Does Ungulate Herbivory Translate into Diversity of Woody Plants? A Long-Term Study in a Montane Forest Ecosystem in Austria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Method
2.3. Data Preparation
2.4. Diversity Indices and Statistical Analyses
3. Results
3.1. Tree Species Diversity
3.2. Tree Species Diversity of Top Height Individuals
3.3. Height Class Diversity of Tree Species
3.4. Shrub Species Diversity
3.5. Tree Height
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanley, M. Seedling herbivory, community composition and plant life history traits. Perspect. Plant Ecol. 1998, 1, 191–205. [Google Scholar] [CrossRef]
- Munier, A.; Hermanutz, L.; Jacobs, J.D.; Lewis, K. The interacting effects of temperature, ground disturbance, and herbivory on seedling establishment: Implications for treeline advance with climate warming. Plant Ecol. 2010, 210, 19–30. [Google Scholar] [CrossRef]
- Massei, G.; Hartley, S.E.; Bacon, P.J. Chemical and morphological variation of Mediterranean woody evergreen species: Do plants respond to ungulate browsing? J. Veg. Sci. 2000, 11, 1–8. [Google Scholar] [CrossRef]
- Crawley, M.J.; Harral, J.E. Scale dependence in plant biodiversity. Science 2001, 291, 864–868. [Google Scholar] [CrossRef]
- Feber, R.E.; Brereton, T.M.; Warren, M.S.; Oates, M. The impacts of deer on woodland butterflies: The good, the bad and the complex. Forestry 2001, 74, 271–276. [Google Scholar] [CrossRef]
- Suominen, O.; Persson, I.-L.; Danell, K.; Bergström, R.; Pastor, J. Impact of simulated moose densities on abundance and richness of vegetation, herbivorous and predatory arthropods along a productivity gradient. Ecography 2008, 31, 636–645. [Google Scholar] [CrossRef]
- Wiens, J.J.; Lapoint, R.T.; Whiteman, N.K. Herbivory increases diversification across insect clades. Nat. Commun. 2015, 6, 8370. [Google Scholar] [CrossRef] [Green Version]
- Lilleeng, M.S.; Hegland, S.J.; Rydgren, K.; Moe, S.R. Ungulate herbivory reduces abundance and fluctuations of herbivorous insects in a boreal old-growth forest. Basic Appl. Ecol. 2021, 56, 11–21. [Google Scholar] [CrossRef]
- Burney, O.T.; Jacobs, D.F. Ungulate herbivory of regenerating conifers in relation to foliar nutrition and terpenoid production. Forest Ecol. Manag. 2011, 262, 1834–1845. [Google Scholar] [CrossRef]
- Rhodes, A.C.; Anderson, V.; St Clair, S.B. Ungulate herbivory alters leaf functional traits and recruitment of regenerating aspen. Tree Physiol. 2017, 37, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Kohl, K.D.; Connelly, J.W.; Dearing, M.D.; Forbey, J.S. Microbial detoxification in the gut of a specialist avian herbivore, the Greater Sage-Grouse. FEMS Microbiol. Lett. 2016, 363, fnw144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Provenza, F.D.; Pfister, J.A.; Cheney, C.D. Mechanisms of learning in diet selection with reference to phytotoxicosis in herbivores. J. Range Manage. 1992, 45, 36–45. [Google Scholar] [CrossRef]
- Provenza, F.D.; Villalba, J.J.; Dziba, L.E.; Atwood, S.B.; Banner, R.E. Linking herbivore experience, varied diets, and plant biochemical diversity. Small Ruminant Res. 2003, 49, 257–274. [Google Scholar] [CrossRef]
- Parikh, G.L.; Forbey, J.S.; Robb, B.; Peterson, R.O.; Vucetich, L.M.; Vucetich, J.A. The influence of plant defensive chemicals, diet composition, and winter severity on the nutritional condition of a free-ranging, generalist herbivore. Oikos 2017, 126, 3359. [Google Scholar] [CrossRef]
- Siipilehto, J.; Heikkilä, R. The effect of moose browsing on the height structure of Scots pine saplings in a mixed stand. Forest Ecol. Manag. 2005, 205, 117–126. [Google Scholar] [CrossRef]
- Cook-Patton, S.C.; LaForgia, M.; Parker, J.D. Positive interactions between herbivores and plant diversity shape forest regeneration. Proc. Biol. Sci. 2014, 281, 20140261. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, K.; Tatsumi, S.; Kitagawa, R.; Mori, A.S. Deer herbivory affects the functional diversity of forest floor plants via changes in competition-mediated assembly rules. Ecol. Res. 2016, 31, 569–578. [Google Scholar] [CrossRef] [Green Version]
- Boulanger, V.; Baltzinger, C.; Saïd, S.; Ballon, P.; Picard, J.-F.; Dupouey, J.-L. Ranking temperate woody species along a gradient of browsing by deer. Forest Ecol. Manag. 2009, 258, 1397–1406. [Google Scholar] [CrossRef]
- Fenner, M.; Hanley, M.E.; Lawrence, R. Comparison of seedling and adult palatability in annual and perennial plants. Funct. Ecol. 1999, 13, 546–551. [Google Scholar] [CrossRef]
- Coley, P.D.; Barone, J.A. Herbivory and plant defences in tropical forests. Annu. Rev. Ecol. Syst. 1996, 27, 305–335. [Google Scholar] [CrossRef]
- Crawley, M.J. Plant-herbivore dynamics. In Plant Ecol; Crawley, M.J., Ed.; Blackwell Sciences Ltd.: Oxford, UK, 1997; pp. 401–474. [Google Scholar]
- Renaud, P.C.; Verheyden-Tixier, H.; Dumont, B. Damage to saplings by red deer (Cervus elaphus): Effect of foliage height and structure. Forest Ecol. Manag. 2003, 181, 31–37. [Google Scholar] [CrossRef]
- Sirot, E.; Blanchard, P.; Loison, A.; Pays, O. How vigilance shapes the functional response of herbivores. Funct. Ecol. 2021, 35, 1491–1500. [Google Scholar] [CrossRef]
- Jiang, Z.; Hudson, R.J. Optimal grazing of wapiti (Cervus elaphus) on grassland: Patch and feeding station departure rules. Evol. Ecol. 1993, 7, 488–498. [Google Scholar] [CrossRef]
- Dunham, K.M. The feeding behaviour of a tame impala Aepyceros melampus. Afr. J. Ecol. 1980, 18, 253–257. [Google Scholar] [CrossRef]
- Shipley, L.A.; Spalinger, D.E. Mechanics of browsing in dense food patches: Effects of plant and animal morphology on intake rate. Can. J. Zool. 1992, 70, 1743–1752. [Google Scholar] [CrossRef]
- Visscher, D.R.; Merrill, E.H.; Fortin, D.; Frair, J.L. Estimating woody browse availability for ungulates at increasing snow depths. Forest Ecol. Manag. 2006, 222, 348–354. [Google Scholar] [CrossRef]
- Krueger, L.M.; Peterson, C.J.; Royo, A.; Carson, W.P. Evaluating relationships among tree growth rate, shade tolerance, and browse tolerance following disturbance in an eastern deciduous forest. Can. J. Forest Res. 2009, 39, 2460–2469. [Google Scholar] [CrossRef]
- Walters, M.B.; Farinosi, E.J.; Willis, J.L. Deer browsing and shrub competition set sapling recruitment height and interact with light to shape recruitment niches for temperate forest tree species. Forest Ecol. Manag. 2020, 467, 118134. [Google Scholar] [CrossRef]
- Nopp-Mayr, U.; Reimoser, S.; Reimoser, F.; Sachser, F.; Obermair, L.; Gratzer, G. Analyzing long-term impacts of ungulate herbivory on forest-recruitment dynamics at community and species level contrasting tree densities versus maximum heights. Sci. Rep. 2020, 10, 20274. [Google Scholar] [CrossRef]
- Hambäck, P.A.; Beckerman, A.P. Herbivory and plant resource competition: A review of two interacting interactions. Oikos 2003, 101, 26–37. [Google Scholar] [CrossRef]
- Lertzman, K.P. Patterns of gap-phase replacement in a subalpine, old-growth forest. Ecology 1992, 73, 657–669. [Google Scholar] [CrossRef]
- Kneeshaw, D.D.; Bergeron, Y. Canopy gap characteristsics and tree replacement in the southeastern boreal forest. Ecology 1998, 79, 783–794. [Google Scholar] [CrossRef]
- Wakeling, J.L.; Staver, A.C.; Bond, W.J. Simply the best: The transition of savanna saplings to trees. Oikos 2011, 120, 1448–1451. [Google Scholar] [CrossRef]
- Reimoser, F.; Reimoser, S.; Zsak, K. Long-term impact of wild ungulates on natural forest regeneration in the Donau-Auen National Park, Austria. Acta ZooBot Austria 2022, 158, 97–127. [Google Scholar]
- Heikkilä, R.; Härkönen, S. Moose browsing in young Scots pine stands in relation to forest management. Forest Ecol. Manag. 1996, 88, 179–186. [Google Scholar] [CrossRef]
- Kuijper, D.P.J.; Cromsigt, J.P.G.M.; Jędrzejewska, B.; Miścicki, S.; Churski, M.; Jędrzejewski, W.; Kweczlich, I. Bottom-up versus top-down control of tree regeneration in the Białowieża Primeval Forest, Poland. J. Ecol. 2010, 98, 888–899. [Google Scholar] [CrossRef]
- Kupferschmid, A.D.; Wasem, U.; Bugmann, H. Light availability and ungulate browsing determine growth, height and mortality of Abies alba saplings. Forest Ecol. Manag. 2014, 318, 359–369. [Google Scholar] [CrossRef]
- Charles, G.K.; Porensky, L.M.; Riginos, C.; Veblen, K.E.; Young, T.P. Herbivore effects on productivity vary by guild: Cattle increase mean productivity while wildlife reduce variability. Ecol. Appl. 2017, 27, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Faison, E.K.; DeStefano, S.; Foster, D.R.; Motzkin, G.; Rapp, J.M. Ungulate browsers promote herbaceous layer diversity in logged temperate forests. Ecol. Evol. 2016, 6, 4591–4602. [Google Scholar] [CrossRef] [Green Version]
- Casabon, C.; Pothier, D. Browsing of tree regeneration by white-tailed deer in large clearcuts on Anticosti Island, Quebec. Forest Ecol. Manag. 2007, 253, 112–119. [Google Scholar] [CrossRef]
- Bellingham, P.J.; Allan, C.N. Forest regeneration and the influences of white-tailed deer (Odocoileus virginianus) in cool temperate New Zealand rain forests. Forest Ecol. Manag. 2003, 175, 71–86. [Google Scholar] [CrossRef]
- Castleberry, S.B.; Ford, W.M.; Miller, K.V.; Smith, W.P. Infuences of herbivory and canopy opening size on forest regeneration in a southern bottomland hardwood forest. Forest Ecol. Manag. 2000, 131, 57–64. [Google Scholar] [CrossRef]
- McGarvey, J.C.; Bourg, N.A.; Thompson, J.R.; McShea, W.J.; Shen, X. Effects of twenty years of deer exclusion on woody vegetation at three life-history stages in a mid-atlantic temperate deciduous forest. Northeast. Nat. 2013, 20, 451–468. [Google Scholar] [CrossRef]
- Filazzola, A.; Tanentzap, A.J.; Bazely, D.R. Estimating the impacts of browsers on forest understories using a modified index of community composition. Forest Ecol. Manag. 2014, 313, 10–16. [Google Scholar] [CrossRef]
- Boulanger, V.; Dupouey, J.L.; Archaux, F.; Badeau, V.; Baltzinger, C.; Chevalier, R.; Corcket, E.; Dumas, Y.; Forgeard, F.; Marell, A.; et al. Ungulates increase forest plant species richness to the benefit of non-forest specialists. Glob. Chang. Biol. 2018, 24, e485–e495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manso, R.; McLean, J.P.; Arcangeli, C.; Matthews, R. Dynamic top height models for several major forest tree species in Great Britain. Forestry 2021, 94, 181–192. [Google Scholar] [CrossRef]
- Adams, T.P.; Purves, D.W.; Pacala, S.W. Understanding height-structured competition in forests: Is there an R* for light? Proc. Biol. Sci. 2007, 274, 3039–3047. [Google Scholar] [CrossRef] [PubMed]
- Matisons, R.; Kārkliņa, A.; Krišāns, O.; Elferts, D.; Jansons, Ā. Species composition modulates seedling competitiveness of temperate tree species under hemiboreal conditions. Forest Ecol. Manag. 2020, 478, 118499. [Google Scholar] [CrossRef]
- Chao, A.; Kubota, Y.; Zelený, D.; Chiu, C.H.; Li, C.F.; Kusumoto, B.; Yasuhara, M.; Thorn, S.; Wei, C.L.; Costello, M.J.; et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 2020, 35, 292–314. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Colwell, R.K.; Chao, A.; Gotelli, N.J.; Lin, S.Y.; Mao, C.X.; Chazdon, R.L.; Longino, J.T. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 2012, 5, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Chao, A.; Jost, L. Estimating diversity and entropy profiles via discovery rates of new species. Methods Ecol. Evol. 2015, 6, 873–882. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A.; McInerny, G. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot 2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; p. 213. [Google Scholar]
- Kassambara, A. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. R Package Version 0.4.0. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 30 November 2022).
- Schowalter, T.D. Insect herbivore effects on forest ecosystem services. J. Sustain. Forest. 2012, 31, 518–536. [Google Scholar] [CrossRef]
- Bagchi, R.; Gallery, R.E.; Gripenberg, S.; Gurr, S.J.; Narayan, L.; Addis, C.E.; Freckleton, R.P.; Lewis, O.T. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 2014, 506, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, D.B.; Asner, G.P.; Martin, R.E.; Silva Espejo, J.E.; Huasco, W.H.; Farfan Amezquita, F.F.; Carranza-Jimenez, L.; Galiano Cabrera, D.F.; Baca, L.D.; Sinca, F.; et al. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecol. Lett. 2014, 17, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Gill. A review of damage by mammals in north temperature forests: 3. Impact on trees and forests. Forestry 1992, 65, 363–388. [Google Scholar] [CrossRef] [Green Version]
- Iason, G.R.; Duncan, A.J.; Hartley, S.E.; Staines, B.W. Feeding behaviour of red deer (Cervus elaphus) on sitka spruce (Picea sitchensis): The role of carbon-nutrient balance. Forest Ecol. Manag. 1996, 88, 121–129. [Google Scholar] [CrossRef]
- Pastor, J.; Naiman, R.J. Selective foraging and ecosystem processes in boreal forests. Am. Nat. 1992, 139, 690–705. [Google Scholar] [CrossRef]
- Augustine, D.J.; McNaughton, S.J. Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. J. Wildlife Manage. 1998, 62, 1165–1183. [Google Scholar] [CrossRef]
- Jactel, H.; Brockerhoff, E.G. Tree diversity reduces herbivory by forest insects. Ecol. Lett. 2007, 10, 835–848. [Google Scholar] [CrossRef] [PubMed]
- Nichols, R.V.; Cromsigt, J.P.; Spong, G. Using eDNA to experimentally test ungulate browsing preferences. SpringerPlus 2015, 4, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooney, T.P.; Buttenschøn, R.; Madsen, P.; Olesen, C.R.; Royo, A.A.; Stout, S.L. Integrating ungulate herbivory into forest landscape restoration. In Restoration of Boreal and Temperate Forests; Stanturf, J.A., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 69–83. [Google Scholar]
- de Calesta, D.S.; Stout, S.L. Relative deer density and sustainability: A conceptual framework for integrating deer management with ecosystem management. Wildlife Soc. B. 1997, 25, 252–258. [Google Scholar]
- Bödeker, K.; Ammer, C.; Knoke, T.; Heurich, M. Determining statistically robust changes in ungulate browsing pressure as a basis for adaptive wildlife management. Forests 2021, 12, 1030. [Google Scholar] [CrossRef]
- Robinson, B.G.; Merrill, E.H. The influence of snow on the functional response of grazing ungulates. Oikos 2012, 121, 28–34. [Google Scholar] [CrossRef]
- Jenkins, K.J.; Wright, R.G. Dietary niche relationships among cervids relative to winter snowpack in northwestern Montana USA. Can. J. Zool. 1987, 65, 1397–1401. [Google Scholar] [CrossRef]
- Cook, J.G. Nutrition and Food. In North American Elk: Ecology and Management; Toweill, D.E., Thomas, J.W., Eds.; Smithsonian Institution Press: Washington, DC, USA, 2002; pp. 259–349. [Google Scholar]
- Ramsey, K.J.; Krueger, W.C. Grass-legume seeding to improve winter forage for roosevelt elk: A literature review. Corvallis Or. 1986, 28, 763. [Google Scholar]
- Hansen, R.M.; Clark, R.C. Foods of elk and other ungulates at low elevations in northwestern Colorado. J. Wildlife Manage. 1977, 41, 76–80. [Google Scholar] [CrossRef]
- Nelson, J.R.; Leege, T.A. Nutritional requirements and food habits. In Elk of North America: Ecology and Management; Thomas, J.W., Toweill, D.E., Eds.; Stackpole Books: Harrisburg, PA, USA, 1982; pp. 323–367. [Google Scholar]
- Shipley, L.A.; Forbey, J.S.; Moore, B.D. Revisiting the dietary niche: When is a mammalian herbivore a specialist? Integr. Comp. Biol. 2009, 49, 274–290. [Google Scholar] [CrossRef] [Green Version]
- Pekin, B.K.; Wisdom, M.J.; Endress, B.A.; Naylor, B.J.; Parks, C.G. Ungulate browsing maintains shrub diversity in the absence of episodic disturbance in seasonally-arid conifer forest. PLoS ONE 2014, 9, e86288. [Google Scholar] [CrossRef] [PubMed]
- Sabo, A.E. Impacts of browsing and grazing ungulates on plant characteristics and dynamics. In The Ecology of Browsing and Grazing II; Gordon, I., Prins, H., Eds.; Springer: Cham, Switzerland, 2019; pp. 259–276. [Google Scholar]
- Johnston, D.B.; Cooper, D.J.; Hobbs, N.T. Elk browsing increases aboveground growth of water-stressed willows by modifying plant architecture. Oecologia 2007, 154, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Kupferschmid, A.D.; Greilsamer, R.; Brang, P.; Bugmann, H. Assessment of the impact of ungulate browsing on tree regeneration. In Animal Nutrition—Annual Volume 2022; Ronquillo, M.G., Ed.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
Year | Control Plots | Exclosure Plots | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Median | n | Min | Max | Median | n | |
9 | 1 | 7 | 5 | 13 | 3 | 9 | 6 | 13 |
18 | 2 | 7 | 4 | 13 | 3 | 8 | 6 | 13 |
30 | 3 | 7 | 4 | 13 | 3 | 7 | 5 | 13 |
Control Plots | Exclosure Plots | |||||
---|---|---|---|---|---|---|
Year | q = 0 | q = 1 | q = 2 | q = 0 | q = 1 | q = 2 |
Asymptotic diversity estimate (mean ± SE) | ||||||
9 | 10.92 ± 1.21 | 8.85 ± 0.52 | 8.14 ± 0.52 | 16.15 ± 4.43 | 9.94 ± 0.85 | 8.51 ± 0.53 |
18 | 9.46 ± 1.41 | 8.01 ± 0.56 | 7.36 ± 0.49 | 22.23 ± 6.29 | 10.53 ± 1.06 | 8.66 ± 0.55 |
30 | 9.46 ± 1.42 | 7.97 ± 0.51 | 7.36 ± 0.43 | 15.15 ± 4.35 | 9.02 ± 0.86 | 7.76 ± 0.49 |
Non-asymptotic point diversity estimate [95% confidence interval: lower; upper] | ||||||
9 | 9.31 [7.5; 11.1] | 8.09 [7.1; 9.1] | 7.49 [6.6; 8.3] | 12.13 [6.5; 17.7] | 9.24 [7.5; 10.9] | 8.22 [7.2; 9.3] |
18 | 8.29 [6.3; 10.3] | 7.29 [6.2; 8.4] | 6.72 [5.8; 7.6] | 16.80 [7.5; 26.2] | 10.00 [7.7; 12.3] | 8.51 [7.3; 9.7] |
30 | 8.19 [6.3; 10.0] | 7.28 [6.3; 8.3] | 6.77 [6.0; 7.6] | 11.35 [5.5; 17.2] | 8.44 [6.8; 10.1] | 7.54 [6.5; 8.6] |
Control Plots | Exclosure Plots | |||||
---|---|---|---|---|---|---|
Year | q = 0 | q = 1 | q = 2 | q = 0 | q = 1 | q = 2 |
Asymptotic diversity estimate (mean ± SE) | ||||||
18 | 6.24 ± 1.85 | 4.22 ± 0.64 | 2.98 ± 0.48 | 16.55 ± 5.41 | 10.62 ± 1.08 | 8.41 ± 0.82 |
Non-asymptotic point diversity estimate [95% confidence interval: lower; upper] | ||||||
18 | 6.14 [2.6; 9.6] | 3.94 [2.8; 5.1] | 2.86 [2.0; 3.7] | 15.99 [3.4; 28.6] | 10.22 [7.9; 12.5] | 7.11 [6.6; 9.6] |
Year | Control Plots | Exclosure Plots | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Median | n | Min | Max | Median | n | |
9 | 2 | 7 | 4 | 13 | 3 | 7 | 5 | 13 |
18 | 2 | 8 | 4 | 13 | 4 | 10 | 7 | 13 |
30 | 4 | 10 | 6 | 13 | 4 | 13 | 9 | 13 |
Control Plots | Exclosure Plots | |||||
---|---|---|---|---|---|---|
Year | q = 0 | q = 1 | q = 2 | q = 0 | q = 1 | q = 2 |
Asymptotic diversity estimate (mean ± SE) | ||||||
9 | 8.92 ± 1.46 | 6.34 ± 0.48 | 5.48 ± 0.39 | 11.85 ± 2.31 | 8.54 ± 0.66 | 7.65 ± 0.47 |
18 | 14.77 ± 3.44 | 10.49 ± 0.99 | 8.87 ± 0.83 | 20.15 ± 4.76 | 14.47 ± 1.07 | 13.20 ± 0.76 |
30 | 30.38 ± 10.04 | 20.51 ± 2.14 | 15.23 ± 1.60 | 44.54 ± 10.00 | 31.14 ± 2.54 | 25.17 ± 1.99 |
Non-asymptotic point diversity estimate [95% confidence interval: lower; upper] | ||||||
9 | 7.65 [5.8; 9.5] | 5.96 [5.1; 6.8] | 5.33 [4.6; 6.0] | 9.40 [6.4; 12.4] | 7.92 [6.6; 9.2] | 7.27 [6.3; 8.2] |
18 | 12.67 [8.0; 17.4] | 9.71 [7.9; 11.5] | 8.37 [7.0; 9.7] | 15.27 [9.7; 20.8] | 13.14 [11.0; 15.3] | 12.15 [10.6; 13.7] |
30 | 27.64 [14.2; 41.0] | 19.03 [15.1; 23.0] | 14.33 [11.8; 16.8] | 39.55 [21.0; 58.1] | 29.00 [23.7; 34.3] | 23.44 [20.0; 26.8] |
Year | Control Plots | Exclosure Plots | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Median | n | Min | Max | Median | n | |
9 | 1 | 4 | 2 | 13 | 1 | 4 | 3 | 13 |
18 | 1 | 8 | 2 | 13 | 1 | 4 | 2 | 13 |
30 | 1 | 8 | 2 | 11 | 1 | 7 | 2 | 11 |
Control Plots | Exclosure Plots | |||||
---|---|---|---|---|---|---|
Year | q = 0 | q = 1 | q = 2 | q = 0 | q = 1 | q = 2 |
Asymptotic diversity estimate (mean ± SE) | ||||||
9 | 16.77 ± 7.81 | 11.14 ± 2.31 | 8.26 ± 1.54 | 14.15 ± 4.68 | 10.03 ± 1.58 | 8.89 ± 1.21 |
18 | 17.77 ± 7.51 | 12.61 ± 2.40 | 9.86 ± 1.89 | 13.69 ± 5.52 | 9.72 ± 1.79 | 7.76 ± 1.35 |
30 | 25.70 ± 11.90 | 18.65 ± 3.78 | 13.47 ± 2.65 | 14.84 ± 6.21 | 12.20 ± 2.02 | 9.80 ± 1.63 |
Non-asymptotic point diversity estimate [95% confidence interval: lower; upper] | ||||||
9 | 13.24 [2.8; 23.6] | 9.41 [5.0; 13.8] | 7.30 [4.7; 9.9] | 9.27 [4.2; 14.4] | 7.94 [5.3; 10.6] | 7.17 [5.2; 9.1] |
18 | 14.00 [4.1; 23.9] | 10.56 [5.8; 15.3] | 8.50 [5.5; 11.5] | 10.83 [3.0; 18.7] | 8.12 [4.8, 11.4] | 6.73 [4.7; 8.8] |
30 | 21.32 [4.5; 38.1] | 15.87 [8.7; 23.1] | 11.69 [7.5; 15.9] | 12.95 [4.3, 21.7] | 10.07 [6.4; 13.8] | 8.18 [5.7; 10.6] |
Year | Control Plots | Exclosure Plots | |||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Median | n | Min | Max | Median | n | p-Value | |
9 | 5 | 225 | 18 | 259 | 5 | 325 | 33 | 292 | <0.001 |
18 | 5 | 475 | 33 | 225 | 5 | 725 | 145 | 265 | <0.001 |
30 | 5 | 1575 | 55 | 168 | 5 | 1825 | 180 | 210 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nopp-Mayr, U.; Schöll, E.M.; Sachser, F.; Reimoser, S.; Reimoser, F. Does Ungulate Herbivory Translate into Diversity of Woody Plants? A Long-Term Study in a Montane Forest Ecosystem in Austria. Diversity 2023, 15, 165. https://doi.org/10.3390/d15020165
Nopp-Mayr U, Schöll EM, Sachser F, Reimoser S, Reimoser F. Does Ungulate Herbivory Translate into Diversity of Woody Plants? A Long-Term Study in a Montane Forest Ecosystem in Austria. Diversity. 2023; 15(2):165. https://doi.org/10.3390/d15020165
Chicago/Turabian StyleNopp-Mayr, Ursula, Eva Maria Schöll, Frederik Sachser, Susanne Reimoser, and Friedrich Reimoser. 2023. "Does Ungulate Herbivory Translate into Diversity of Woody Plants? A Long-Term Study in a Montane Forest Ecosystem in Austria" Diversity 15, no. 2: 165. https://doi.org/10.3390/d15020165
APA StyleNopp-Mayr, U., Schöll, E. M., Sachser, F., Reimoser, S., & Reimoser, F. (2023). Does Ungulate Herbivory Translate into Diversity of Woody Plants? A Long-Term Study in a Montane Forest Ecosystem in Austria. Diversity, 15(2), 165. https://doi.org/10.3390/d15020165