Diversity, Composition and Environmental Relations of Periphytic Rotifer Assemblages in Lentic Freshwater Bodies (Flanders, Lower Belgium)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional and Sample Site Characteristics
2.2. Rotifer Sampling and Analysis
2.3. Water Chemistry
2.4. Other Variables
2.5. Trait Data, Functional Groups and Guild Ratio
2.6. Ordination and Variation Partitioning
2.7. Ordination and Variation Partitioning
2.8. Regression Analyses
2.9. Assemblage Composition along Selected Gradients
3. Results
3.1. Species Composition
3.2. Alpha Diversity
3.3. Beta Diversity
3.4. Originality
3.5. General Species–Environment Relations
3.5.1. Variation Partitioning
3.5.2. Guild Representation and Ratios
3.6. Assemblage Composition along Principal Environmental Gradients
3.6.1. The pH Gradient
3.6.2. The Total Phosphorus Gradient
3.6.3. The Phytoplankton Productivity Gradient
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilbert, J.J.; Bogdan, K.G. Rotifer grazing: In situ studies on selectivity and rates. In Trophic Interactions within Aquatic Ecosystems; Meyers, D.G., Strickler, J.R., Eds.; Westview Press Inc.: Boulder, CO, USA, 1984; pp. 97–133. [Google Scholar]
- Arndt, H. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)—A review. Hydrobiologia 1993, 255, 231–246. [Google Scholar] [CrossRef]
- Weitere, M.; Erken, M.; Majdi, N.; Arndt, H.; Norf, H.; Reinshagen, M.; Traunspurger, W.; Walterscheid, A.; Wey, J.K. The food web perspective on aquatic biofilms. Ecol. Monogr. 2018, 88, 543–559. [Google Scholar] [CrossRef]
- Liu, Y.; Tackx, M.; Dauta, A.; Julien, F.; Buffan-Dubau, E. Rotifers stimulate the specific N–NO3 uptake rate in lotic phototrophic biofilms. Freshw. Biol. 2021, 66, 1245–1256. [Google Scholar] [CrossRef]
- Stemberger, R.S.; Gilbert, J.J. Body size, food concentration, and population growth in planktonic rotifers. Ecology 1985, 66, 1151–1159. [Google Scholar] [CrossRef]
- Pejler, B. Zooplanktic indicators of trophy and their food. Hydrobiologia 1983, 101, 111–114. [Google Scholar] [CrossRef]
- Gilbert, J.J. Suppression of rotifer populations by Daphnia: A review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol. Oceanogr. 1988, 33, 1286–1303. [Google Scholar] [CrossRef]
- Karabin, A. Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication II. Modifying effect of biotic agents. Ekol. Pol. 1985, 33, 617–644. [Google Scholar]
- Obertegger, U.; Manca, M. Response of rotifer functional groups to changing trophic state and crustacean community. J. Limnol. 2011, 70, 231–238. [Google Scholar] [CrossRef]
- Goździejewska, A.M.; Kruk, M. Zooplankton network conditioned by turbidity gradient in small anthropogenic reservoirs. Sci. Rep. 2022, 12, 3938. [Google Scholar] [CrossRef]
- Arcifa, M.S.; Barretto de Souza, B.; Simões de Morais-Junior, C.; Goulart Corrêa Bruno, C. Functional groups of rotifers and an exotic species in a tropical shallow lake. Sci. Rep. 2020, 10, 14698. [Google Scholar] [CrossRef]
- Snell, T.W. Blue-green algae and selection in rotifer populations. Oecologia 1980, 46, 343–346. [Google Scholar] [CrossRef]
- Yin, X.; Jin, W.; Zhou, Y.; Wang, P.; Zhao, W. Hidden defensive morphology in rotifers: Benefits, costs, and fitness consequences. Sci. Rep. 2017, 7, 4488. [Google Scholar] [CrossRef]
- Zhang, H.; Hollander, J.; Hansson, L.-A. Bi-directional plasticity: Rotifer prey adjust spine length to different predator regimes. Sci. Rep. 2017, 7, 10254. [Google Scholar] [CrossRef] [PubMed]
- Mikschi, E. Rotifer distribution in relation to temperature and oxygen content. Hydrobiologia 1989, 186, 209–214. [Google Scholar] [CrossRef]
- Basiǹska, A.; Kuczýnska-Kippen, N.; Świdnicki, K. The body size distribution of Filinia longiseta (Ehrenberg) in different types of small water bodies in the Wielkoposka region. Limnetica 2010, 29, 171–182. [Google Scholar] [CrossRef]
- Vadeboncoeur, Y.; Steinman, A.D. Periphyton function in lake ecosystems. Sci. World 2002, 2, 1449–1468. [Google Scholar] [CrossRef]
- Gubelit, Y.I.; Grossart, H.-P. New methods, new concepts: What can be applied to freshwater periphyton? Front. Microbiol. 2020, 11, 1275. [Google Scholar] [CrossRef] [PubMed]
- Hillebrand, H.; Kahlert, M. Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnol. Oceanogr. 2001, 46, 1881–1898. [Google Scholar] [CrossRef]
- Van der Grinten, E. Dynamic Species Interactions in Phototrophic Biofilms. Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands, 2004. [Google Scholar]
- Blanco, S.; Romo, S.; Fernández-Aláez, M.; Bécares, E. Response of epiphytic algae to nutrient loading and fish density in a shallow lake: A mesocosm experiment. Hydrobiologia 2008, 600, 65–76. [Google Scholar] [CrossRef]
- Traunspurger, W.; Wilden, B.; Majdi, N. An overview of meiofaunal and nematode distribution patterns in lake ecosystems differing in their trophic state. Hydrobiologia 2022, 847, 2665–2679. [Google Scholar] [CrossRef]
- Duggan, I.C. The ecology of periphytic rotifers. Hydrobiologia 2001, 446, 139–148. [Google Scholar] [CrossRef]
- Špoljar, M.; Fressl, J.; Dražina, T.; Meseljević, M.; Grčič, Z. Epiphytic metazoans on emergent macrophytes in oxbow lakes of the Krapina River, Croatia: Differences related to plant species and limnological conditions. Acta Bot. Croat. 2012, 71, 125–138. [Google Scholar] [CrossRef]
- Wallace, R.L.; Snell, T.W.; Ricci, C.; Nogrady, T. Rotifera: Volume 1. Biology, ecology and systematics. In Guides to the Identification of the Microinvertebrates of the Continental Waters of the World; No. 23; Segers, H., Ed.; Backhuys Publishers: Leiden, The Netherlands, 2006. [Google Scholar]
- Irvine, K.; Balls, H.; Moss, B. The entomostracan and rotifer communities associated with submerged plants in the Norfolk Broadland—Effects of plant biomass and species composition. Int. Rev. Ges. Hydrobio. 1990, 75, 121–141. [Google Scholar] [CrossRef]
- Jersabek, C.D. Distribution and ecology of rotifer communities in high-altitude alpine sites—A multivariate approach. Hydrobiologia 1995, 313, 75–89. [Google Scholar] [CrossRef]
- Duggan, I.C.; Green, J.D.; Thompson, K.; Shiel, R.J. Rotifers in relation to littoral ecotone structure in Lake Rotomanuka, North Island, New Zealand. Hydrobiologia 1998, 387, 179–197. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, J.; Karpowicz, M. Rotifera in lake subhabitats. Aquat. Ecol. 2021, 55, 1285–1296. [Google Scholar] [CrossRef]
- Lokko, K.; Virro, T. The structure of psammic rotifer communities in two boreal lakes with different trophic conditions: Lake Võrtsjärv and Lake Saadjärv (Estonia). Oceanol. Hydrobiol. St. 2014, 43, 49–55. [Google Scholar] [CrossRef]
- Lokko, K.; Virro, T.; Kotta, J. Seasonal variability in the structure and functional diversity of psammic rotifer communities: Role of environmental parameters. Hydrobiologia 2017, 96, 287–307. [Google Scholar] [CrossRef]
- Walsh, E.J. Habitat specific predation susceptibilities of a littoral rotifer to two invertebrate predators. Hydrobiologia 1995, 313, 205–211. [Google Scholar] [CrossRef]
- Oh, H.-J.; Jeong, H.-G.; Nam, G.-S.; Oda, Y.; Dai, W.; Lee, E.-H.; Kong, D.; Hwang, S.-J.; Chang, K.-H. Comparison of taxon-based and trophi-based response patterns of rotifer community to water quality: Applicability of the rotifer functional group as an indicator of water quality. Anim. Cells Syst. 2017, 21, 133–140. [Google Scholar] [CrossRef]
- Siegfried, C.A.; Blomfield, J.A.; Sutherland, J.W. Planktonic rotifer community structure in Adirondack, New York, USA lakes in relation to acidity, trophic status and related water quality characteristics. Hydrobiologia 1989, 175, 33–48. [Google Scholar] [CrossRef]
- Bielańska-Grajner, I.; Gładysz, A. Planktonic rotifers in mining lakes in the Silesian Upland: Relationship to environmental parameters. Limnologica 2010, 40, 67–72. [Google Scholar] [CrossRef]
- Onandia, G.; Maassen, S.; Musseau, C.L.; Berger, S.A.; Olmo, C.; Jeschke, J.M.; Lischeid, G. Key drivers structuring rotifer communities in ponds: Insights into an agricultural landscape. J. Plankton Res. 2021, 43, 396–412. [Google Scholar] [CrossRef] [PubMed]
- Kolkwitz, R.; Marsson, M. Ökologie der tierischen Saprobien. Beiträge zur Lehre von der biologischen Gewässerbeurteilung. Int. Rev. Ges. Hydrobio. Hydrogr. 1909, 2, 126–152. [Google Scholar] [CrossRef]
- Sládeček, V. Rotifers as indicators of water quality. Hydrobiologia 1983, 100, 169–201. [Google Scholar] [CrossRef]
- Mäemets, A. Rotifers as indicators of lake types in Estonia. Hydrobiologia 1983, 104, 357–361. [Google Scholar] [CrossRef]
- Duggan, I.C.; Green, J.D.; Shiel, R.J. Distribution of rotifers in North Island; New Zealand; and their potential use as bioindicators of lake trophic state. Hydrobiologia 2001, 446, 155–164. [Google Scholar] [CrossRef]
- Duggan, I.C.; Green, J.D.; Shiel, R.J. Distribution of rotifer assemblages in North Island, New Zealand, lakes: Relationships to environmental and historical factors. Freshwater Biol. 2002, 47, 195–206. [Google Scholar] [CrossRef]
- Čeirāns, A. Zooplankton indicators of trophy in Latvian lakes. Acta U. Latv. 2007, 723, 61–69. [Google Scholar]
- Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Pol. J. Ecol. 2012, 60, 339–350. [Google Scholar]
- May, L.; Wallace, R.L. An examination of long-term ecological studies of rotifers: Comparability of methods and results; insights into drivers of change and future research challenges. Hydrobiologia 2019, 844, 129–147. [Google Scholar] [CrossRef]
- Pontin, R.M.; Langley, J.M. The use of rotifer communities to provide a preliminary national classification of small water bodies in England. Hydrobiologia 1993, 255, 411–419. [Google Scholar] [CrossRef]
- Langley, J.M.; Kett, S.; Al-Khalili, R.S.; Humphrey, C.J. The conservation value of English urban ponds in terms of their rotifer assessment. Hydrobiologia 1995, 313, 259–266. [Google Scholar] [CrossRef]
- Green, J. Associations of planktonic and periphytic rotifers in a tropical swamp, the Okavango Delta, Southern Africa. Hydrobiologia 2003, 490, 197–209. [Google Scholar] [CrossRef]
- Martins, B.A.; Coelho, P.N.; Nogueira, M.G.; Perbiche-Neves, G. Composition and richness of monogonont rotifers from La Plata River Basin, South America. Biota Neotrop. 2020, 20, e20201001. [Google Scholar] [CrossRef]
- Bērziņš, B.; Pejler, B. Rotifer occurrence in relation to pH. Hydrobiologia 1987, 147, 107–116. [Google Scholar] [CrossRef]
- Bērziņš, B.; Pejler, B. Rotifer occurrence and trophic degree. Hydrobiologia 1989, 182, 171–180. [Google Scholar] [CrossRef]
- Malekzadeh Viayeh, R.; Špoljar, M. Structure of rotifer assemblages in shallow waterbodies of semi-arid northwest Iran differing in salinity and vegetation cover. Hydrobiologia 2012, 686, 73–89. [Google Scholar] [CrossRef]
- Pociecha, A.; Wilk–Woźniak, E.; Mróz, W.; Bielańska–Grajner, I.; Gadzinowska, J.; Walusiak, E. Biodiversity of rotifers in urban water reservoirs of Southern Poland. Oceanol. Hydrobiol. St. 2015, 44, 335–342. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N. Zooplankton structure in architecturally differentiated macrophyte habitats of shallow lakes in the Wielkopolska Region; Poland. Oceanol. Hydrobiol. St. 2006, 35, 179–191. [Google Scholar]
- Edmondson, W.T. Ecological studies of sessile Rotatoria: Part I. Factors affecting distribution. Ecol. Monogr. 1944, 14, 31–66. [Google Scholar] [CrossRef]
- Van Duinen, G.A.; Zhuge, Y.; Verberk, W.C.E.P.; Brock, A.M.T.; van Kleef, H.H.; Leuven, R.S.E.W.; van der Velde, G.; Esselink, H. Effects of rewetting measures in Dutch raised bog remnants on assemblages of aquatic Rotifera and microcrustaceans. Hydrobiologia 2006, 565, 187–200. [Google Scholar] [CrossRef]
- Pourriot, R. Food and feeding habits of Rotifera. Arch. Hydrobiol. Beih. Ergebn. Limnol. 1977, 8, 243–260. [Google Scholar]
- Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Global Ecol. Biogeogr. 2014, 23, 1324–1334. [Google Scholar] [CrossRef]
- Grime, J.P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 1998, 86, 902–910. [Google Scholar] [CrossRef]
- Klimešová, J.; Janeček, Š.; Horník, J.; Doležal, J. Effect of the method of assessing and weighting abundance on the interpretation of the relationship between plant clonal traits and meadow management. Preslia 2011, 83, 437–453. [Google Scholar]
- Mouillot, D.; Graham, N.A.J.; Villéger, S.; Mason, N.W.H.; Bellwood, D.R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 2013, 28, 167–177. [Google Scholar] [CrossRef]
- Cifoni, M.; Boggero, A.; Galassi, D.M.P.; Di Lorenzo, T. An overview of studies on meiofaunal traits of the littoral zone of lakes. Water 2021, 13, 473. [Google Scholar] [CrossRef]
- Obertegger, U.; Wallace, R.L. Trait-based research on Rotifera: The holy grail or just messy? Water 2023, 15, 1459. [Google Scholar] [CrossRef]
- Liu, P.; Wang, T.; Li, H.; Zhang, X.; Wang, L.; Jeppesen, E.; Han, B.-P. Functional diversity and redundancy of rotifer communities affected synergistically by top-down and bottom-up effects in tropical urban reservoirs. Ecol. Indic. 2023, 155, 111061. [Google Scholar] [CrossRef]
- Verbruggen, C.; Denys, L.; Kiden, P. Belgium. In Palaeoecological Events during the Last 15000 Years. Regional Syntheses of Palaeoecological Studies of Lakes and Mires in Europe; Berglund, B.E., Birks, H.J.B., Ralska-Jasiewiczowa, M., Wright, H.E., Eds.; J. Wiley & Sons Ltd.: Chichester, UK, 1996; pp. 553–574. [Google Scholar]
- Franklin, A.; Peeters, M.; Leentjes, V. A country profile. In Biodiversity in Belgium; Peeters, M., Franklin, A., Van Goethem, J.L., Eds.; Royal Belgian Institute of Natural Sciences: Brussel, Belgium, 2003; pp. 21–48. [Google Scholar]
- Denys, L. Stilstaande zoete wateren. In Natuurrapport 2001. Toestand van de Natuur in Vlaanderen: Cijfers Voor Het Beleid; Kuijken, E., Boeye, D., De Bruyn, L., De Roo, K., Dumortier, M., Peymen, J., Schneiders, A., Van Straaten, D., Weyembergh, G., Eds.; Mededelingen van het Instituut voor Natuurbehoud 18; Instituut voor Natuurbehoud: Brussel, Belgium, 2001; pp. 79–87. [Google Scholar]
- Denys, L.; Packet, J.; Scheers, K.; Smeekens, V.; Wils, C.; De Knijf, G.; Leyssen, A. Profielschets van stilstaande wateren in Vlaanderen. Een nieuw digitaal bestand voor het natuur- en biodiversiteitsonderzoek. Natuur. Focus 2019, 18, 128–135. [Google Scholar]
- Denys, L.; Moons, V.; Veraart, B. (Eds.) Ecologische Typologie en Onderzoek Naar een Geïntegreerde Evaluatiemethode voor Stilstaande Wateren op Regionale Schaal: Hoekstenen Voor Ontwikkeling, Herstel en Opvolging van Natuurwaarden; Final report VLINA 97/02; University of Antwerp: Antwerpen, Belgium, 2000. [Google Scholar]
- Koste, W. (Ed.) Rotatoria. Die Rädertiere Mitteleuropas. Überordnung Monogononta; Gebrüder Borntraeger: Berlin, Germany, 1978. [Google Scholar]
- Segers, H. Rotifera 2. The Lecanidae (Monogononta). In Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 6; Dumont, H.J., Nogrady, T., Eds.; SPB Academic Publishing: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Nogrady, T.; Pourriot, R.; Segers, H. Rotifera 3: The Notommatidae and the Scaridiidae. In Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 8; Dumont, H.J., Ed.; SPB Academic Publishing BV: Amsterdam, The Netherlands, 1995. [Google Scholar]
- De Smet, W.H. Rotifera 4: The Proalidae (Monogononta). In Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 9; Dumont, H.J., Ed.; SPB Academic Publishing: The Hague, The Netherlands, 1996. [Google Scholar]
- De Smet, W.H.; Pourriot, R. Rotifera 5: The Dicranophoridae (Monogononta) and the Ituridae (Monogononta). In Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 12; Nogrady, T., Ed.; SPB Academic Publishing: The Hague, The Netherlands, 1997. [Google Scholar]
- Nogrady, T. Rotifera 6: Asplanchnidae, Gastropodidae, Lindiidae, Microcodidae, Synchaetidae, Trochosphaeridae and Filinia. In Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 18; Nogrady, T., Segers, H., Eds.; SPB Academic Publishing: Amsterdam, The Netherlands, 2002. [Google Scholar]
- De Smet, W.H. Preparation of rotifer trophi for light and scanning electron microscopy. Hydrobiologia 1998, 387, 117–121. [Google Scholar] [CrossRef]
- Donner, J. Ordnung Bdelloidea (Rotifera, Rädertiere); Bestimmungsbücher zur Bodenfauna Europas 6; Akademie Verlag: Berlin, Deutschland, 1965. [Google Scholar]
- Golterman, H.L.; Clymo, R.S.; Ohnstad, M.A.M. Methods for Physical and Chemical Analysis of Fresh Waters; Blackwell Scientific Publications: Oxford, UK, 1978. [Google Scholar]
- Denys, L. Relation of abundance–weighted averages of diatom indicator values to measured environmental conditions in standing freshwaters. Ecol. Indic. 2004, 4, 255–275. [Google Scholar] [CrossRef]
- Denys, L. Calibration of littoral diatoms to water-chemistry variables in standing freshwaters of lower Belgium (Flanders): Inference models for sediment assemblages from historical samples. J. Paleolimnol. 2006, 35, 763–787. [Google Scholar] [CrossRef]
- Denys, L. Water-chemistry transfer functions for epiphytic diatoms in standing freshwaters and a comparison with models based on littoral sediment assemblages (Flanders, Belgium). J. Paleolimnol. 2007, 38, 97–116. [Google Scholar] [CrossRef]
- Osgood, R.A. Shoreline density. Lake Reserv. Manage. 2005, 21, 125–126. [Google Scholar] [CrossRef]
- De Blust, G.; Paelinckx, D.; Kuijken, E. Up-to-date information on nature quality for environmental management in Flanders. In Ecosystem Classification for Environmental Management; Klijn, F., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 223–249. [Google Scholar]
- Vriens, L.; Bosch, H.; De Knijf, G.; De Saeger, S.; Guelinckx, R.; Oosterlynck, P.; Van Hove, M.; Paelinckx, D. De Biologische Waarderingskaart. Biotopen en hun Verspreiding in Vlaanderen en het Brussels Hoofdstedelijk Gewest; Mededelingen van het Instituut voor Natuur–en Bosonderzoek. INBO.M.2011.1; Instituut voor Natuur–en Bosonderzoek: Brussel, Belgium, 2011. [Google Scholar]
- Declerck, S.; De Bie, T.; Ercken, D.; Hampel, H.; Schrijvers, S.; Van Wichelen, J.; Gillard, V.; Mandiki, R.; Losson, B.; Bauwens, D.; et al. Ecological characteristics of small farmland ponds: Associations with land use practices at multiple spatial scales. Biol. Conserv. 2006, 131, 523–532. [Google Scholar] [CrossRef]
- Borcard, D.; Legendre, P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 2002, 153, 51–68. [Google Scholar] [CrossRef]
- Dray, S.; Legendre, P.; Peres-Neto, P.R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 2006, 196, 483–493. [Google Scholar] [CrossRef]
- Dray, S.; Bauman, D.; Blanchet, G.; Borcard, D.; Clappe, S.; Guenard, G.; Jombart, T.; Larocque, G.; Legendre, P.; Madi, N.; et al. Package Adespatial. Multivariate Multiscale Spatial Analysis. 2022. Available online: https://github.com/sdray/adespatial (accessed on 1 April 2022).
- Hiemstra, P. Package ‘Automap’. Automatic Interpolation Package. 2022. Available online: https://cran.r-project.org/web/packages/automap (accessed on 5 May 2022).
- Martini, S.; Larras, F.; Boyé, A.; Faure, E.; Aberle, N.; Archambault, P.; Bacouillard, L.; Beisner, B.E.; Bittner, L.; Castella, E.; et al. Functional trait-based approaches as a common framework for aquatic ecologists. Limnol. Oceanogr. 2020, 66, 954–964. [Google Scholar] [CrossRef]
- Pourriot, R. Recherches sur l’écologie des Rotifères. Vie Milieu (Suppl.) 1965, 21, 1–224. [Google Scholar]
- Stemberger, R.S. A Guide to the Rotifers of the Laurentian Great Lakes. Report EPA–600/4–79–021; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1979.
- Pejler, B.; Bērziņš, B. On the ecology of Dicranophoridae. Hydrobiologia 1993, 259, 129–131. [Google Scholar] [CrossRef]
- Fontaneto, D.; De Smet, W. Rotifera. In Handbook of Zoology: Gastrotricha, Cycloneuralia and Gnathifera 3; Schmidt-Rhaesa, A., Ed.; W. de Gruyter GmbH: Berlin, Germany, 2015; pp. 217–300. [Google Scholar]
- Jersabek, C.D.; Leitner, M.F. The Rotifer World Catalog. 2013. Available online: http://www.rotifera.hausdernatur.at/ (accessed on 11 September 2019).
- Smith, H.A.; Ejsmont-Karabin, J.; Hess, T.M.; Wallace, R.L. Paradox of planktonic rotifers: Similar structure but unique trajectories in communities of the Great Masurian Lakes (Poland). Verh. Int. Ver. Limnol. 2009, 30, 951–956. [Google Scholar] [CrossRef]
- Obertegger, U.; Smith, H.A.; Flaim, G.; Wallace, R.L. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 2011, 662, 157–162. [Google Scholar] [CrossRef]
- Gower, J.C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 1966, 53, 325–338. [Google Scholar] [CrossRef]
- Pavoine, S.; Vallet, J.; Dufour, A.-B.; Gachet, S.; Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 2009, 118, 391–402. [Google Scholar] [CrossRef]
- De Bello, F.; Botta-Dukát, Z.; Lepš, J.; Fibich, P. Towards a more balanced combination of multiple traits when computing functional differences between species. Methods Ecol. Evol. 2021, 12, 443–448. [Google Scholar] [CrossRef]
- De Bello, F.; Botta-Dukát, Z.; Lepš, J.; Fibich, P. Package ‘Gawdis’. Multi-Trait Dissimilarity with More Uniform Contributions. 2021. Available online: https://github.com/pavel-fibich/gawdis (accessed on 12 May 2021).
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley–Interscience: Hoboken, NJ, USA, 1990. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. cluster: Cluster Analysis Basics and Extensions, r Package Version 2.1.2. 2021. Available online: https://CRAN.R-project.org/package=cluster (accessed on 17 April 2021).
- Májeková, M.; Paal, T.; Plowman, N.S.; Bryndová, M.; Kasari, L.; Norberg, A.; Weiss, M.; Bishop, T.R.; Luke, S.H.; Sam, K.; et al. Evaluating functional diversity: Missing trait data and the importance of species abundance structure and data transformation. PLoS ONE 2016, 11, e0149270. [Google Scholar] [CrossRef]
- Neury-Ormanni, J.; Vedrenne, J.; Wagner, M.; Jan, G.; Morin, S. Micro-meiofauna morphofunctional traits linked to trophic activity. Hydrobiologia 2020, 847, 2725–2736. [Google Scholar] [CrossRef]
- Borcard, D.; Legendre, P.; Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 1992, 73, 1045–1055. [Google Scholar] [CrossRef]
- Borcard, D.; Legendre, P.; Avois-Jacquet, C.; Tuomisto, H. Dissecting the spatial structure of ecological data at multiple scales. Ecology 2004, 85, 1826–1832. [Google Scholar] [CrossRef]
- Blanchet, F.G.; Legendre, P.; Borcard, D. Forward selection of explanatory variables. Ecology 2008, 89, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Peres-Neto, P.; Legendre, P.; Dray, S.; Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 2006, 87, 2614–2625. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, B.; Bennett, J.R. Partitioning variation in ecological communities: Do the numbers add up? J. Appl. Ecol. 2010, 47, 1071–1082. [Google Scholar] [CrossRef]
- Bauman, D.; Vleminckx, J.; Hardy, O.J.; Drouet, T. Testing and interpreting the shared space-environment fraction in variation partitioning analyses of ecological data. Oikos 2019, 128, 274–285. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Soecs, E.; et al. Vegan: Community Ecology Package. R Package Version 2.6-2. 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 17 April 2022).
- Ter Braak, C.J.F.; Šmilauer, P. Canoco for Windows 4.56; Plant Research International: Wageningen, The Netherlands, 2009. [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination; Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- Pavoine, S. Package Adiv. Analysis of Diversity. Version: 2.2. 2022. Available online: https://cran.r-project.org/web/packages/adiv/ (accessed on 6 October 2022).
- Legendre, P.; Borcard, D.; Peres-Neto, P.R. Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecol. Monogr. 2005, 75, 435–450. [Google Scholar] [CrossRef]
- Legendre, P.; De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 2013, 16, 951–963. [Google Scholar] [CrossRef]
- Podani, J.; Schmera, D. A new conceptual and methodological framework for exploring and explaining pattern in presence–absence data. Oikos 2011, 120, 1625–1638. [Google Scholar] [CrossRef]
- Podani, J.; Ricotta, C.; Schmera, D. A general framework for analyzing beta diversity, nestedness and related community-level phenomena based on abundance data. Ecol. Complex. 2013, 15, 52–61. [Google Scholar] [CrossRef]
- Schmera, D.; Podani, J.; Legendre, P. What do beta diversity components reveal from presence-absence community data? Let us connect every indicator to an indicandum! Ecol. Indic. 2020, 117, 106540. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Ruhí, A.; Datry, T.; Sabo, J.L. Interpreting beta-diversity components over time to conserve metacommunities in highly dynamic ecosystems. Conserv. Biol. 2017, 31, 1459–1468. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, J. Rotifer occurrence in relation to age, depth and trophic state of quarry lakes. Hydrobiologia 1995, 313, 21–28. [Google Scholar] [CrossRef]
- Ripley, B.; Venables, B.; Bates, D.M.; Hornik, K.; Gebhardt, A.; Firth, D. Support Functions and Datasets for Venables and Ripley’s MASS. Version 7.3-53. 2020. Available online: https://www.rdocumentation.org/packages/MASS/versions/7.3-58.3 (accessed on 7 March 2023).
- Ferrari, S.; Cribari–Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 2004, 31, 799–815. [Google Scholar] [CrossRef]
- Zeileis, A.; Cribari-Neto, F.; Gruen, B.; Kosmidis, I.; Simas, A.B.; Rocha, A.V. Package ‘betareg’. Version 3.1–4. 2022. Available online: https://cran.r-project.org/web/packages/betareg/index.html (accessed on 9 February 2021).
- R Core Team and Contributors Worldwide The R Stats Package. Version 4.2.1. 2022. Available online: https://stat.ethz.ch/R-manual/R-devel/library/stats/ (accessed on 23 June 2023).
- Smithson, M.; Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 2006, 11, 54–71. [Google Scholar] [CrossRef]
- Hothorn, T.; Zeileis, A.; Farebrother, R.W.; Cummins, C.; Millo, G.; Mitchell, D. lmtest Version 0.9–40. Testing Linear Regression Models. 2022. Available online: https://cran.r-project.org/package=lmtest (accessed on 21 March 2021).
- Signorell, A.; Alfons, A.; Anderegg, N. 112 Others DescTools. Tools for Descriptive Statistics. Version: 0.99.47. 2022. Available online: https://cran.r-project.org/web/packages/DescTools/index.html (accessed on 23 October 2022).
- De Cáceres, M.; Legendre, P.; Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 2010, 119, 1674–1684. [Google Scholar] [CrossRef]
- Dufrêne, P.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- De Cáceres, M.; Jansen, F.; Dell, N. Package Indicspecies. Relationship between Species and Groups of Sites. 2022. Available online: https://emf-creaf.github.io/indicspecies/ (accessed on 4 March 2022).
- Birks, H.J.B.; Line, J.M.; Juggins, S.; Stevenson, A.C.; ter Braak, C.J.F. Diatoms and pH reconstruction. Phil. T. R. Soc. B. 1990, 327, 263–278. [Google Scholar] [CrossRef]
- Sathicq, M.B.; Nicolosi Gelis, M.M.; Cochero, J. Optimos Prime Helps Calculate Autoecological Data for Biological Species. Version: 0.1.2. 2020. Available online: https://cran.r-project.org/web/packages/optimos.prime (accessed on 14 October 2022).
- Baker, M.E.; King, R.S. A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods Ecol. Evol. 2010, 1, 25–43. [Google Scholar] [CrossRef]
- Baker, M.E.; King, R.S.; Kahle, D. Package Threshold Indicator Taxa Analysis. Version: 2.4.1. 2020. Available online: https://CRAN.R-project.org/package=TITAN2 (accessed on 7 December 2020).
- Pohlert, T. PMCMRplus package. Calculate Pairwise Multiple Comparisons of Mean Rank Sums. Extended. 2022. Available online: https://cran.r-project.org/web/packages/PMCMRplus/ (accessed on 17 August 2022).
- Brown, P.D.; Schröder, T.; Ríos-Arana, J.V.; Rico-Martinez, R.; Silva–Briano, M.; Wallace, R.L.; Walsh, E.J. Patterns of rotifer diversity in the Chihuahuan Desert. Diversity 2022, 12, 393. [Google Scholar] [CrossRef]
- Segers, H.; Royal Belgian Institute of Natural Sciences, Brussels, Belgium. Personal communication.
- Dumont, H.J.; Segers, H. Estimating lacustrine zooplankton species richness and complementarity. Hydrobiologia 1996, 341, 125–132. [Google Scholar] [CrossRef]
- Muirhead, J.R.; Ejsmont-Karabin, J.; MacIsaac, H.J. Quantifying rotifer species richness in temperate lakes. Freshwater Biol. 2006, 51, 1696–1709. [Google Scholar] [CrossRef]
- Ricci, C. Ecology of bdelloids: How to be successful. Hydrobiologia 1987, 147, 117–127. [Google Scholar] [CrossRef]
- Fontaneto, D.; Ficetola, G.F.; Ambrosini, R.; Ricci, C. Patterns of diversity in microscopic animals: Are they comparable to those in protists or in larger animals? Global Ecol. Biogeogr. 2006, 15, 153–162. [Google Scholar] [CrossRef]
- Lucena-Moya, P.; Duggan, I.C. Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquat. Ecol. 2011, 45, 279–287. [Google Scholar] [CrossRef]
- Halabowski, D.; Bielánska-Grajner, I.; Lewin, I.; Sowa, A. Diversity of rotifers in small rivers affected by human activity. Diversity 2022, 14, 127. [Google Scholar] [CrossRef]
- De Smet, W.H. Asciaporrectidae, a new family of Rotifera (Monogononta: Ploima) with description of Asciaporrecta arcellicola gen. et sp. nov. and A. difflugicola gen. et sp. nov. inhabiting shells of testate amoebae (Protozoa). Zootaxa 2006, 1339, 31–49. [Google Scholar] [CrossRef]
- Pejler, B. On the taxonomy and ecology of benthic and periphytic Rotatoria. Investigations in northern Swedish Lapland. Zool. Bidrag. Uppsala 1967, 33, 327–422. [Google Scholar]
- Arora, J.; Mehra, N.K. Species diversity of planktonic and epiphytic rotifers in the backwaters of the Delhi segment of the Yamuna River; with remarks on new records from India. Zool. Stud. 2003, 42, 239–247. [Google Scholar]
- John, B.; Kumar, R.S. Periphytic rotifers: A comprehensive study on species composition, substrate specificity and habitat preference down a tropical riverine system. Maced. J. Ecol. Environ. 2021, 23, 5–16. [Google Scholar] [CrossRef]
- Segers, H. Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 2007, 1564, 1–104. [Google Scholar] [CrossRef]
- De Ridder, M.; Segers, H. Monogonont Rotifera recorded in the world literature (except Africa) from 1960 to 1992. Studiedoc. KBIN 1997, 88, 1–481. [Google Scholar]
- Walsh, E.J.; Arroyo, M.L.; Schröder, T.; Wallace, R.L. Species richness and species turnover (complementarity) of Rotifera in selected aquatic systems of Big Bend National Park; Texas. In Proceedings of the Sixth Symposium on the Natural Resources of the Chihuahuan Desert, Region; Hoyt, C.A., Karges, J., Eds.; Chihuahuan Desert Research Institute: Fort Davis, TX, USA, 2014; pp. 185–204. [Google Scholar]
- Vangenechten, J.H.D.; Van Puymbroeck, S.; Vanderborght, O.L.J. Physico-chemistry of surface waters in the Campine region of Belgium, with special reference to acid moorland pools. Arch. Hydrobiol. 1981, 90, 369–396. [Google Scholar]
- Denys, L.; van Straaten, D. A survey of the acid water diatom assemblages of two heathland relics in the Belgian northern Campine (Groot and Klein Schietveld, Brasschaat) with an assessment of their conservational value. Diatom Res. 1992, 7, 1–13. [Google Scholar] [CrossRef]
- MacIsaac, H.J.; Hutchinson, T.C.; Kellar, W. Analysis of planktonic rotifer assemblages from Sudbury; Ontario; area lakes of varying chemical composition. Can. J. Fish. Aquat. Sci. 1987, 44, 1692–1701. [Google Scholar] [CrossRef]
- Brett, M.T. The rotifer communities of acid-stressed lakes of Maine. Hydrobiologia 1989, 186, 181–189. [Google Scholar] [CrossRef]
- Santos-Medrano, G.E.; Rico-Martínez, R. Lethal effects of five metals on the freshwater rotifers Asplanchna brigthwellii and Brachionus calyciflorus. Hidrobiológica 2013, 23, 82–86. [Google Scholar]
- Kling, G.W.; O’Brien, W.J.; Miller, M.C.; Hershey, A.E. The biogeochemistry and zoogeography of lakes and rivers in arctic Alaska. Hydrobiologia 1992, 240, 1–14. [Google Scholar] [CrossRef]
- Kaya, M.; Fontaneto, D.; Segers, H.; Altindağ, A. Temperature and salinity as interacting drivers of species richness of planktonic rotifers in Turkish continental waters. J. Limnol. 2010, 69, 297–304. [Google Scholar] [CrossRef]
- Bielańska-Grajner, I.; Cudak, A. Effects of salinity on species diversity of rotifers in anthropogenic water bodies. Pol. J. Environ. Stud. 2014, 23, 27–34. [Google Scholar]
- Cormier, S.M.; Zheng, L.; Flaherty, C.M. A field-based model of the relationship between extirpation of salt-intolerant benthic invertebrates and background conductivity. Sci. Total Environ. 2018, 633, 1629–1636. [Google Scholar] [CrossRef]
- Pontin, R.M.; Shiel, R.J. Periphytic rotifer communities of an Australian seasonal floodplain pool. Hydrobiologia 1995, 313, 63–67. [Google Scholar] [CrossRef]
- Duggan, I.C.; Green, J.D.; Thompson, K.; Shiel, R.J. The influence of macrophytes on the spatial distribution of littoral rotifers. Freshwater Biol. 2001, 46, 777–786. [Google Scholar] [CrossRef]
- Kuzyńska-Kippen, N. Habitat choice in rotifera communities of three shallow lakes: Impact of macrophyte substratum and season. Hydrobiologia 2007, 593, 27–37. [Google Scholar] [CrossRef]
- Vieira, L.C.G.; Bini, L.M.; Velho, L.F.M.; Mazão, G.R. Influence of spatial complexity on the density and diversity of periphytic rotifers; microcrustaceans and testate amoebae. Fund. Appl. Limnol. 2007, 170, 77–85. [Google Scholar] [CrossRef]
- Declerck, S.; Vandekerkhove, J.; Johansson, L.; Muylaert, K.; Conde-Porcuna, J.M.; Van der Gucht, K.; Pérez-Martínez, C.; Lauridsen, T.; Schwenk, K.; Zwart, G.; et al. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 2005, 86, 1905–1915. [Google Scholar] [CrossRef]
- Taniguchi, H.; Nakano, S.; Tokeshi, M. Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biol. 2003, 48, 718–728. [Google Scholar] [CrossRef]
- Pierre, J.I.S.; Kovalenko, K.E. Effect of habitat complexity attributes on species richness. Ecosphere 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Thomaz, S.M.; da Cunha, E.R. The role of macrophytes in habitat structuring in aquatic ecosystems: Methods of measurement; causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol. Brasil. 2010, 22, 218–236. [Google Scholar] [CrossRef]
- Alfonso, G.; Beccarisi, L.; Pieri, V.; Frassanito, A.; Belmonte, G. Using crustaceans to identify different pond types. A case study from the Alta Murgia National Park, Apulia (South–eastern Italy). Hydrobiologia 2016, 782, 53–69. [Google Scholar] [CrossRef]
- Zelnik, I.; Gregorič, N.; Tratnik, A. Diversity of macroinvertebrates positively correlates with diversity of macrophytes in karst ponds. Ecol. Eng. 2018, 117, 96–103. [Google Scholar] [CrossRef]
- Yofukuji, K.Y.; Cardozo, A.L.P.; Quirino, B.A.; Aleixo, M.H.F.; Fugi, R. Macrophyte diversity alters invertebrate community and fish diet. Hydrobiologia 2021, 848, 913–927. [Google Scholar] [CrossRef]
- Engelhardt, K.A.; Ritchie, M.E. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 2001, 411, 687–689. [Google Scholar] [CrossRef]
- Fleming, J.P.; Wersal, R.M.; Madsen, J.D.; Dibble, E.D. Weak non-linear influences of biotic and abiotic factors on invasive macrophyte occurrence. Aquat. Invasions 2021, 16, 349–364. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Shan, H.; Lv, C.; Ren, W.; Wen, Z.; Tian, Y.; Weigel, B.; Ni, L.; Cao, T. Biodiversity buffers the impact of eutrophication on ecosystem functioning of submerged macrophytes on the Yunnan-Guizhou Plateau; Southwest China. Environ. Pollut. 2022, 314, 120210. [Google Scholar] [CrossRef] [PubMed]
- Fernández, R.; Alcocer, J.; Oseguera, L. A Regional pelagic rotifer biodiversity in a tropical karst lake district. Diversity 2020, 12, 454. [Google Scholar] [CrossRef]
- Dodson, S.I.; Arnott, S.E.; Cottingham, K.L. The relationship in lake communities between primary productivity and species richness. Ecology 2000, 81, 2662–2679. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, J.; Górniak, A.; Karpowicz, M. Diversity of rotifer communities in lakes of the Suwalki Landscape Park. Limnol. Rev. 2016, 16, 207–211. [Google Scholar] [CrossRef]
- Wen, X.; Zhai, P.; Feng, R.; Yang, R.; Xi, Y. Comparative analysis of the spatiotemporal dynamics of rotifer community structure based on taxonomic indices and functional groups in two subtropical lakes. Sci. Rep. 2017, 7, 578. [Google Scholar] [CrossRef]
- Karpowicz, M.; Ejsmont-Karabin, J.; Kozłowska, J.; Feniova, I.; Dzialowski, A.R. Zooplankton community responses to oxygen stress. Water 2020, 12, 706. [Google Scholar] [CrossRef]
- Wiersma, Y.E.; Urban, D.L. Beta diversity and nature reserve system design in the Yukon, Canada. Conserv. Biol. 2005, 19, 1262–1272. [Google Scholar] [CrossRef]
- Socolar, J.; Gilroy, J.; Kunin, W.E.; Edwards, D.P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 2016, 31, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.J.; White, J.C.; Biggs, J.; Briers, R.A.; Gledhill, D.; Ledger, M.E.; Thornhill, I.; Wood, P.J.; Hassall, C. Local contributions to beta diversity in urban pond networks: Implications for biodiversity conservation and management. Divers. Distrib. 2021, 27, 887–900. [Google Scholar] [CrossRef]
- Xia, Z.; Heino, J.; Yu, F.; He, Y.; Liu, F.; Wang, J. Spatial patterns of site and species contributions to β diversity in riverine fish assemblages. Ecol. Indic. 2022, 145, 109728. [Google Scholar] [CrossRef]
- Soininen, J.; Heino, J.; Wang, J. A meta–analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecol. Biogeogr. 2018, 27, 96–109. [Google Scholar] [CrossRef]
- Leprieur, F.; Tadesco, P.A.; Hugueny, B.; Beauchard, O.; Dürr, H.H.; Brosse, S.; Oberdorff, T. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate change. Ecol. Lett. 2011, 14, 325–334. [Google Scholar] [CrossRef]
- Li, F.; Tonkin, J.D.; Haase, P. Local contribution to beta diversity is negatively linked with community wide dispersal capacity in stream invertebrate communities. Ecol. Indic. 2020, 108, 105715. [Google Scholar] [CrossRef]
- Hill, M.J.; Heino, J.; Thornhill, I.; Ryves, D.B.; Wood, P.J. Effects of dispersal mode on the environmental and spatial correlates of nestedness and species turnover in pond communities. Oikos 2017, 126, 1575–1585. [Google Scholar] [CrossRef]
- Strecker, A.L.; Brittain, J.T. Increased habitat connectivity homogenizes freshwater communities: Historical and landscape perspectives. J. Appl. Ecol. 2017, 54, 1343–1352. [Google Scholar] [CrossRef]
- Vilmi, A.; Karjalainen, S.M.; Heino, J. Ecological uniqueness of stream and lake diatom communities shows different macroecological patterns. Divers. Distrib. 2017, 23, 1042–1053. [Google Scholar] [CrossRef]
- Da Silva, P.G.; Hernández, M.I.M.; Heino, J. Disentangling the correlates of species and site contributions to beta diversity in dung beetle assemblages. Divers. Distrib. 2018, 24, 1674–1686. [Google Scholar] [CrossRef]
- Maloufi, S.; Catherine, A.; Mouillot, D.; Louvard, C.; Couté, A.; Bernard, C.; Troussellier, M. Environmental heterogeneity among lakes promotes hyper β–diversity across phytoplankton communities. Freshwater Biol. 2016, 61, 633–645. [Google Scholar] [CrossRef]
- Castro, E.; Siqueira, T.; Melo, A.S.; Bini, L.M.; Landeiro, V.L.; Schneck, F. Compositional uniqueness of diatoms and insects in subtropical streams is weakly correlated with riffle position and environmental uniqueness. Hydrobiologia 2019, 842, 219–232. [Google Scholar] [CrossRef]
- Szabó, B.; Lengyel, E.; Padisák, J.; Stenger-Kovács, C. Benthic diatom metacommunity across small freshwater lakes: Driving mechanisms; β-diversity and ecological uniqueness. Hydrobiologia 2019, 828, 183–198. [Google Scholar] [CrossRef]
- Da Silva Brito, M.T.; Heino, J.; Pozzobom, U.M.; Landeiro, V.L. Ecological uniqueness and species richness of zooplankton in subtropical floodplain lakes. Aquat. Sci. 2020, 82, 43. [Google Scholar] [CrossRef]
- De, K.; Singh, A.P.; Sarkar, A.; Singh, K.; Siliwal, M.; Uniyal, V.P.; Hussain, S.A. Relationship between species richness; taxonomic distinctness; functional diversity; and local contribution to β diversity and effects of habitat disturbance in the riparian spider community of the Ganga River; India. Ecol. Process. 2023, 12, 13. [Google Scholar] [CrossRef]
- Benito, X.; Vilmi, A.; Luethje, M.; Carrevedo, M.L.; Lindholm, M.; Fritz, S.C. Spatial and temporal ecological uniqueness of Andean diatom communities are correlated with climate; geodiversity and long–term limnological change. Front. Ecol. Evol. 2020, 8, 260. [Google Scholar] [CrossRef]
- García-Navas, V.; Martínez-Núñez, C.; Tarifa, R.; Molina-Pardo, J.L.; Valera, F.; Salido, T.; Camacho, F.M.; Rey, P.J. Partitioning beta diversity to untangle mechanisms underlying the assembly of bird communities in Mediterranean olive groves. Divers. Distrib. 2021, 28, 112–127. [Google Scholar] [CrossRef]
- Vad, C.F.; Péntek, A.L.; Cozma, N.J.; Földi, A.; Tóth, A.; Tóth, B.; Böde, N.A.; Móra, A.; Ptacnik, R.; Ács, É.; et al. Wartime scars or reservoirs of biodiversity? The value of bomb crater ponds in aquatic conservation. Biol. Conserv. 2017, 209, 253–262. [Google Scholar] [CrossRef]
- Cuenca-Cambronero, M.; Blicharska, M.; Perrin, J.-A.; Davidson, T.A.; Oertli, B.; Lago, M.; Beklioglu, M.; Meerhoff, M.; Arim, M.; Teixeira, J.; et al. Challenges and opportunities in the use of ponds and pondscapes as nature-based solutions. Hydrobiologia 2023, 850, 3257–3271. [Google Scholar] [CrossRef]
- Ossyssek, S.; Hofmann, A.M.; Geist, J.; Raeder, U. Diatom Red List species reveal high conservation value and vulnerability of mountain lakes. Diversity 2022, 14, 389. [Google Scholar] [CrossRef]
- Økland, R.H. On the variation explained by ordination and constrained ordination axes. J. Veg. Sci. 1999, 10, 131–136. [Google Scholar] [CrossRef]
- García-Girón, J.; Heino, J.; García-Criado, F.; Fernández-Aláez, C.; Alahuhta, J. Biotic interactions hold the key to understanding metacommunity organisation. Ecography 2020, 43, 1–11. [Google Scholar] [CrossRef]
- Vandvik, V.; Birks, H.J.B. Partitioning floristic variation in Norwegian upland grasslands into within-site and between-site components: Are the patterns determined by environment or by land-use? Plant Ecol. 2001, 162, 233–245. [Google Scholar] [CrossRef]
- De Bie, T.; De Meester, L.; Brendonck, L.; Martens, K.; Goddeeris, B.; Ercken, D.; Hampel, H.; Denys, L.; Vanhecke, L.; Van der Gucht, K.; et al. Body size and dispersal mode as key traits determining metacommunity structure of aquatic pond organisms. Ecol. Lett. 2012, 15, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Brind’amour, A.; Mahévas, S.; Legendre, P.; Bellanger, L. Application of Moran Eigenvector Maps (MEM) to irregular sampling designs. Spat. Stat.-Neth. 2018, 26, 56–68. [Google Scholar] [CrossRef]
- Barta, B.; Szabó, A.; Szabó, B.; Ptacnik, R.; Vad, C.F.; Horváth, Z. How pondscapes function: Connectivity matters for biodiversity even across small spatial scales in aquatic metacommunities. Ecography 2023, e06960. [Google Scholar] [CrossRef]
- Viana Duarte, S.; Keil, P.; Jeliazkov, A. Disentangling spatial and environmental effects: Flexible methods for community ecology and macroecology. Ecosphere 2022, 13, e4028. [Google Scholar] [CrossRef]
- Tolonen, K.T.; Karjalainen, J.; Hämäläinen, H.; Nyholm, K.; Rahkola-Sorsa, M.; Cai, Y.; Heino, J. Do the ecological drivers of lake littoral communities match and lead to congruence between organism groups? Aquat. Ecol. 2020, 54, 839–854. [Google Scholar] [CrossRef]
- Myers, F.J. The distribution of rotifera on Mount Desert Island. Am. Mus. Nov. 1931, 494, 1–12. [Google Scholar]
- Hájková, P.; Bojková, J.; Fránková, M.; Opravilová, V.; Hájek, M.; Kintrová, K.; Horsák, M. Disentangling the effects of water chemistry and substratum structure on moss-dwelling unicellular and multicellular micro-organisms in spring-fens. J. Limnol. 2011, 70 (Suppl. S1), 54–64. [Google Scholar] [CrossRef]
- Saksena, D.N. Rotifers as indicators of water quality. Acta Hydrochim. Hydrobiol. 1987, 15, 481–485. [Google Scholar] [CrossRef]
- Couillard, Y.; Ross, P.; Pinel-Alloul, B. Acute toxicity of six metals to the rotifer Brachionus calyciflorus, with comparisons to other freshwater organisms. Environ. Toxicol. 1989, 546, 451–462. [Google Scholar] [CrossRef]
- Hernández-Flores, S.; Santos-Medrano, G.E.; Rubio-Franchini, I.; Rico-Martínez, R. Evaluation of bioconcentration and toxicity of five metals in the freshwater rotifer Euchlanis dilatata Ehrenberg, 1832. Environ Sci. Pollut. Res. Int. 2020, 27, 14058–14069. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Kim, H.-J.; Lee, J.-S.; Sakakura, Y.; Hagiwara, A. Species-specific effects of iron on temperate and tropical marine rotifers in reproduction, lipid, and ROS metabolisms. Chemosphere 2021, 277, 130317. [Google Scholar] [CrossRef] [PubMed]
- Bērziņš, B.; Pejler, B. Rotifer occurrence in relation to oxygen content. Hydrobiologia 1989, 182, 171–180. [Google Scholar] [CrossRef]
- Saikia, S.K.; Nandi, S.; Majumder, A. Review on the role of nutrients in development and organization of periphyton. J. R. B. 2013, 3, 780–788. [Google Scholar]
- Casartelli, M.R.; Ferragut, C. The effects of habitat complexity on periphyton biomass accumulation and taxonomic structure during colonization. Hydrobiologia 2018, 807, 233–246. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, J.; Feniova, I.; Kostrzewska-Szlakowska, I.; Rzepecki, M.; Petrosyan, V.G.; Dzialowski, A.R. Use of rotifer trophic state indices to show the effect of hydrobionts and nutrients on water trophic status in mesocosms. Oceanol. Hydrobiol. St. 2020, 49, 123–131. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Q.; Wei, N.; Tang, C.; Sun, X.; Yang, Y. Biological indicators of ecological quality in typical urban river-lake ecosystems: The planktonic rotifer community and its response to environmental factors. Ecol. Indic. 2020, 112, 106127. [Google Scholar] [CrossRef]
- Bird, D.F.; Kalff, J. Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters. Can. J. Fish. Aquat. Sci. 1984, 41, 1015–1023. [Google Scholar] [CrossRef]
- Chrzanowski, T.H.; Sterner, R.W.; Elser, J.J. Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth. Microb. Ecol. 1995, 29, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Muylaert, K.; Declerck, S.; Geenens, V.; Van Wichelen, J.; Degans, H.; Vandekerkhove, J.; Van der Gucht, K.; Vloemans, N.; Rommens, W.; Rejas, D.; et al. Zooplankton, phytoplankton and the microbial food web in two turbid and two clearwater shallow lakes in Belgium. Aquat. Ecol. 2003, 37, 137–150. [Google Scholar] [CrossRef]
- Jiménez-Santos, M.A.; Sarma, S.S.S.; Nandini, S.; Wallace, R.L. Sessile rotifers (Rotifera) exhibit strong seasonality in a shallow, eutrophic Ramsar site in Mexico. Invertebr. Biol. 2019, 138, e12270. [Google Scholar] [CrossRef]
- Williamson, C.E. Predator-prey interactions between omnivorous diaptomid copepods and rotifers: The role of prey morphology and behavior. Limnol. Oceanogr. 1987, 32, 167–177. [Google Scholar] [CrossRef]
- Yoshida, T.; Urabe, J.; Elser, J.J. Assessment of ‘top-down’ and ‘bottom-up’ forces as determinants of rotifer distribution among lakes in Ontario, Canada. Ecol. Res. 2003, 18, 639–650. [Google Scholar] [CrossRef]
- Sanchez-Avila, A.S.; Wallace, R.L.; Walsh, E.J. Motility and size of rotifers as risk factors for being consumed by the passive protistan predator Actinosphaerium sp. Hydrobiologia 2023. [Google Scholar] [CrossRef]
- Gilbert, J.J. The cost of predator-induced morphological defense in rotifers: Experimental studies and synthesis. J. Plankton Res. 2013, 35, 461–472. [Google Scholar] [CrossRef]
- Ricci, C.; Balsamo, M. The biology and ecology of lotic rotifers and gastrotrichs. Freshwater Biol. 2001, 44, 15–28. [Google Scholar] [CrossRef]
- Gilbert, J.J. Food niches of planktonic rotifers: Diversification and implications. Limnol. Oceanogr. 2022, 67, 2218–2251. [Google Scholar] [CrossRef]
- Sarma, S.S.S.; Jiménez–Santos, M.A.; Nandini, S.; Wallace, R.L. Demography of the sessile rotifers, Limnias ceratophylli and Limnias melicerta (Rotifera: Gnesiotrocha), in relation to food (Chlorella vulgaris Beijerinck, 1890) density. Hydrobiologia 2017, 796, 181–189. [Google Scholar] [CrossRef]
- Odland, A.; Birks, H.J.B.; Line, J.M. Ecological optima and tolerances of Thelypteris limbosperma, Athyrium distentifolium, and Matteuccia struthiopteris along environmental gradients in Western Norway. Vegetatio 1995, 120, 115–129. [Google Scholar] [CrossRef]
- Bennett, J.R.; Cumming, B.F.; Ginn, B.K.; Smol, J.P. Broad-scale environmental response and niche conservatism in lacustrine diatom communities. Global Ecol. Biogeogr. 2010, 19, 724–732. [Google Scholar] [CrossRef]
- Wagner, V.; Chytrý, M.; Zelený, D.; von Wehrden, H.; Brinkert, A.; Danihelka, J.; Hölzel, N.; Jansen, F.; Kamp, J.; Lustyk, P.; et al. Regional differences in soil pH niche among dry grassland plants in Eurasia. Oikos 2017, 126, 660–670. [Google Scholar] [CrossRef]
- Soininen, J.; Jamoneau, A.; Rosebery, J.; Leboucher, T.; Wang, J.; Kokociński, M.; Passy, S.I. Stream diatoms exhibit weak niche conservation along global environmental and climatic gradients. Ecography 2018, 41, 346–353. [Google Scholar] [CrossRef]
- Søndergaard, M.; Jeppesen, E.; Jensen, J.P.; Amsinck, S.L. Water Framework Directive: Ecological classification of Danish lakes. J. Appl. Ecol. 2005, 42, 616–629. [Google Scholar] [CrossRef]
- Poikane, S.; Phillips, G.; Birk, S.; Free, G.; Kelly, M.G.; Willby, N.J. Deriving nutrient criteria to support ‘good’ ecological status in European lakes: An empirically based approach to linking ecology and management. Sci. Total Environ. 2019, 650, 2074–2084. [Google Scholar] [CrossRef]
- Poikane, S.; Portielje, R.; van den Berg, M.; Phillips, G.; Brucet, S.; Carvalho, L.; Mischke, U.; Ott, I. Defining ecologically relevant water quality targets for lakes in Europe. J. Appl. Ecol. 2014, 51, 592–602. [Google Scholar] [CrossRef]
- Lauridsen, T.L.; Jeppesen, E.; Declerck, S.A.J.; De Meester, L.; Conde-Porcuna, J.M.; Rommens, W.; Brucet, S. The importance of environmental variables for submerged macrophyte community assemblage and coverage in shallow lakes: Differences between northern and southern Europe. Hydrobiologia 2015, 744, 49–61. [Google Scholar] [CrossRef]
- Smolak, R.; Walsh, E.J. Rotifer species richness in Kenyan waterbodies: Contributions of environmental characteristics. Diversity 2022, 14, 583. [Google Scholar] [CrossRef]
- Sayer, C.D.; Davidson, T.A.; Jones, J.I.; Langdon, P.G. Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshwater Biol. 2010, 55, 487–499. [Google Scholar] [CrossRef]
- Juggins, S.; Anderson, N.J.; Ramstack Hobbs, J.M.; Heathcote, A.J. Reconstructing epilimnetic total phosphorus using diatoms: Statistical and ecological constraints. J. Paleolimnol. 2013, 49, 373–390. [Google Scholar] [CrossRef]
- Mills, S.; Alcántara-Rodríguez, J.A.; Ciros-Pérez, J.; Gómez, A.; Hagiwara, A.; Hinson Galando, K.; Jersabek, C.D.; Malekzadeh-Viayeh, R.; Leasi, F.; Lee, J.-S.; et al. Fifteen species in one: Deciphering the Brachionus plicatilis species complex (Rotifera; Monogononta) through DNA taxonomy. Hydrobiologia 2017, 796, 39–58. [Google Scholar] [CrossRef]
- García-Morales, A.E.; Domínguez-Domínguez, O. Cryptic molecular diversity in the morphologically variable rotiferan Brachionus quadridentatus (Rotifera: Monogononta). Rev. Biol. Trop. 2019, 67, 1114–1130. [Google Scholar] [CrossRef]
- García-Morales, A.E.; Domínguez-Domínguez, O. Cryptic species within the rotifer Lecane bulla (Rotifera: Monogononta: Lecanidae) from North America based on molecular species delimitation. Rev. Mex. Biodivers. 2020, 91, e913116. [Google Scholar] [CrossRef]
- Walczyńska, A.; Fontaneto, D.; Kordbacheh, A.; Hamil, S.; Jimenez-Santos, M.A.; Paraskevopoulou, S.; Pociecha, A.; Zhang, W. Niche differentiation in rotifer cryptic species complexes: A review of environmental effects. Hydrobiologia 2023. [Google Scholar] [CrossRef]
- Coudun, C.; Gégout, J.-C. The derivation of species response curves with Gaussian logistic regression is sensitive to sampling intensity and curve characteristics. Ecol. Model. 2006, 199, 164–175. [Google Scholar] [CrossRef]
- Michaelis, J.; Diekmann, M.R. Biased niches—Species response curves and niche attributes from Huisman–Olff–Fresco models change with differing species prevalence and frequency. PLoS ONE 2017, 12, e0183152. [Google Scholar] [CrossRef]
- Obertegger, U.; Flaim, G. Taxonomic and functional diversity of rotifers, what do they tell us about community assembly? Hydrobiologia 2018, 823, 79–91. [Google Scholar] [CrossRef]
- Wallace, R.L.; Walsh, E.J.; Arroyo, M.L.; Starkweather, P.L. Life on the edge: Rotifers from springs and ephemeral waters in the Chihuahuan Desert, Big Bend National Park (Texas, USA). Hydrobiologia 2005, 546, 147–157. [Google Scholar] [CrossRef]
- Joniak, T.; Kuczyńska-Kippen, N.; Gąbka, M. Effect of agricultural landscape characteristics on the hydrobiota structure in small water bodies. Hydrobiologia 2017, 793, 121–133. [Google Scholar] [CrossRef]
- Moreno-Gutiérrez, R.M.; Sarma, S.S.S.; Sobrino-Figueroa, A.S.; Nandini, S. Population growth potential of rotifers from a high altitude eutrophic waterbody, Madín reservoir (State of Mexico; Mexico): The importance of seasonal sampling. J. Limnol. 2018, 77, 441–451. [Google Scholar] [CrossRef]
- Yin, L.; Ji, Y.; Zhang, Y.; Chong, L.; Chen, L. Rotifer community structure and its response to environmental factors in the Backshore Wetland of Expo Garden, Shanghai. Aquacult. Fish. 2018, 3, 90–97. [Google Scholar] [CrossRef]
- Jekatierynczuk-Rudczyk, E.; Ejsmont-Karabin, J. Rotifers of inter-forest springs. Diversity 2023, 15, 153. [Google Scholar] [CrossRef]
Variable | Unit | Minimum | Maximum | Median | Average | SD |
---|---|---|---|---|---|---|
surface | m2 | 211 | 739,743 | 13,331 | 46,032 | 95,788 |
maximum depth | m | c. 0.5 | c. 18 | - | - | - |
heath | % | 0 | 90 | 0 | 4 | 15 |
deciduous | % | 0 | 100 | 21 | 28 | 27 |
coniferous | % | 0 | 94 | 0 | 5 | 15 |
poplar | % | 0 | 94 | 0 | 13 | 21 |
field | % | 0 | 55 | 0 | 8 | 14 |
pasture | % | 0 | 97 | 12 | 20 | 24 |
emergent cover | % | 0 | 100 | 1 | 10 | 21 |
submerged cover | % | 0 | 100 | 1 | 21 | 35 |
pH | - | 3.4 | 9.3 | 7.7 | 7.4 | 1.1 |
EC | µS.cm−1 | 24 | 3520 | 460 | 520 | 393 |
TP | mg.L−1 | <0.07 | 2.89 | 0.13 | 0.29 | 0.45 |
TN | mg.L−1 | 0.37 | 10.52 | 1.83 | 2.36 | 1.79 |
chl a | µg.L−1 | <1 | 310 | 21 | 42 | 56 |
Trait | Coding | Modalities | Trait Group |
---|---|---|---|
organisation | fuzzy | colonial, solitary | morphological |
food-particle size | fuzzy | microphagous (mostly <5 µm), macrophagous (mostly >5 µm) | morphological |
trophi type | categorical | malleate, virgate, forcipate, cardate, incudate, malleoramate, uncinate, submalleate, malleovirgate, ramate | morphological |
armoring | categorical | loricate, illoricate | morphological |
spines | categorical | spined, unspined | morphological |
mucus-secretion | categorical | with mucus, without mucus | morphological |
tube formation | categorical | tube-dwelling, exposed | morphological |
length | continuous | range midpoint | morphological |
toe length | continuous | range midpoint | morphological |
food acquisition | categorical | raptor, collector (single vs. multiple food items) [95,96] | behavioural |
habitat (primary) | categorical | planktonic, periphytic | behavioural |
substrate relation | categorical | adults sessile, adults free-living | behavioural |
adhesion | categorical | toed, toeless | behavioural |
diet | fuzzy | parasitic, predatory, cyanobacterivorous, algivorous, detritibacterivorous | physiological |
obligate parthenogenetic | categorical | obligate parthenogenetic, heterogonic | physiological |
Taxon | Acronym | Frequency (%) | Individuals | Average % | SD |
---|---|---|---|---|---|
Bdelloidea indeterminata | BDELinde | 99.5 | 64,313 | 37.2 | 25.2 |
Brachionus quadridentatus | BRACQUAD | 30.4 | 2553.5 | 3.0 | 11.3 |
Brachionus urceolaris | BRACURCE | 13.0 | 357 | 0.5 | 4.1 |
Cephalodella auriculata | CEPHAURI | 54.3 | 2070.5 | 2.4 | 8.7 |
Cephalodella forficula | CEPHFORF | 16.3 | 189 | 0.2 | 0.9 |
Cephalodella gibba | CEPHGIBB | 54.9 | 1214 | 0.9 | 2.1 |
Cephalodella gracilis | CEPHGRAC | 23.4 | 389.5 | 0.4 | 1.5 |
Cephalodella hoodii | CEPHHOOD | 27.7 | 245 | 0.2 | 0.8 |
Cephalodella intuta | CEPHINTU | 21.7 | 298.5 | 0.3 | 1.2 |
Cephalodella megalocephala | CEPHMEGA | 20.7 | 130 | 0.2 | 0.5 |
Cephalodella segersi | CEPHSEGE | 32.6 | 1416.5 | 1.7 | 6.4 |
Cephalodella sp. 1 | CEPHsp1 | 21.7 | 563.5 | 0.6 | 3.0 |
Cephalodella sterea | CEPHSTER | 34.8 | 644.5 | 0.7 | 2.4 |
Collotheca sp. | COLLsp1 | 36.4 | 1132.5 | 1.4 | 5.2 |
Colurella adriatica | COLUADRI | 52.7 | 1557.5 | 1.5 | 2.8 |
Colurella colurus | COLUCOLU | 22.8 | 660.5 | 0.7 | 2.6 |
Colurella obtusa | COLUOBTU | 26.6 | 128.5 | 0.1 | 0.4 |
Colurella uncinata | COLUUNCI | 24.5 | 438 | 0.4 | 2.1 |
Euchlanis deflexa | EUCHDEFL | 29.3 | 406 | 0.5 | 2.0 |
Euchlanis dilatata | EUCHDILA | 32.1 | 1437.5 | 1.7 | 8.0 |
Keratella cochlearis | KERACOCH | 23.4 | 193.5 | 0.2 | 0.6 |
Keratella quadrata | KERAQUAD | 10.3 | 128 | 0.1 | 1.0 |
Lecane bulla | LECABULL | 15.8 | 162.5 | 0.2 | 0.8 |
Lecane closterocerca | LECACLOS | 83.7 | 8733 | 10.0 | 12.1 |
Lecane flexilis | LECAFLEX | 34.8 | 634 | 0.9 | 4.1 |
Lecane hamata | LECAHAMA | 25.0 | 402 | 0.5 | 1.8 |
Lecane luna | LECALUNA | 15.2 | 432.5 | 0.5 | 2.3 |
Lecane lunaris | LECALUNR | 45.1 | 2083.5 | 2.3 | 6.3 |
Lecane stichaea | LECASTIC | 10.9 | 296 | 0.3 | 1.4 |
Lecane tenuiseta | LECATENU | 20.7 | 342.5 | 0.4 | 1.5 |
Lepadella acuminata | LEPAACU | 27.2 | 829.5 | 1.0 | 3.8 |
Lepadella ovalis | LEPAOVAL | 35.3 | 1147.5 | 1.4 | 4.1 |
Lepadella patella | LEPAPATE | 67.4 | 3059.5 | 3.8 | 8.0 |
Lepadella quadricarinata | LEPAQUAD | 21.7 | 434.5 | 0.5 | 2.0 |
Lepadella triptera | LEPATRIP | 12.0 | 120.5 | 0.2 | 0.7 |
Limnias ceratophylli | LIMNCERA | 19.0 | 1388.5 | 1.7 | 7.8 |
Mytilina mucronata | MYTIMUCR | 23.9 | 1071.5 | 1.2 | 3.8 |
Mytilina ventralis | MYTIVENT | 17.4 | 350 | 0.4 | 2.1 |
Notommata cyrtopus | NOTOCYRT | 10.3 | 76 | 0.1 | 0.3 |
Pleurotrocha petromyzon | PLEUPETR | 14.1 | 306.5 | 0.3 | 1.4 |
Polyarthra dolichoptera | POLYDOLI | 13.0 | 163 | 0.2 | 2.4 |
Proales fallaciosa | PROAFALL | 26.1 | 243 | 0.2 | 0.9 |
Ptygura furcillata | PTYGFURC | 24.5 | 175 | 0.2 | 0.6 |
Ptygura sp. 2 | PTYGsp2 | 46.2 | 2313.5 | 2.1 | 6.3 |
Taphrocampa annulosa | TAPHANNU | 12.0 | 256 | 0.2 | 1.1 |
Testudinella mucronata | TESTMUCR | 29.3 | 763 | 0.7 | 2.6 |
Testudinella patina | TESTPATI | 60.3 | 3726 | 4.5 | 11.7 |
Trichocerca brachyura | TRICBRAC | 13.0 | 506 | 0.7 | 4.8 |
Trichocerca obtusidens | TRICRELI | 31.0 | 1310.5 | 1.8 | 5.6 |
Trichocerca porcellus | TRICPORC | 22.3 | 399.5 | 0.5 | 1.7 |
Trichocerca rattus | TRICRATT | 34.2 | 1109.5 | 1.4 | 3.9 |
Trichocerca similis | TRICSIMI | 10.9 | 198.5 | 0.3 | 3.0 |
Trichocerca weberi | TRICWEBE | 12.5 | 136 | 0.2 | 1.1 |
Trichotria pocillum | TRIOPOCI | 12.0 | 181.5 | 0.3 | 2.1 |
Metric | Average | SD | Minimum | P25th | P50th | P75th | Maximum | CV (%) |
---|---|---|---|---|---|---|---|---|
S_obs | 18.6 | 9.0 | 2 | 12 | 19 | 24 | 48 | 48.6 |
S_rar | 15.2 | 6.7 | 2 | 10 | 15.5 | 19 | 38 | 44.0 |
S_chao1 | 34.0 | 46.9 | 2 | 13 | 21 | 37.5 | 399 | 138.0 |
S_chao1-S_obs | 15.5 | 41.9 | 0 | 0 | 1 | 15 | 351 | 271.2 |
sample completeness (%) | 80.0 | 26.2 | 10.5 | 60.0 | 94.9 | 100 | 100 | 32.8 |
H’ | 1.84 | 0.60 | 0.15 | 1.55 | 1.89 | 2.25 | 3.28 | 32.3 |
H’_true | 7.43 | 4.28 | 1.16 | 4.73 | 6.64 | 9.47 | 26.45 | 57.6 |
D1 | 0.72 | 0.17 | 0.04 | 0.65 | 0.77 | 0.84 | 0.96 | 24.0 |
LCBD | 0.0054 | 0.0005 | 0.0046 | 0.0050 | 0.0055 | 0.0058 | 0.0063 | 8.5 |
LCBDrepl | 0.0054 | 0.0015 | 1 × 10−5 | 0.0049 | 0.0058 | 0.0063 | 0.0079 | 27.1 |
LCBDabun | 0.0054 | 0.0046 | 0.0018 | 0.0025 | 0.0035 | 0.0062 | 0.0233 | 83.9 |
IFO | 0.0586 | 0.0432 | 0.0112 | 0.0281 | 0.0449 | 0.0761 | 0.2576 | 73.7 |
S_obs | S_rar | H’ | H’_true | D1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
model | NB2, log link | NB2, log link | GLM, gamma, identity link | beta, logit link, ML, Φ identity link | |||||||||||
D0, df | 243.5, 183 | 240.8, 183 | 26.72, 183 | 60.17, 183 | - | ||||||||||
D, df | 196.0, 180 | 196.6, 180 | 22.88, 179 | 48.89, 179 | |||||||||||
pseudo-R2 | 0.23, 0.21 | 0.21, 0.20 | 0.19, 0.20 | 0.21, 0,21 | 0.12 | ||||||||||
log-L, df | −640.0, 5 | −589.4, 5 | −170.2, 6 | −482.1, 6 | 94.2, 4 | ||||||||||
coeff. ± SE | z | p | coeff. ± SE | z | p | coeff. ± SE | t | p | coeff. ± SE | t | p | coeff. ± SE | z | p | |
φ | - | - | - | - | - | - | - | - | - | - | - | - | 7.36 ± 0.73 | 10.01 | <2 × 10−16 |
intercept | 4.17 ± 0.38 | 11.00 | <2 × 10−16 | 3.93 ± 0.34 | 11.56 | <2 × 10−16 | 3.58 ± 0.52 | 6.89 | 9 × 10−11 | −0.02 ± 0.06 | −0.34 | 0.73 | 3.66 ± 0.60 | 6.14 | 8 × 10−10 |
EC | −0.35 ± 0.10 | −3.45 | 6 × 10−4 | −0.33 ± 0.09 | −3.61 | 3 × 10−4 | −0.48 ± 0.13 | −3.79 | 2 × 10−4 | 0.050 ± 0.012 | 3.88 | 1 × 10−4 | −0.62 ± 0.17 | −3.70 | 2 × 10−4 |
Al | −0.32± 0.10 | −3.11 | 0.002 | −0.29 ± 0.09 | −3.19 | 0.001 | −0.43 ± 0.13 | −3.38 | 9 × 10−4 | 0.039 ± 0.016 | 2.43 | 0.02 | −0.57 ± 0.16 | −3.50 | 5 × 10−4 |
macrophytes | 0.025 ± 0.006 | 4.18 | 3 × 10−5 | 0.020 ± 0.005 | 3.68 | 2 × 10−4 | 0.022 ± 0.008 | 2.77 | 0.006 | 0.023 ± 0.008 | −2.77 | 0.006 | - | - | - |
wooded shore | - | - | - | - | - | - | 0.17 ± 0.09 | 1.98 | 0.05 | 0.027 ± 0.010 | −2.53 | 0.01 | - | - |
BDtotal | Repl | Repl/BDtotal | RichDiff | AbDiff | RichDiff/BDtotal | |
---|---|---|---|---|---|---|
incidence | 0.417 | 0.253 | 0.607 | 0.164 | - | 0.393 |
abundance | 0.433 | 0.321 | 0.740 | - | 0.113 | - |
LCBD | LCBD_Non-Acid | LCBDrepl | IFO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
model | beta, logit link, ML, Φ identity link | |||||||||||
pseudo-R2 | 0.16 | 0.14 | 0.09 | 0.30 | ||||||||
log-L, df | 1170, 5 | 1007, 5 | 879.6, 5 | 397, 6 | ||||||||
coeff. ± SE | z | p | coeff. ± SE | z | p | coeff. ± SE | z | p | coeff. ± SE | z | p | |
φ | 30,617 ± 3194 | 9.59 | <2 × 10−16 | 26,146 ± 2907 | 9.00 | <2 × 10−16 | 1152.5 ± 121.9 | 9.46 | <2 × 10−16 | 52.7 ± 5.6 | 9.38 | <2 × 10−16 |
intercept | −5.15 ± 0.07 | 6.14 | <2 × 10−16 | −4.79 ± 0.08 | −56.77 | <2 × 10−16 | −3.84 ± 0.35 | −10.88 | <2 × 10−16 | 0.77 ± 0.65 | 1.18 | 0.2 |
pH | −0.016 ± 0.006 | −2.82 | 0.005 | - | - | - | - | - | - | - | - | - |
Al | 0.048 ± 0.019 | 2.50 | 0.01 | - | - | - | - | - | - | - | - | - |
Ca | - | - | - | - | - | - | - | - | - | −0.32 ± 0.10 | −3.17 | 0.002 |
K | −0.07 ± 0.02 | −3.26 | 0.001 | |||||||||
Na | - | - | - | - | - | - | −0.225 ± 0.080 | −2.80 | 0.005 | - | - | - |
TON | - | - | - | - | - | - | - | - | - | −0.66 ± 0.19 | −3.55 | 4 × 10−4 |
A440 | - | - | - | 2 × 10−4 ± 7 × 10−5 | 2.92 | 0.003 | −0.0010 ± 0.0004 | −2.87 | 0.004 | - | - | - |
oxygen saturation | - | - | - | - | - | - | −0.003 ± 0.001 | −3.27 | 0.001 | - | - | - |
sand | - | - | - | - | - | - | - | - | - | 0.14 ± 0.07 | 2.11 | 0.03 |
pasture | - | - | - | - | - | - | - | - | - | −0.33 ± 0.13 | −2.58 | 0.01 |
ponds | −0.013 ± 0.004 | −2.93 | 0.003 | - | - | - | - | - | - | - | - | - |
macrophytes | - | - | - | −0.004 ± 0.001 | −3.48 | 5 × 10−4 | - | - | - | - | - | - |
Variation Component | Variable Set | df | R2 | R2adj. | p | Variables |
---|---|---|---|---|---|---|
total | local | 13 | 0.19 | 0.12 | 0.001 | pH, Al, Fe, TP, KjNmax, pGOP, CODf, CODp, A440, Dsl, emergent, submerged, wooded shore |
setting | 6 | 0.08 | 0.05 | 0.001 | clay, loam, heath, coniferous, deciduous, ponds | |
spatial | 9 | 0.10 | 0.05 | 0.001 | broad scale: MEM3, MEM4; intermediate scale: MEM6, MEM7, MEM14, MEM23; small scale: MEM39 | |
local + setting | 19 | 0.23 | 0.14 | 0.001 | ||
local + spatial | 22 | 0.25 | 0.14 | 0.001 | ||
setting + spatial | 15 | 0.15 | 0.08 | 0.001 | ||
all | 28 | 0.29 | 0.16 | 0.001 | ||
unique | local | 13 | - | 0.08 | 0.001 | |
setting | 6 | - | 0.02 | 0.001 | ||
spatial | 9 | - | 0.02 | 0.001 | ||
residuals | - | - | 0.84 | - | ||
interactions | local-spatial | 13 | - | 0.09 | 0.001 | |
local-setting | 13 | - | 0.09 | 0.001 | ||
setting-spatial | 6 | - | 0.03 | 0.001 | ||
setting-local | 6 | - | 0.02 | 0.001 | ||
spatial-local | 9 | - | 0.02 | 0.001 | ||
spatial-setting | 9 | - | 0.03 | 0.001 |
Axis 1 | Axis 2 | Axis 3 | |
---|---|---|---|
eigenvalue (λ) | 0.061 | 0.029 | 0.023 |
species–environment correlation | 0.81 | 0.68 | 0.64 |
% variance species data | 6.1 | 2.9 | 2.3 |
% variance species–environment | 38.4 | 18.3 | 14.4 |
F-ratio | 11.3 | ||
sum λ, F-ratio, p all axes | 0.159, 3.66, 0.001 |
Constrained—Marginal Effect | Partial Constrained—Unique Effect | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | pHolm | % Data | λ1/λ2 | F | p | % Data | λ1/λ2 | F | p |
pH | 0.014 | 4.7 | 0.49 | 9.0 | 0.001 | 2.0 | 0.20 | 3.5 | 0.001 |
TP | 0.014 | 3.9 | 0.39 | 7.4 | 0.001 | 1.7 | 0.18 | 3.1 | 0.001 |
Fe | 0.014 | 1.6 | 0.15 | 3.0 | 0.001 | 1.6 | 0.17 | 2.9 | 0.001 |
pGOP | 0.014 | 2.4 | 0.23 | 4.4 | 0.001 | 1.3 | 0.13 | 2.4 | 0.001 |
Dsl | 0.014 | 1.7 | 0.16 | 3.2 | 0.001 | 1.3 | 0.13 | 2.3 | 0.002 |
CODp | 0.014 | 1.8 | 0.17 | 3.4 | 0.001 | 1.2 | 0.12 | 2.0 | 0.004 |
CODf | 0.016 | 2.2 | 0.22 | 4.2 | 0.001 | 1.1 | 0.11 | 1.9 | 0.004 |
Al | 0.049 | 2.7 | 0.29 | 5.1 | 0.001 | 1.0 | 0.11 | 1.8 | 0.007 |
submerged | 0.049 | 1.8 | 0.17 | 3.3 | 0.001 | 1.0 | 0.10 | 1.7 | 0.012 |
Group | Trait Syndrome | Taxa |
---|---|---|
FG1 (32 taxa) 0.9 ± 2.1%, max. 19.4% | behaviour: periphytic, free-living, toes, size (306 ± 142 µm) morphology: mostly macrophagous, mostly virgate or forcipate, illoricate, spineless physiology: raptor, predatorial/algivorous, some parasitic, heterogonic | Albertia, Asciaporrecta, Aspelta, Cephalodella parasitica, Cupelopagis, Dicranophorus, Encentrum, Eosphora, Erignatha, Itura, Lindia, Notommata excl. FG5, Pleurotrocha, Resticula, Scaridium |
FG2 (21 taxa) 4.6 ± 12.2%, max. 83.5% | behaviour: partly planktonic, free-living, mostly toeless, size (284 ± 148 µm) morphology: microphagous, mostly malleate, loricate physiology: collector, algivorous and detritibacterivorous, some cyanobacterivorous, heterogonic | Anuraeopsis, Brachionus, Filinia, Kellicottia, Keratella, Notholca, Platyias, Trichotria |
FG3 (42 taxa) 0.4 ± 2.6%, max. 34.2% | behaviour: planktonic, free-living, usually toeless, size (336 ± 240 µm) morphology: macro- and microphagous, mostly virgate, mostly illoricate physiology: raptor, predatorial and algivorous, heterogonic | Ascomorpha, Asplanchna, Conochilus, Harringia, Ploesoma hudsoni, Polyarthra, Synchaeta, Trichocerca capucina, T. pusilla |
FG4 (15 taxa) 6.4 ± 13.0%, max. 91.9% | behaviour: periphytic, sessile, toeless, large (776 ± 549 µm) morphology: some colonial, microphagous, mostly malleoramate, tube-forming, large physiology: mostly collector, algivorous and detritibacterivorous, heterogonic | Beauchampia, Cephalodella forficula, Collotheca, Floscularia, Limnias, Ptygura, Stephanoceros |
FG5 (42 taxa) 9.0 ± 12.6%, max. 80.9% | behaviour: periphytic, free-living, toes, rather small (207 ± 85 µm) morphology: microphagous, mostly virgate, illoricate, unspined physiology: mostly raptorial, detritibacterivorous, some algivorous, heterogonic | Bryceella, Cephalodella excl. FG4, Hexarthra, Microcodon, Monommata, Notommata cf. cyrtopus, Notommata cyrtopus, Proales, Pseudencentrum, Taphrocampa, Wulfertia |
FG6 (30 taxa) 17.7 ± 17.9%, 98.1% | behaviour: periphytic, free-living, usually toes, small (138 ± 59 µm) morphology: microphagous, mostly malleate, loricate, unspined physiology: collector, detritibacterivorous, heterogonic | Colurella, Elosa, Lepadella, Lophocharis, Mytilina, Squatinella, Testudinella |
FG7 (4 taxa, 1 OTU) 37.4 ± 25.4%, max. 95.4% | behaviour: periphytic, free-living, large? (664 ± 433 µm for identified taxa) morphology: microphagous, ramate, illoricate, unspined physiology: collector, detritibacterivorous, obligate parthenogenetic * | Dissotrocha, Rotaria, unidentified bdelloids |
FG8 (40 taxa) 18.2 ± 17.0%, max. 99.8% | behaviour: periphytic, free-living, toes, small (160 ± 114 µm) morphology: microphagous, mostly submalleate, loricate, unspined physiology: collector, algivorous and detritibacterivorous, heterogonic | Euchlanis, Lecane |
FG9 (19 taxa) 5.5 ± 11.0%, max. 60.8% | behaviour: free-living, mostly periphytic, loricate, many spined, toes, average size (243 ± 127 µm) morphology: macrophagous, virgate physiology: raptor, algivorous, heterogonic | Ploesoma triacanthum, Trichocerca excl. FG3 |
Axis 1 | Axis 2 | Axis 3 | |
---|---|---|---|
eigenvalue (λ) | 0.079 | 0.038 | 0.013 |
species–environment correlation | 0.58 | 0.47 | 0.34 |
% variance species data | 7.9 | 3.8 | 1.3 |
% variance species–environment | 59.2 | 28.6 | 10.1 |
F-ratio | 15.3 | ||
sum λ, F-ratio, p all axes | 0.133, 6.9, 0.001 |
Constrained—Marginal Effect | Partial Constrained—Unique Effect | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | pHolm | % Data | λ1/λ2 | F | p | % Data | λ1/λ2 | F | p |
pGOP | 0.014 | 0.009 | 5.2 | 0.20 | 10.1 | 0.001 | 5.8 | 0.26 | 11.1 |
Ca | 0.014 | 0.009 | 3.0 | 0.11 | 5.7 | 0.002 | 3.7 | 0.14 | 7.0 |
Fe | 0.014 | 0.009 | 1.5 | 0.05 | 2.8 | 0.012 | 3.3 | 0.12 | 6.0 |
Al | 0.014 | 0.009 | 2.8 | 0.11 | 5.2 | 0.001 | 2.4 | 0.09 | 4.5 |
GRrc | GRmm | FG2 | FG5 | FG6 | FG7 | FG8 | FG9 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
model | glm, Gaussian, identity | beta regression, logit link, ml, φ identity link | ||||||||||||||||||||||
D0, df | 42.20, 183 | 10.35, 183 | ||||||||||||||||||||||
D, df | 38.09, 181 | 9.02, 180 | ||||||||||||||||||||||
pseudo-R2 | 0.10, 0.16 | 0.13, 0.12 | 0.20 | 0.09 | 0.29 | 0.05 | 0.12 | 0.12 | ||||||||||||||||
log-L, df | −116.18, 4 | 16.38, 5 | 424.7, 3 | 264.2, 4 | 158.7, 6 | 26.1, 3 | 132.9, 4 | 385.8, 5 | ||||||||||||||||
coeff. ± SE | t | p | coeff. ± SE | t | p | coeff. ± SE | z | p | coeff. ± SE | z | p | coeff. ± SE | z | p | coeff. ± SE | z | p | coeff. ± SE | z | p | coeff. ± SE | z | p | |
φ | 7.36 ± 0.96 | 7.65 | 2 × 10−14 | 7.11 ± 0.82 | 8.68 | <2 × 10−16 | 5.48 ± 0.58 | 9.46 | <2 × 10−16 | 2.93 ± 0.27 | 10.77 | <2 × 10−16 | 4.27 ± 0.44 | 9.61 | <2 × 10−16 | 7.92 ± 1.00 | 7.90 | 3 × 10−15 | ||||||
intercept | 1.61 ± 0.34 | 4.67 | 6 × 10−6 | 0.60 ± 0.19 | 3.14 | 0.002 | −5.24 ± 0.61 | −8.60 | <2 × 10−16 | 0.46 ± 0.65 | 0.70 | 0.48 | −0.15 ± 0.82 | −0.19 | 0.85 | −2.25 ± 0.61 | −3.68 | 2 × 10−4 | 2.16 ± 0.83 | 2.59 | 0.009 | −1.26 ± 0.72 | −1.74 | 0.08 |
EC | - | - | - | - | - | - | - | - | - | - | - | - | 0.63 ± 0.20 | 3.07 | 0.002 | - | - | - | −0.51 ± 0.21 | −2.44 | 0.01 | - | - | - |
Al | - | - | - | - | - | - | - | - | - | - | - | - | −0.70 ± 0.21 | −3.41 | 6 × 10−4 | - | - | - | - | - | - | −0.41 ± 0.21 | −1.95 | 0.05 |
Fe | - | - | - | 0.10 ± 0.04 | 2.94 | 0.004 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.37 ± 0.14 | −2.60 | 0.009 |
Ca | −0.25 ± 0.07 | −3.41 | 8 × 10−4 | - | - | - | - | - | - | −0.54 ± 0.14 | −3.82 | 1 × 10−4 | - | - | - | - | - | - | - | - | - | - | - | - |
CODp | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | −0.58 ± 0.17 | −3.36 | 7 × 10−4 | - | - | - |
A254 | - | - | - | - | - | - | - | - | - | - | - | - | 0.001 ± 0.206 | −3.41 | 6 × 10−4 | - | - | - | - | - | - | - | - | - |
pGOP | - | - | - | −0.13 ± 0.04 | −3.50 | 6 × 10−4 | 0.66 ± 0.16 | 4.13 | 4 × 10−5 | - | - | - | −0.55 ± 0.15 | −3.72 | 2 × 10−4 | 0.47 ± 0.17 | 2.87 | 0.004 | - | - | - | −0.43 ± 0.16 | −2.76 | 0.006 |
surface | - | - | - | −0.06 ± 0.03 | −2.36 | 0.02 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
wooded shore | −0.19 ± 0.07 | −2.71 | 0.007 | - | - | - | - | - | - | −0.27 ± 0.014 | −1.96 | 0.05 | - | - | - | - | - | - | - | - | - | - | - | - |
CWM or GR | Average | SD | Minimum | P25th | P50th | P75th | Maximum | CV |
---|---|---|---|---|---|---|---|---|
raptor | 17.0 | 16.7 | 0.0 | 4.5 | 11.0 | 25.9 | 81.5 | 101.8 |
collector | 83.0 | 16.7 | 18.5 | 74.1 | 89.0 | 95.5 | 100.0 | 496.0 |
macrophagous | 8.1 | 11.8 | 0.00 | 1.3 | 3.4 | 8.8 | 61.3 | 69.1 |
microphagous | 91.8 | 11.8 | 0.39 | 91.0 | 96.6 | 98.7 | 100.0 | 780.4 |
GRrc | 0.29 | 0.48 | 0.00 | 0.05 | 0.12 | 0.35 | 4.41 | 165.3 |
GRmm | 0.12 | 0.24 | 0.00 | 0.01 | 0.04 | 0.10 | 1.59 | 49.5 |
Lowest | Low | High | Highest | MPA Statistic | p | pHolm | WA Optimum | WA Tolerance | |
---|---|---|---|---|---|---|---|---|---|
pH Range | <7.1 | 7.1–7.7 | >7.7–8.1 | >8.1 | |||||
Bryceella stylata | X | - | - | - | 0.33 | 0.003 | 0.09 | 4.1 | 3.9–4.2 |
Keratella serrulata | X | - | - | - | 0.29 | 0.01 | 0.21 | 4.1 | 4.0–4.2 |
Lecane perpusilla | X | - | - | - | 0.35 | 0.002 | 0.07 | 4.3 | 3.8–4.9 |
Euchlanis meneta | X | - | - | - | 0.45 | <0.001 | <0.001 | 4.3 | 3.9–4.7 |
Lecane clara | X | - | - | - | 0.39 | <0.001 | <0.001 | 4.9 | 4.1–6.0 |
Lecane signifera | X | - | - | - | 0.36 | 0.001 | 0.04 | 5.1 | 4.6–5.6 |
Lecane stichaea | X | - | - | - | 0.57 | <0.001 | <0.001 | 5.2 | 4.3–6.3 |
Trichocerca bidens | X | - | - | - | 0.43 | <0.001 | <0.001 | 5.4 | 4.5–6.4 |
Synchaeta pectinata | X | - | - | - | 0.29 | 0.01 | 0.21 | 5.6 | 4.9–6.4 |
Aspelta circinator | X | - | - | - | 0.36 | 0.002 | 0.07 | 5.9 | 5.2–6.8 |
Taphrocampa annulosa | X | - | - | - | 0.49 | <0.001 | <0.001 | 6.3 | 5.6–7.0 |
Kellicottia bostoniensis | X | - | - | - | 0.42 | <0.001 | <0.001 | 6.3 | 5.9–6.7 |
Lepadella triba | X | - | - | - | 0.35 | 0.003 | 0.09 | 6.4 | 5.7–7.3 |
Conochilus hippocrepis | X | - | - | - | 0.29 | 0.02 | 0.21 | 6.4 | 6.3–6.5 |
Microcodon clavus | X | - | - | - | 0.30 | 0.007 | 0.15 | 6.5 | 5.7–7.5 |
Dicranophorus luetkeni | X | - | - | - | 0.46 | <0.001 | <0.001 | 6.5 | 6.0–7.2 |
Trichotria tetractis | X | - | - | - | 0.30 | 0.016 | 0.21 | 6.6 | 5.7–7.7 |
Ptygura sp. 1 | X | - | - | - | 0.38 | 0.004 | 0.10 | 6.7 | 6.1–7.4 |
Trichocerca intermedia | X | X | - | - | 0.33 | 0.008 | 0.17 | 5.9 | 4.7–7.4 |
Lecane ludwigii | X | X | - | - | 0.35 | 0.005 | 0.13 | 6.8 | 6.5–7.1 |
Lecane hamata | X | X | - | - | 0.58 | <0.001 | <0.001 | 6.9 | 6.4–7.5 |
Testudinella incisa | X | X | - | - | 0.32 | 0.05 | 0.23 | 7.1 | 6.7–7.6 |
Trichocerca porcellus | X | X | - | - | 0.49 | 0.04 | 0.23 | 7.2 | 6.3–8.2 |
Lepadella acuminata | X | X | - | - | 0.56 | 0.001 | 0.04 | 7.2 | 6.5–7.9 |
Beauchampia crucigera | - | X | - | - | 0.27 | 0.03 | 0.23 | 7.3 | 6.9–7.7 |
Aspelta curvidactyla | - | X | - | - | 0.31 | 0.006 | 0.14 | 7.3 | 6.9–7.8 |
Dicranophorus forcipatus | - | X | - | - | 0.38 | 0.002 | 0.07 | 7.6 | 7.3–8.0 |
Euchlanis oropha | - | X | - | - | 0.29 | 0.03 | 0.23 | 7.6 | 7.4–7.8 |
Platyias quadricornis | - | X | - | - | 0.31 | 0.01 | 0.19 | 7.6 | 7.4–7.8 |
Cephalodella gracilis | X | X | X | - | 0.51 | 0.01 | 0.21 | 5.5 | 4.3–7.2 |
Colurella uncinata | X | X | X | - | 0.52 | 0.01 | 0.19 | 7.4 | 6.9–7.9 |
Lecane bulla | X | X | X | - | 0.42 | 0.05 | 0.23 | 7.5 | 7.0–8.0 |
Mytilina mucronata | X | X | X | - | 0.50 | 0.03 | 0.23 | 7.7 | 7.1–8.3 |
Rotaria neptunia | - | X | X | - | 0.33 | 0.02 | 0.23 | 7.7 | 7.6–7.8 |
Trichotria pocillum | - | X | X | - | 0.42 | 0.001 | 0.04 | 8.0 | 7.6–8.4 |
Brachionus urceolaris | - | X | X | X | 0.39 | 0.04 | 0.23 | 7.6 | 7.4–7.9 |
Cephalodella hoodii | - | X | X | X | 0.53 | 0.03 | 0.23 | 7.7 | 7.1–8.2 |
Cephalodella megalocephala | - | X | X | X | 0.49 | 0.003 | 0.09 | 7.9 | 7.3–8.5 |
Euchlanis deflexa | - | X | X | X | 0.56 | 0.01 | 0.19 | 7.9 | 7.4–8.4 |
Brachionus quadridentatus | - | X | X | X | 0.57 | 0.006 | 0.14 | 7.9 | 7.5–8.4 |
Colurella adriatica | - | X | X | X | 0.81 | <0.001 | <0.001 | 8.0 | 7.5–8.6 |
Ptygura furcillata | - | X | X | X | 0.52 | 0.009 | 0.18 | 8.0 | 7.6–8.4 |
Cephalodella segersi | - | X | X | X | 0.61 | 0.001 | 0.04 | 8.1 | 7.4–8.8 |
Euchlanis dilatata | - | X | X | X | 0.62 | <0.001 | <0.001 | 8.1 | 7.6–8.5 |
Lecane luna | - | X | X | X | 0.45 | 0.002 | 0.07 | 8.1 | 7.6–8.7 |
Lecane flexilis | X | - | X | X | 0.59 | 0.02 | 0.23 | 6.3 | 4.8–8.3 |
Colurella colurus | - | - | X | X | 0.58 | <0.001 | <0.001 | 8.2 | 7.8–8.6 |
Kellicottia longispina | - | - | - | X | 0.29 | 0.02 | 0.23 | 8.2 | 8.1–8.4 |
Median pH | cp | P5th | P10th | P50th | P90th | P95th |
---|---|---|---|---|---|---|
fsumz− | 6.9 | 5.6 | 6.2 | 6.9 | 7.3 | 7.4 |
fsumz+ | 7.7 | 7.1 | 7.1 | 7.7 | 7.8 | 7.8 |
Lowest | Low | High | Highest | Statistic | p | pHolm | WA Optimum | WA Tolerance | |
---|---|---|---|---|---|---|---|---|---|
TP Range (µg.L−1) | <70 | 71–110 | 111–300 | >300 | |||||
Bryceella stylata | X | - | - | - | 0.33 | 0.003 | 0.02 | <0.07 | <0.07 |
Lecane ungulata | X | - | - | - | 0.36 | 0.001 | 0.01 | <0.07 | <0.07 |
Aspelta curvidactyla | X | - | - | - | 0.35 | 0.002 | 0.02 | <0.07 | <0.07 |
Microcodon clavus | X | - | - | - | 0.34 | 0.003 | 0.02 | <0.07 | <0.07 |
Notommata tripus | X | - | - | - | 0.37 | 0.001 | 0.01 | <0.07 | <0.07 |
Euchlanis meneta | X | - | - | - | 0.44 | <0.001 | 0.002 | <0.07 | <0.07 |
Lecane stichaea | X | - | - | - | 0.50 | <0.001 | 0.002 | <0.07 | <0.07 |
Trichocerca bidens | X | - | - | - | 0.35 | 0.004 | 0.02 | <0.07 | <0.07–0.080 |
Taphrocampa annulosa | X | - | - | - | 0.49 | <0.001 | 0.002 | <0.07 | <0.07–0.085 |
Lecane perpusilla | X | - | - | - | 0.32 | 0.005 | 0.02 | <0.07 | <0.07–0.101 |
Cephalodella apocolea | X | X | - | - | 0.39 | 0.001 | 0.01 | <0.07 | <0.07 |
Lecane lunaris | X | X | - | - | 0.74 | <0.001 | 0.002 | <0.07 | <0.07–0.084 |
Lecane flexilis | X | X | - | - | 0.63 | <0.001 | 0.002 | <0.07 | <0.07–0.135 |
Trichocerca tenuior | - | X | - | - | 0.36 | 0.005 | 0.02 | 0.149 | <0.07–0.402 |
Trichocerca porcellus | X | X | X | - | 0.52 | 0.002 | 0.02 | <0.07 | <0.07–0.155 |
Lecane bulla | X | X | X | - | 0.46 | 0.002 | 0.02 | 0.075 | <0.07–0.132 |
Keratella cochlearis | X | X | X | - | 0.52 | 0.002 | 0.02 | 0.094 | <0.07–0.315 |
Testudinella mucronata | - | X | X | X | 0.59 | <0.001 | 0.003 | 0.126 | <0.07–0.252 |
Brachionus quadridentatus | - | X | X | X | 0.60 | <0.001 | 0.002 | 0.263 | 0.106–0.656 |
Cephalodella segersi | - | X | X | X | 0.59 | 0.002 | 0.02 | 0.478 | 0.155–1.476 |
Mytilina mucronata | - | - | X | X | 0.56 | <0.001 | 0.002 | 0.406 | 0.165–1.002 |
Rotaria neptunia | - | - | - | X | 0.36 | 0.004 | 0.02 | 1.133 | 0.737–1.740 |
Median TP (µg.L−1) | cp | P5th | P10th | P50th | P90th | P95th |
---|---|---|---|---|---|---|
fsumz− | 6.9 | 5.6 | 6.2 | 6.9 | 7.3 | 7.4 |
fsumz+ | 7.7 | 7.1 | 7.1 | 7.7 | 7.8 | 7.8 |
Lowest | Low | High | Highest | Statistic | p | pHolm | WA Optimum | WA Tolerance | |
---|---|---|---|---|---|---|---|---|---|
pGOP Range (mg.L−1) | ≤1.23 | >1.23–3.34 | >3.34–8.95 | >8.95 | |||||
Notommata tripus | X | - | - | - | 0.31 | 0.02 | 0.19 | 0.8 | 0.2–2.7 |
Lecane stichaea | X | X | - | - | 0.40 | 0.003 | 0.05 | 0.9 | 0.4–2.4 |
Aspelta circinator | X | X | - | - | 0.31 | 0.02 | 0.21 | 1.5 | 0.8–2.8 |
Cephalodella apocolea | X | X | - | - | 0.33 | 0.03 | 0.29 | 1.8 | 0.9–3.3 |
Taphrocampa annulosa | X | X | - | - | 0.40 | 0.01 | 0.17 | 1.8 | 0.9–3.8 |
Lindia torulosa | - | X | - | - | 0.24 | 0.05 | 0.29 | 1.1 | 0.6–2.1 |
Lepadella quadricarinata | X | X | X | - | 0.53 | <0.001 | 0.005 | 0.7 | 0.2–2.0 |
Mytilina ventralis | X | X | X | - | 0.46 | 0.007 | 0.11 | 0.7 | 0.2–2.1 |
Trichocerca intermedia | X | - | X | - | 0.31 | 0.03 | 0.29 | 1.1 | 0.3–3.8 |
Lepadella triptera | X | X | X | - | 0.38 | 0.05 | 0.29 | 1.5 | 0.4–6.1 |
Trichotria pocillum | X | X | X | - | 0.39 | 0.03 | 0.29 | 1.8 | 0.9–3.8 |
Trichocerca porcellus | X | X | X | - | 0.51 | 0.002 | 0.04 | 1.6 | 0.7–3.8 |
Trichocerca rattus | X | X | X | - | 0.60 | 0.002 | 0.03 | 2.2 | 0.8–6.1 |
Colurella obtusa | X | X | X | - | 0.53 | 0.01 | 0.18 | 2.3 | 0.7–7.5 |
Trichocerca bidens | X | - | X | - | 0.34 | 0.01 | 0.15 | 2.9 | 1.5–5.7 |
Euchlanis incisa | - | X | X | - | 0.311 | 0.05 | 0.29 | 3.3 | 1.6–7.0 |
Lecane hamata | - | X | X | X | 0.51 | 0.03 | 0.29 | 4.0 | 1.7–9.2 |
Cephalodella intuta | - | X | X | X | 0.48 | 0.04 | 0.29 | 4.3 | 1.8–10.1 |
Stephanoceros fimbriatus | - | - | X | X | 0.33 | 0.05 | 0.29 | 6.5 | 3.7–11.4 |
Limnias ceratophylli | - | - | X | X | 0.49 | 0.001 | 0.03 | 9.5 | 4.0–23.0 |
Brachionus quadridentatus | - | - | X | X | 0.69 | <0.001 | 0.002 | 14.3 | 7.5–27.5 |
Brachionus urceolaris | - | - | X | X | 0.41 | 0.01 | 0.15 | 15.2 | 8.3–27.6 |
Pompholyx sulcata | - | - | - | X | 0.26 | 0.04 | 0.29 | 9.9 | 4.4–22.2 |
Brachionus calyciflorus | - | - | - | X | 0.35 | 0.001 | 0.02 | 21.8 | 12.1–39.5 |
Median pGOP | cp | P5th | P10th | P50th | P90th | P95th |
---|---|---|---|---|---|---|
fsumz− | 2.6 | 1.3 | 1.3 | 2.6 | 4.9 | 5.6 |
fsumz+ | 3.9 | 3.0 | 3.2 | 4.2 | 9.0 | 9.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denys, L.; De Smet, W.H. Diversity, Composition and Environmental Relations of Periphytic Rotifer Assemblages in Lentic Freshwater Bodies (Flanders, Lower Belgium). Diversity 2023, 15, 1214. https://doi.org/10.3390/d15121214
Denys L, De Smet WH. Diversity, Composition and Environmental Relations of Periphytic Rotifer Assemblages in Lentic Freshwater Bodies (Flanders, Lower Belgium). Diversity. 2023; 15(12):1214. https://doi.org/10.3390/d15121214
Chicago/Turabian StyleDenys, Luc, and Willem H. De Smet. 2023. "Diversity, Composition and Environmental Relations of Periphytic Rotifer Assemblages in Lentic Freshwater Bodies (Flanders, Lower Belgium)" Diversity 15, no. 12: 1214. https://doi.org/10.3390/d15121214
APA StyleDenys, L., & De Smet, W. H. (2023). Diversity, Composition and Environmental Relations of Periphytic Rotifer Assemblages in Lentic Freshwater Bodies (Flanders, Lower Belgium). Diversity, 15(12), 1214. https://doi.org/10.3390/d15121214