Amphibian Dispersal Traits Not Impacted by Triclopyr Exposure during the Juvenile Stage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Rearing of Osteopilus septentrionalis
2.2. Experimental Design
2.3. Triclopyr Exposures and Hormone Collection
2.4. Behavioral Experiments
2.5. Corticosterone Extractions and Quantification
2.6. Statistical Analyses
3. Results
3.1. Corticosterone Production
3.2. Feeding Behavior
3.3. Hopping Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Relyea, R.A. The lethal impact of roundup on aquatic and terrestrial amphibians. Ecol. Appl. 2005, 15, 1118–1124. [Google Scholar]
- Moutinho, M.F.; de Almeida, E.A.; Espíndola, E.L.G.; Daam, M.A.; Schiesari, L. Herbicides employed in sugarcane plantations have lethal and sublethal effects to larval Boana pardalis (Amphibia, Hylidae). Ecotoxicology 2020, 29, 1043–1051. [Google Scholar] [CrossRef]
- Wake, D.B. Declining amphibian populations. Science 1991, 253, 860. [Google Scholar] [CrossRef]
- Alford, R.A.; Richards, S.J. Global amphibian declines: A problem in applied ecology. Annu. Rev. Ecol. Evol. Syst. 1999, 30, 133–165. [Google Scholar]
- Blaustein, A.R.; Kiesecker, J.M. Complexity in conservation: Lessons from the global decline of amphibian populations. Ecol. Lett. 2002, 5, 597–608. [Google Scholar] [CrossRef]
- Boone, M.D.; Semlitsch, R.D.; Little, E.E.; Doyle, M.C. Multiple stressors in amphibian communities: Effects of chemical contamination, bullfrogs, and fish. Ecol. Appl. 2007, 17, 291–301. [Google Scholar]
- Hussain, Q.A.; Ashok, K.P. Global amphibian declines: A review. Int. J. Biodivers. Conserv. 2012, 4, 348–357. [Google Scholar]
- Boone, M.D.; Bridges, C.M. Effects of carbaryl on green frog (Rana clamitans) tadpoles: Timing of exposure versus multiple exposures. Environ. Toxicol. Chem. 2003, 22, 2695–2702. [Google Scholar] [CrossRef]
- Rohr, J.R.; Raffel, T.R.; Halstead, N.T.; McMahon, T.A.; Johnson, S.A.; Boughton, R.K.; Martin, L.B. Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality. Proc. R. Soc. B Biol. Sci. 2013, 280, 20131502. [Google Scholar] [CrossRef] [PubMed]
- Freitas, J.S.; Girotto, L.; Goulart, B.V.; de Oliveira Gonçalves Alho, L.; Gebara, R.C.; Montagner, C.C.; Schiesari, L.; Espíndola, E.L.G. Effects of 2,4-D-based herbicide (DMA® 806) on sensitivity, respiration rates, energy reserves and behavior of tadpoles. Ecotoxicol. Environ. Saf. 2019, 182, 109446. [Google Scholar] [CrossRef]
- Pavan, F.A.; Samojeden, C.G.; Rutkoski, C.F.; Folador, A.; Da Fré, S.P.; Müller, C.; Hartmann, P.A.; Hartmann, M.T. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. Environ. Toxicol. Pharmacol. 2021, 85, 103637. [Google Scholar]
- Relyea, R.A. New effects of Roundup on amphibians: Predators reduce herbicide mortality; herbicides induce antipredator morphology. Ecol. Appl. 2012, 22, 634–647. [Google Scholar] [CrossRef]
- Gabor, C.R.; Fisher, M.C.; Bosch, J. Elevated Corticosterone Levels and Changes in Amphibian Behavior Are Associated with Batrachochytrium dendrobatidis (Bd) Infection and Bd Lineage. PLoS ONE 2015, 10, e0122685. [Google Scholar] [CrossRef]
- McMahon, T.A.; Halstead, N.T.; Johnson, S.; Raffel, T.R.; Roman, J.M.; Crumrine, P.W.; Boughton, R.K.; Martin, L.B.; Rohr, J.R. The fungicide chlorothalonil is nonlinearly associated with corticosterone levels, immunity, and mortality in amphibians. Environ. Health Perspect. 2011, 119, 1098–1103. [Google Scholar] [CrossRef]
- McMahon, T.A.; Boughton, R.K.; Martin, L.B.; Rohr, J. Exposure to the herbicide atrazine nonlinearly affects tadpole corticosterone levels. J. Herpetol. 2017, 51, 270–273. [Google Scholar] [CrossRef]
- Burraco, P.; Gomez-Mestre, I. Physiological stress responses in amphibian larvae to multiple stressors reveal marked anthropogenic effects even below lethal levels. Physiol. Biochem. Zool. 2016, 89, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Adelizzi, R.; Portmann, J.; Van Meter, R. Effect of Individual and Combined Treatments of Pesticide, Fertilizer, and Salt on Growth and Corticosterone Levels of Larval Southern Leopard Frogs (Lithobates sphenocephala). Arch. Environ. Contam. Toxicol. 2019, 77, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Van Meter, R.J.; Adelizzi, R.; Glinski, D.A.; Henderson, W.M. Agrochemical mixtures and amphibians: The combined effects of pesticides and fertilizer on stress, acetylcholinesterase activity, and bioaccumulation in a terrestrial environment. Environ. Toxicol. Chem. 2019, 38, 1052–1061. [Google Scholar] [CrossRef]
- Mann, R.M.; Bidwell, J.R. The toxicity of glyphosate and several glyphosate formulations to four species of southwestern Australian frogs. Arch. Environ. Contam. Toxicol. 1999, 36, 193–199. [Google Scholar] [CrossRef]
- Allran, J.W.; Karasov, W.H. Effects of atrazine on embryos, larvae, and adults of anuran amphibians. Environ. Toxicol. Chem. 2001, 20, 769–775. [Google Scholar] [CrossRef]
- Hayes, T.B.; Collins, A.; Lee, M.; Mendoza, M.; Noriega, N.; Stuart, A.A.; Vonk, A. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc. Natl. Acad. Sci. USA 2002, 99, 5476–5480. [Google Scholar] [CrossRef]
- Wojtaszek, B.F.; Staznik, B.; Chartrand, D.T.; Stephenson, G.R.; Thompson, D.G. Effects of Vision herbicide on mortality, avoidance response, and growth of amphibian larvae in two forest wetlands. Environ. Toxicol. Chem. 2004, 23, 832–842. [Google Scholar] [CrossRef]
- Wagner, N.; Reichenbecher, W.; Teichmann, H.; Tappeser, B.; Lötters, S. Questions concerning the potential impact of glypho-sate-based herbicides on amphibians. Environ. Toxicol. Chem. 2013, 32, 1688–1700. [Google Scholar]
- Sievers, M.; Hale, R.; Parris, K.M.; Melvin, S.D.; Lanctôt, C.M.; Swearer, S.E. Contaminant-induced behavioural changes in amphibians: A meta-analysis. Sci. Total Environ. 2019, 693, 133570. [Google Scholar]
- Brühl, C.A.; Pieper, S.; Weber, B. Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides. Environ. Toxicol. Chem. 2011, 30, 2465–2472. [Google Scholar] [CrossRef]
- Brühl, C.A.; Schmidt, T.; Pieper, S.; Alscher, A. Terrestrial pesticide exposure of amphibians: An underestimated cause of global decline? Sci. Rep. 2013, 3, 1135. [Google Scholar] [CrossRef] [PubMed]
- Hels, T.; Nachman, G. Simulating viability of a spadefoot toad Pelobates fuscus metapopulation in a landscape fragmented by a road. Ecography 2002, 25, 730–744. [Google Scholar] [CrossRef]
- Vonesh, J.R.; De la Cruz, O. Complex life cycles and density dependence: Assessing the contribution of egg mortality to amphibian declines. Oecologia 2002, 133, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Salice, C.J. Multiple stressors and amphibians: Contributions of adverse health effects and altered hydroperiod to population decline and extinction. J. Herpetol. 2012, 46, 675–681. [Google Scholar]
- Weir, S.M.; Scott, D.E.; Salice, C.J.; Lance, S.L. Integrating copper toxicity and climate change to understand extinction risk to two species of pond-breeding anurans. Ecol. Appl. 2016, 26, 1721–1732. [Google Scholar]
- Graeter, G.J.; Rothermel, B.B.; Gibbons, J.W. Habitat selection and movement of pond-breeding amphibians in experimentally fragmented pine forests. J. Wildl. Manag. 2008, 72, 473–482. [Google Scholar] [CrossRef]
- Fryday, S.; Thompson, H. Toxicity of pesticides to aquatic and terrestrial life stages of amphibians and occurrence, habitat use and exposure of amphibian species in agricultural environments. EFSA Support. Publ. 2012, 9, EN343. [Google Scholar] [CrossRef]
- Stiles, R.M.; Swan, J.W.; Klemish, J.L.; Lannoo, M.J. Amphibian habitat creation on postindustrial landscapes: A case study in a reclaimed coal strip-mine area. Can. J. Zool. 2017, 95, 67–73. [Google Scholar]
- Perkins, P.J.; Boermans, H.J.; Stephenson, G.R. Toxicity of glyphosate and triclopyr using the frog embryo teratogenesis as-say-Xenopus. Environ. Toxicol. Chem. 2000, 19, 940–945. [Google Scholar]
- Van Meter, R.J.; Glinski, D.A.; Henderson, W.M.; Garrison, A.W.; Cyterski, M.; Purucker, S.T. Pesticide uptake across the amphibian dermis through soil and overspray exposures. Arch. Environ. Contam. Toxicol. 2015, 69, 545–556. [Google Scholar] [CrossRef]
- Rumrill, C.T.; Scott, D.E.; Lance, S.L. Delayed effects and complex life cycles: How the larval aquatic environment influences terrestrial performance and survival. Environ. Toxicol. Chem. 2018, 37, 2660–2669. [Google Scholar] [CrossRef]
- Zamora-Camacho, F.J.; Zambrano-Fernández, S.; Aragón, P. Carryover effects of chronic exposure to ammonium during the larval stage on post-metamorphic frogs. Aquat. Toxicol. 2022, 248, 106196. [Google Scholar] [CrossRef]
- Zamora-Camacho, F.J.; Zambrano-Fernández, S.; Aragón, P. Long-term sex-dependent inflammatory response of adult frogs to ammonium exposure during the larval stage. Chemosphere 2022, 307, 136202. [Google Scholar] [CrossRef]
- Belden, J.; McMurry, S.; Smith, L.; Reilley, P. Acute toxicity of fungicide formulations to amphibians at environmentally relevant concentrations. Environ. Toxicol. Chem. 2010, 29, 2477–2480. [Google Scholar] [CrossRef]
- Storrs Méndez, S.I.; Tillitt, D.E.; Rittenhouse, T.A.G.; Semlitsch, R.D. Behavioral response and kinetics of terrestrial atrazine exposure in American toads (Bufo americanus). Arch. Environ. Contam. Toxicol. 2009, 57, 590–597. [Google Scholar]
- Mitchkash, M.G.; McPeek, T.; Boone, M.D. The effects of 24-h exposure to carbaryl or atrazine on the locomotor performance and overwinter growth and survival of juvenile spotted salamanders (Ambystoma maculatum). Environ. Toxicol. Chem. 2014, 33, 548–552. [Google Scholar] [PubMed]
- Adams, E.; Gerstle, V.; Brühl, C.A. Dermal fungicide exposure at realistic field rates induces lethal and sublethal effects on juvenile European common frogs (Rana temporaria). Environ. Toxicol. Chem. 2021, 40, 1289–1297. [Google Scholar] [CrossRef]
- Thompson, D.G.; Pitt, D.G. A review of Canadian forest vegetation management research and practice. Ann. For. Sci. 2003, 60, 559–572. [Google Scholar] [CrossRef]
- Shepard, J.P.; Creighton, J.; Duzan, H. Forestry herbicides in the United States: An overview. Wildl. Soc. Bull. 2004, 32, 1020–1027. [Google Scholar]
- Franklin, R.M. Stewardship of Longleaf Pine Forests: A Guide for Landowners; Solon Dixon Forestry Education Center: Andalusia, AL, USA, 1997; p. 41. [Google Scholar]
- Minogue, P.J.; Bohn, K.; Williams, R. Controlling Hardwoods in Longleaf Pine Restoration; EDIS; University of Florida: Gainesville, FL, USA, 2007; Volume 20, pp. 1–5. [Google Scholar]
- Means, D.B. Vertebrate Faunal Diversity of Longleaf Pine Ecosystems. In The Longleaf Pine Ecosystem: Ecology, Silviculture, and Restoration; Jose, S., Jokela, E.J., Miller, D.L., Eds.; Springer: Greer, SC, USA, 2006; pp. 157–213. [Google Scholar]
- Greenberg, C.H.; Moorman, C.E.; Raybuck, A.L.; Sundol, C.; Keyser, T.L.; Bush, J.; Simon, D.M.; Warburton, G.S. Reptile and amphibian response to oak regeneration treatments in productive southern Appalachian hardwood forest. For. Ecol. Manag. 2016, 377, 139–149. [Google Scholar]
- Chen, C.Y.; Hathaway, K.M.; Thompson, D.G.; Folt, C.L. Multiple stressor effects of herbicide, pH, and food on wetland zoo-plankton and a larval amphibian. Ecotoxicol. Environ. Saf. 2008, 71, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Wojtaszek, B.F.; Buscarini, T.M.; Chartrand, D.T.; Stephenson, G.R.; Thompson, D.G. Effect of release® herbicide on mortality, avoidance response, and growth of amphibian larvae in two forest wetlands. Environ. Toxicol. Chem. 2005, 24, 2533–2544. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.N.; Bidart, M.G. Increased temperature influenced growth and development of Lithobates pipiens tadpoles exposed to leachates of the invasive plant European buckthorn (Rhamnus cathartica) and a triclopyr herbicide. Environ. Toxicol. Chem. 2021, 40, 2547–2558. [Google Scholar] [CrossRef] [PubMed]
- Kreutzweiser, D.P.; Holmes, S.B.; Eichenberg, D.C. Influence of exposure duration on the toxicity of triclopyr ester to fish and aquatic insects. Arch. Environ. Contam. Toxicol. 1994, 26, 124–129. [Google Scholar] [CrossRef]
- Thompson, D.G.; Kreutzweiser, D.P.; Capell, S.S.; Thomas, D.R.; Staznik, B.; Viinikka, T. Fate and effects of triclopyr ester in a first-order forest stream. Environ. Toxicol. Chem. 1995, 14, 1307–1317. [Google Scholar] [CrossRef]
- Senseman, S.A. (Ed.) Herbicide Handbook, 9th ed.; Weed Science Society of America: Lawrence, KS, USA, 2007. [Google Scholar]
- Douglass, C.H.; Nissen, S.J.; Meiman, P.J.; Kniss, A.R. Impacts of imazapyr and triclopyr soil residues on the growth of several restoration species. Rangel. Ecol. Manag. 2016, 69, 199–205. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). Pesticide National Synthesis Project. 2017. Available online: https://water.usgs.gov/nawqa/pnsp//usage/maps/show_map.php?year=2017&map=TRICLOPYR&hilo=L&disp=Triclopyr (accessed on 12 October 2021).
- Russell, A.P.; Bauer, A.M.; Johnson, M.K. Migration in amphibians and reptiles: An overview of patterns and orientation mechanisms in relation to life history strategies. In Migration of Organisms: Climate Geography Ecology; Elewa, A.M.T., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 151–203. [Google Scholar]
- Llewelyn, J.; Phillips, B.L.; Alford, R.A.; Schwarzkopf, L.; Shine, R. Locomotor performance in an invasive species: Cane toads from the invasion front have greater endurance, but not speed, compared to conspecifics from a long-colonised area. Oecologia 2010, 162, 343–348. [Google Scholar] [CrossRef]
- Janin, A.; Léna, J.P.; Deblois, S.; Joly, P. Use of stress-hormone levels and habitat selection to assess functional connectivity of a landscape for an amphibian. Conserv. Biol. 2012, 26, 923–931. [Google Scholar] [CrossRef]
- Rivers, J.W.; Liebl, A.L.; Owen, J.C.; Martin, L.B.; Betts, M.G. Baseline corticosterone is positively related to juvenile survival in a migrant passerine bird. Funct. Ecol. 2012, 26, 1127–1134. [Google Scholar] [CrossRef]
- Louppe, V.; Courant, J.; Videlier, M.; Herrel, A. Differences in standard metabolic rate at the range edge versus the center of an expanding invasive population of Xenopus laevis in the West of France. J. Zool. 2018, 305, 163–172. [Google Scholar] [CrossRef]
- Gosner, K.L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 1960, 16, 183–190. [Google Scholar]
- Gabor, C.R.; Bosch, J.; Fries, J.N.; Davis, D.R. A non-invasive water-borne hormone assay for amphibians. Amphib. Reptil. 2013, 34, 151–162. [Google Scholar] [CrossRef]
- Dow AgroSciences. Garlon® 4 Ultra Specimen Label; Dow AgroSciences: Midland, MI, USA, 2019. [Google Scholar]
- Gabor, C.R.; Knutie, S.A.; Roznik, E.A.; Rohr, J.R. Are the adverse effects of stressors on amphibians mediated by their effects on stress hormones? Oecologia 2018, 186, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Chambers, D.L. Increased conductivity affects corticosterone levels and prey consumption in larval amphibians. J. Herpetol. 2011, 45, 219–223. [Google Scholar] [CrossRef]
- Bliley, J.M.; Woodley, S.K. The effects of repeated handling and corticosterone treatment on behavior in an amphibian (Ocoee salamander: Desmognathus ocoee). Physiol. Behav. 2012, 105, 1132–1139. [Google Scholar] [CrossRef]
- Narayan, E.J.; Cockrem, J.F.; Hero, J.M. Sight of a predator induces a corticosterone stress response and generates fear in an amphibian. PLoS ONE 2013, 8, e73564. [Google Scholar] [CrossRef] [PubMed]
- Edginton, A.N.; Stephenson, G.R.; Sheridan, P.M.; Thompson, D.G.; Boermans, H.J. Effect of pH and release® on two life stages of four anuran amphibians. Environ. Toxicol. Chem. 2003, 22, 2673–2678. [Google Scholar] [CrossRef] [PubMed]
- Berrill, M.; Bertram, S.; McGilliray, L.; Kolohon, M.; Pauli, B. Effects of low concentrations of forest-use pesticides on frog embryos and tadpoles. Environ. Toxicol. Chem. 1994, 13, 657–664. [Google Scholar] [CrossRef]
- Yahnke, A.E.; Grue, C.E.; Hayes, M.P.; Pearman-Gillman, S. Effects of the herbicide triclopyr on metamorphic northern red-legged frogs. Environ. Toxicol. Chem. 2017, 36, 2316–2326. [Google Scholar] [CrossRef]
- Van Meter, R.J.; Glinski, D.A.; Hong, T.; Cyterski, M.; Henderson, W.M.; Purucker, S.T. Estimating terrestrial amphibian pesticide body burden through dermal exposure. Environ. Pollut. 2014, 193, 262–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, H. Characteristics and modes of origin of weeds. In The Genetics of Colonizing Species; Baker, H.G., Stebbins, G.L., Eds.; Academic Press: New York, NY, USA, 1965; pp. 147–168. [Google Scholar]
- Wolff, W.J. Recent human-induced invasions of fresh waters by saltwater animals? Aquat. Ecol. 2000, 34, 319–321. [Google Scholar] [CrossRef]
- Sorte, C.J.; Williams, S.L.; Zerebecki, R.A. Ocean warming increases threat of invasive species in a marine fouling community. Ecology 2010, 91, 2198–2204. [Google Scholar] [CrossRef]
- Peck, M.R.; Wilcoxen, T.E. Effects of water acidification and pathogen exposure in innate immunity in Cuban tree frog (Osteopilus septentrionalis) tadpoles. J. Zool. Res. 2018, 2, 13–20. [Google Scholar]
- Going, K.; Wilcoxen, T.E. Effects of night time temperate zone temperatures on survival, skin, antioxidant capacity, and corticosterone in two subtropical Hylid species. BIOS 2018, 89, 185–191. [Google Scholar] [CrossRef]
- Lukens, E.; Wilcoxen, T.E. Effects of elevated salinity on Cuban treefrog Osteopilus septontrionalis aldosterone levels, growth, and development. Mar. Freshw. Behav. Physiol. 2020, 53, 99–111. [Google Scholar] [CrossRef]
- Ehrsam, M.; Knutie, S.A.; Rohr, J.R. The herbicide atrazine induces hyperactivity and compromises tadpole detection of predator chemical cues. Environ. Toxicol. Chem. 2016, 35, 2239–2244. [Google Scholar] [CrossRef]
- Rohr, J.R.; Brown, J.; Battaglin, W.A.; McMahon, T.A.; Relyea, R.A. A pesticide paradox: Fungicides indirectly increase fungal infections. Ecol. Appl. 2017, 27, 2290–2302. [Google Scholar] [CrossRef]
- Budischak, S.A.; Belden, L.K.; Hopkins, W.A. Effects of malathion on embryonic development and latent susceptibility to trematode parasites in ranid tadpoles. Environ. Toxicol. Chem. 2008, 27, 2496–2500. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, S.; Santos, M.A.; Gaivão, I.; Pacheco, M. Genotoxicity evaluation of the herbicide Garlon(®) and its active ingredient (triclopyr) in fish (Anguilla anguilla L.) using the comet assay. Environ. Toxicol. 2015, 30, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McFall, A.J.; Ziemba, J.; Weir, S.M.; Capps, K.A.; Lance, S.L. Amphibian Dispersal Traits Not Impacted by Triclopyr Exposure during the Juvenile Stage. Diversity 2023, 15, 215. https://doi.org/10.3390/d15020215
McFall AJ, Ziemba J, Weir SM, Capps KA, Lance SL. Amphibian Dispersal Traits Not Impacted by Triclopyr Exposure during the Juvenile Stage. Diversity. 2023; 15(2):215. https://doi.org/10.3390/d15020215
Chicago/Turabian StyleMcFall, Adam J., Julie Ziemba, Scott M. Weir, Krista A. Capps, and Stacey L. Lance. 2023. "Amphibian Dispersal Traits Not Impacted by Triclopyr Exposure during the Juvenile Stage" Diversity 15, no. 2: 215. https://doi.org/10.3390/d15020215
APA StyleMcFall, A. J., Ziemba, J., Weir, S. M., Capps, K. A., & Lance, S. L. (2023). Amphibian Dispersal Traits Not Impacted by Triclopyr Exposure during the Juvenile Stage. Diversity, 15(2), 215. https://doi.org/10.3390/d15020215