, K.; Wittwer, R.; Held, A.Y.; Vogelgsang, S.; van der Heijden, M.G. Community profiling of Fusarium in combination with other plant-associated fungi in different crop species using SMRT sequencing. Front. Plant Sci. 2017, 8, 2019. [Google Scholar] [CrossRef]
- Boutigny, A.-L.; Gautier, A.; Basler, R.; Dauthieux, F.; Leite, S.; Valade, R.; Aguayo, J.; Ioos, R.; Laval, V. Metabarcoding targeting the EF1 alpha region to assess Fusarium diversity on cereals. PLoS ONE 2019, 14, e0207988. [Google Scholar] [CrossRef]
- Henry, P.M.; Koehler, S.I.; Kaur, S.; Epstein, L.; Mitchell, J.P.; Gordon, T.R.; Leveau, J.H. Amplicon Sequencing of Fusarium Translation Elongation Factor 1α Reveals that Soil Communities of Fusarium Species Are Resilient to Disturbances Caused by Crop and Tillage Practices. Phytobiomes J. 2022, 6, 261–274. [Google Scholar] [CrossRef]
- Fallahi, M.; Saremi, H.; Javan-Nikkhah, M.; Somma, S.; Haidukowski, M.; Logrieco, A.F.; Moretti, A. Isolation, molecular identification and mycotoxin profile of Fusarium species isolated from maize kernels in Iran. Toxins 2019, 11, 297. [Google Scholar] [CrossRef] [Green Version]
- Aslam, S.; Tahir, A.; Aslam, M.F.; Alam, M.W.; Shedayi, A.A.; Sadia, S. Recent advances in molecular techniques for the identification of phytopathogenic fungi—A mini review. J. Plant Interact. 2017, 12, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Van De Wouw, A.P.; Howlett, B.J. Fungal Pathogenicity Genes in the Age of ‘Omics’. Mol. Plant Pathol. 2011, 12, 507–514. [Google Scholar] [CrossRef]
- Desjardins, A.E.; Proctor, R.H. Molecular biology of Fusarium mycotoxins. Int. J. Food Microbiol. 2007, 119, 47–50. [Google Scholar] [CrossRef]
- Chen, W.; Kastner, C.; Nowara, D.; Oliveira-Garcia, E.; Rutten, T.; Zhao, Y.; Deising, H.B.; Kumlehn, J.; Schweizer, P. Host-Induced Silencing of Fusarium culmorum Genes Protects Wheat from Infection. J. Exp. Bot. 2016, 67, 4979–4991. [Google Scholar] [CrossRef] [Green Version]
- Koch, A.; Kumar, N.; Weber, L.; Keller, H.; Imani, J.; Kogel, K.-H. Host-Induced Gene Silencing of Cytochrome P450 Lanosterol C14-Demethylase-Encoding Genes Confers Strong Resistance to Fusarium Species. Proc. Natl. Acad. Sci. USA 2013, 110, 19324–19329. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Zhang, R.; Zhao, J.; Qi, T.; Kang, Z.; Guo, J. Host-Induced Silencing of Fusarium graminearum Genes Enhances the Resistance of Brachypodium distachyon to Fusarium Head Blight. Front. Plant Sci. 2019, 10, 1362. [Google Scholar] [CrossRef]
- Ghag, S.B.; Shekhawat, U.K.S.; Ganapathi, T.R. Host-Induced Post-Transcriptional Hairpin RNA-Mediated Gene Silencing of Vital Fungal Genes Confers Efficient Resistance against Fusarium Wilt in Banana. Plant Biotechnol. J. 2014, 12, 541–553. [Google Scholar] [CrossRef]
- Shi, W.; Tan, Y.; Wang, S.; Gardiner, D.M.; De Saeger, S.; Liao, Y.; Wang, C.; Fan, Y.; Wang, Z.; Wu, A. Mycotoxigenic potentials of Fusarium species in various culture matrices revealed by mycotoxin profiling. Toxins 2017, 9, 6. [Google Scholar] [CrossRef]
Species | Habitat/Host Plant | Mycotoxins |
---|---|---|
F. avenaceum | Ubiquitous: cereals, peach, apple, pear, peanut, asparagus, and vegetables (potato, tomato) | Antibiotic Y, aurofusarin, beauvericin, chlamydosporol, chrysogene, enniatins, fusarin C, and moniliformin |
F. cerealis | Ubiquitous: cereals and potato | Aurofusarin, butenolide, chrysogene, culmorin, fusarin C, nivalenol, norlichexanthone, rubrofusarin, siccanol, and zearalenone |
F. culmorum | Temperate regions: cereals, potato, apple, and sugar beet | Aurofusarin, butenolide, chrysogen, culmorin, deoxynivalenol, fusarin C, 3-acetyldeoxynivalenol, nivalenol, and zearalenone |
F. equiseti | Ubiquitous: cereals, fruits, vegetables, nuts, and spices | Chrysogene, diacetoxycirpenol, equisetine, fusarochromanone, nivalenol, and zearalenone |
F. graminearum | Ubiquitous: cereals and grasses | Aurofusarin, butenolide, chrysogene, culmorin, deoxynivalenol, fusarin C, nivalenol, and zearalenone |
F. oxysporum | Ubiquitous: ornamental plants, cotton, date palm, pear, legumes, nuts, banana, citrus fruits, apple, vegetables (onion, potato), heat-treated juices, spices, and cheese [44] | Fusaric acid, moniliformin, naphthoquinone pigments trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and 3′-OH T-2 (TC-1) |
F. poae | Temperate regions: cereals, soybean, sugarcane, and rice | Butenolide, fusarin C, γ-lactones, nivalenol, neosolaniol, iso-neosolaniol, HT-2 toxin, and T-2 toxin |
F. proliferatum | Tropical regions: corn, rice, and fruits; Temperate regions: cereals, soybean, and vegetables (garlic and asparagus) [45,46] | Beauvericin, fumonisins, fusaproliferin, fusaric acid, fusarin C, moniliformin, and naphthoquinone pigments |
F. sambucinum | Ubiquitous: cereals and potato | Aurofusarin, butenolide, deoxynivalenol, diacetoxycirpenol, and enniatins, T-2 toxin |
F. semitectum | Tropical regions: nuts, banana, citrus fruits, melons, vegetables (potato, tomato), and spices | Apicidin, Beauvericin, equisetin, fusapyrone, and zearalenone |
F. solani | Ubiquitous: fruits, vegetables, and spices | Anhydrofusarubin, fusaric acid and naphthoquinone pigments, and solaniol |
F. sporotrichioides | Ubiquitous: cereals and fruits | Aurofusarin, butenolide, fusarin C, T-2 toxin, diacetoxyscirpenol, neosolaniol, nivalenol, NT-1 toxin, NT-2 toxin, HT-2 toxin |
F. subglutinans | Ubiquitous: corn, pineapple, banana, spices, and sorghum | Beauvericin, fusaproliferin, fusaric acid, moniliformin, naphthoquinone pigments, and subglutinols |
F. tricinctum | Ubiquitous: cereals | Antibiotic Y, aurofusarin, butenolide, chlamydosporol, chrysogene, fusarin C, and visoltricin |
F. venenatum | Temperate regions: cereals and potato | Aurofusarin, butenolide, diacetoxycirpenol, isotrichodermin, isotrichodermol, sambucinol, apotrichothecene, culm orin, and culmorone |
F. verticillioides | Tropical and subtropical regions: corn, rice, sugarcane, banana, asparagus, spices, and garlic | Fumonisins, fusaric acid, fusarin C, moniliformin, and naphthoquinone pigments |
TRI Gene | Encoded Protein | Species | Host Plant |
---|---|---|---|
TRI5 | Trichodiene synthase | F. graminearum | Secalecereale (rye), Triticum (wheat); Triticum aestivum (wheat), and Glycine max (soy) |
TRI5 | Trichodiene synthase | F. pseudograminearum | Triticumaestivum (wheat) |
TRI6 | Transcription regulator—Zinc finger superfamily C2H2 | F. graminearum | Triticum aestivum (wheat) |
TRI10 | Transcription regulator—Zinc finger superfamily C2H2 | F. graminearum | Triticum (wheat) |
TRI12 | Trichothecene efflux pump, transmembrane transporter | F. graminearum | T. aestivum (wheat) |
TRI14 | Transmembrane transporter | F. graminearum | T. aestivum (wheat) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikitin, D.A.; Ivanova, E.A.; Semenov, M.V.; Zhelezova, A.D.; Ksenofontova, N.A.; Tkhakakhova, A.K.; Kholodov, V.A. Diversity, Ecological Characteristics and Identification of Some Problematic Phytopathogenic Fusarium in Soil: A Review. Diversity 2023, 15, 49. https://doi.org/10.3390/d15010049
Nikitin DA, Ivanova EA, Semenov MV, Zhelezova AD, Ksenofontova NA, Tkhakakhova AK, Kholodov VA. Diversity, Ecological Characteristics and Identification of Some Problematic Phytopathogenic Fusarium in Soil: A Review. Diversity. 2023; 15(1):49. https://doi.org/10.3390/d15010049
Chicago/Turabian StyleNikitin, Dmitry A., Ekaterina A. Ivanova, Mikhail V. Semenov, Alena D. Zhelezova, Natalya A. Ksenofontova, Azida K. Tkhakakhova, and Vladimir A. Kholodov. 2023. "Diversity, Ecological Characteristics and Identification of Some Problematic Phytopathogenic Fusarium in Soil: A Review" Diversity 15, no. 1: 49. https://doi.org/10.3390/d15010049
APA StyleNikitin, D. A., Ivanova, E. A., Semenov, M. V., Zhelezova, A. D., Ksenofontova, N. A., Tkhakakhova, A. K., & Kholodov, V. A. (2023). Diversity, Ecological Characteristics and Identification of Some Problematic Phytopathogenic Fusarium in Soil: A Review. Diversity, 15(1), 49. https://doi.org/10.3390/d15010049