Next Article in Journal
Consistent Monthly Reproduction and Completion of a Brooding Coral Life Cycle through Ex Situ Culture
Next Article in Special Issue
Man-Made Changes in the Flora and Vegetation of Poland: Current Review
Previous Article in Journal
Amphibian Dispersal Traits Not Impacted by Triclopyr Exposure during the Juvenile Stage
Previous Article in Special Issue
Drivers and Effects of Cryptic Invasion of Cornus sanguinea subsp. australis in Lithuania
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Cultural Landscape as Both a Threat and an Opportunity to Preserve a High Conservation Value of Vascular Flora: A Case Study

Department of Systematic and Environmental Botany, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
Diversity 2023, 15(2), 211; https://doi.org/10.3390/d15020211
Submission received: 30 November 2022 / Revised: 30 January 2023 / Accepted: 31 January 2023 / Published: 2 February 2023
(This article belongs to the Special Issue Changes and Evolution of Flora and Vegetation under Human Impacts)

Abstract

:
This study aimed to show the influence of cultural landscape structure on species richnessand the conservation value of vascular flora.The analyses are based on 3201 original floristic lists (relevés) and 83,875 floristic data collected since 1994 within Gopło Millennium Park (Nadgoplański Park Tysiąclecia) in a rural area in central Poland. Descriptions of landscape composition in grid cells (0.5 km × 0.5 km) include land use structure, mean deviation of uneven proportions of various land use types, and Shannon index of diversity (H’). Vascular plant diversity was described using total species richness and contributions of groups of native and alien species. Assessment of floristic conservation value was based on qualitative and quantitative floristic index (Wfj and Wfi), mean coefficient of conservatism (C), and floristic quality index (FQI). Floristic analyses were conducted in relation to the whole study area and within grid cells, basing on numbers of species and number of floristic data. The results suggest that species richness in grid cells depends more strongly on diversity and evenness of contributions of land use types, irrespective of which land use types were present. Species richness is strongly dependent on land use structure. Larger contributions of arable fields and built-up areas are linked with a decrease in species richness of nonsynanthropic native plants and species of floristic conservation value. Regularity in this respect is very well illustrated by indices excluding the influence of species richness on floristic value (quantitative floristic index Wfi and mean coefficient of conservatism C). According to the algorithm of FQI, the most valuable floras are characterized by a large number of species with a high contribution of conservative ones. In the study area, this condition was met by floras of surface waters and wetlands.

1. Introduction

At early stages of civilization, all forms of human impact on the natural environment were selective, spatially limited, and did not affect its potential for regeneration. Currently, however, the use of natural resources is a decisive factor influencing landscape structure and determining the possibility of existence of plant species and communities [1]. Changes in land use structure, generating transformations of landscape elements, will be key factors of global biodiversity change by the year 2100 [2].
Relations concerning landscape structure, habitat preferences, and species richness have been studied by many researchers [3]. So far, studies have concerned, primarily, effects of farming on patterns of plant species richness in relation to a broad spectrum of patchy rural cultural landscape [4,5,6,7,8] or some of its elements, e.g., meadows and pastures [9,10,11,12], linear marginal habitats or forest islands in the agricultural landscape [13,14,15,16], and aquatic habitats located between fields [17]. The spatial scope of analyses varies widely: from the continental scale [18] to a local one, limited to small areas [19,20,21]. In some studies, special attention was paid to relations between alien species richness and structure of land use (land cover) [22,23,24]. Attempts were also made to predict species richness changes in time and space in relation to landscape structure metrics [24,25]. In addition, dynamic progress has been made in studies aimed to quantify biodiversity in relation to function, i.e., indicate the value and range of those features of species that affect ecosystem function [1,26,27,28,29,30,31].
In accordance with the Council of Europe Landscape Convention [32], Poland (similar toother EU countries) has undertaken integrated actions to protect landscape [33,34]. This applies primarily to protected areas, including landscape parks, where landscape (also cultural landscape) is protected with its biodiversity and cultural heritage [35]. Gopło Millennium Park is one of the first landscape parks in Poland where the influence of the landscape mosaic on vascular flora has been investigated. The conducted field and laboratory research aimed (1) to analyse land use structure and flora of vascular plants in relation to the whole park and the grid cells, (2) to define relations between landscape structure and the overall plant species richness and species richness of groups differing in origin status, and (3) to diagnose the influence of land use types on the conservation value of flora.

2. Materials and Methods

2.1. Study Area

The study area is located in central Poland, in the mesoregion of Gniezno Lakeland (PojezierzeGnieźnieńskie) [36], within landscape park Gopło Millennium Park (Nadgoplański Park Tysiąclecia, 52°32′–52°36′ N, 18°19′–18°22′ E), which protects Lake Gopło and the neighbouring ecosystems (covers about 130.5 km2). The lake and the upper section of the river Noteć are the major hydrological parts of a postglacial tunnel valley.
Documented traces of prehistoric human presence near Lake Gopło date back to the Neolithic period. At that time, human settlements were located mostly on already deforested, fertile soils, known now as ‘Kuyavian black earths’ [37,38]. In the late Middle Ages, Gopło was naturally connected with the Vistula and Warta, and its water level was 6m higher than currently [39]. Regulation works carried out in the upper Noteć valley in the 19th century contributed to substantial changes in morphometric features of the lake, decline of wetlands, drying of meadows, and even their transformation into arable fields. In large spaces, farming practices have accelerated the processes of peat decomposition and erosion [40].
Despite human impact since the Neolithic period, valuable ecosystems have been preserved near Lake Gopło. They are protected as a landscape protection area, a nature reserve, a landscape park, and Natura 2000 sites (SOO and OSO). The landscape park (and, earlier, the landscape reserve) was created to protect natural breeding sites of birds, historical values linked with beginnings of the Polish State as well as the natural and cultural landscape of Kuyavia.
Gopło Millennium Park is a good testing ground for research on biodiversity in relation to land use structure. The cultural landscape historically shaped since the beginning of the Piast dynasty (in the 10th century), with its natural richness and monuments of material culture, has been protected since 1967. Very fertile plains of so-called Black Kuyavia (Czarne Kujawy), with ‘black earths’ developed from exposed lake sediments of Lake Gopło, are the basis for commercial farming. In contrast, in the southern part of the park (shaped by the Vistulian glaciation and characterized by more varied relief and poorer, leached brown soils) subsistence farming prevails. The flora of the park is wellstudied, with a rich database on anthropogenic conditions [41,42,43].
Gopło Millennium Park was divided into grid cells (0.5 km × 0.5 km) to analyse both land use structure and flora in each grid cell (Figure 1). Within, arable fields dominate. Smaller proportions of its area are covered by surface waters and wetlands as well as by meadows and pastures. Forests occupy a very small proportion (Table 1, Figure 1). Arable fields dominate also in most (65.3%) grid cells, i.e., they cover at least 50% of their area (mean 57.2%) (Table 2, Figure 2).

2.2. Floristic Classifications and Indices

To describe the conservation value of flora, usually, contributions of rare and threatened species or habitat specialists are used. There are also some known examples of synthetic use of several characteristics of species to determine the floristic value of a study area [44,45]. One possibility is the concept of multivariate evaluation (valorization). It assumes that natural and anthropogenic factors influence, e.g., frequency of occurrence, spectrum of occupied habitats, distribution range, and threat status of species. Thus, each species carries partial information about the conservation value of the flora of the study area, reflected, e.g., in contributions of habitat specialists or species that are very rare, threatened at the regional or national scale, or reach their range limit [46]. This approach takes into account the origin status, frequency, threat category, chorological aspect, and significance of local species resources. Species conservation value (w) was calculated by summing up the partial results (valorization indices) presented in Table 3.
The floristic value of individual grid cells was determined in 2 ways, using the following formulas:
Wfj = Σ w/N and Wfi = Σ (w · n)/Nn
where Wfj—floristic value of the area calculated on the basis of species richness; Wfi—floristic value of the area calculated on the basis of the structure of records; w—species value; n—sum of records of the species in the grid cell; N—number of species in the grid cell; Nn—total number of the floristic data (i.e., records of individual species)collected in the study area.
To describe the conservation value of flora, also, the concept of Floristic Quality Assessment (FQA) was used [47,48]. Its essence is an expert evaluation of the coefficient of conservatism (c), i.e., association of the species with habitats that were not transformed by human impact, on a scale of 1–10. By summing up c values of species present in the given area and dividing it by species number (n), the mean coefficient of conservatism (C) for the flora of the study area was estimated:
C = ∑ c/n
Floristic quality index (FQI) was calculated by multiplying the mean value (C) by the grid cell root of the number of species (n).
FQI = C × n
The concept of FQA has been widely applied in North America [49,50,51,52,53,54,55,56,57,58,59,60]. The criteria and groups listed in Table 1, used to describe the conservation value of the total flora and floras of individual grid cells, are defined in Table 4, Table 5, Table 6, Table 7 and Table 8.

2.3. Indices of Landscape Heterogeneity

In spatial analyses, six major land use types in the cultural landscape were taken into account: (1) forests; (2) surface waters and wetlands; (3) meadows and pastures; (4) marginal habitats: roadsides, grassy field borders, and small mid-field woodlots; (5) arable fields; and (6) built-up areas, orchards, and private gardens. Land use type takes into account only marginal habitats that are not used for agriculture and are landscape components located in a mosaic of arable fields or meadows. They are either linear (grassy field borders, ditches and small water courses, roadsides, etc.) or non-linear (small wooded patches, water bodies and marshes, covering less than 0.2 hectare). This land use type excludes similar landscape components located within extensive woodlands, also forest edges.
They were digitized on the basis of orthophotomaps (https://geoserwis.gdos.gov.pl/mapy/) using QGIS 2.0 Dufour software (accessed on 15 November 2020). The covered area and proportion of the total area were determined in relation to the whole study area and each grid cell (0.5 km × 0.5 km).
In every grid cell, landscape heterogeneity was quantified using the Shannon diversity index (H’) [65].
Landscape heterogeneity in individual grid cells was also described using mean deviation of proportions of land use types (d), calculated as follows:
d = (xy)/N
where x—area covered by one land use type; y—arithmetic mean of areas covered by all land use types (i.e., 16.67% of grid cell area here); N—number of distinguished land use types. In relation to an analysed grid cell, proportions of land use types would be even if all the analysed types covered equal parts of the grid cell, i.e., 4.16 ha each (1/6 = 16.67% of grid cell area), because six land use types were distinguished. Then, the value of (d) would be 0.

2.4. Floristic Database

Basic field research, consisting of complex mapping of vascular flora, was conducted in 1994–1997. In the next 25 years, the area was monitored, and maps of distribution were updated for the most unstable elements of its flora: threatened and invasive species. Floristic diversity and species richness was documented with floristic lists (relevés). Each time, location of the study plots on the grid of 560 grid cells (0.5 km × 0.5 km) was recorded and land use types were defined. Consequently, the total study area covered 140 km2. Floristic analyses were made in two ways: in relation to the number of species and in relation to sums of floristic data concerning individual species and groups of species in different land use types. In the whole study period, 3201 floristic lists and 83,875 floristic data (records of individual species) were collected. The dominance of arable fields in the study area was reflected in the largest numbers offloristic lists (1296, i.e., 40.5% of the total number) and floristic data (22,103, i.e., 26.4% of the total number) collected during mapping of the flora of this land use type. Particularly noteworthy, however, is therelatively high number floristic data (Table 9) for marginal habitats in comparison with the small proportion of the total area covered by them (see Table 1).
Scientific names of vascular plants in Appendix A follow Mirek et al. (2020) [66]. Information on properties (status) of these species, provided there, is based on my article [46] and my expert knowledge.
In the series of statistical analyses, regression analysis was used. This option is an integral part of Microsoft Excel version 365. The p-value index was calculated in the Statistica 13 program.

3. Results

3.1. Species Richness in Relation to Land Use Types

Flora of the park included 867 vascular plant species. Most of them were recorded in marginal habitats (603 species, 69.6% of the total species number). A slightly lower numbers of species was found in meadows and pastures (520, 60.0%), forests (473, 54.6%), as well as surface waters and wetlands (466, 53.7%). The lowest numbers of species were recorded in arable fields (261, 30.1%) and in built-up areas, orchards, and private gardens (392, 45.2%). Only 90 species were shared by all the land use types. Numbers of species shared by two, three, four, and five land use types were as follows: 138, 141, 162, and 125, respectively. However, as many as 211 species were habitat specialists, recorded in only one type of land use. Species richness within individual grid cells increased with growingdiversity of land use types (Figure 3).
Species richness tends to be higher in squares with even proportions of various land use types. This condition would be optimally fulfilled if all the analysed land use types covered equal parts of a square, i.e., 4.16 ha each (16.67%). The analysis shows that species richness is negatively correlated with growing values of mean deviation, i.e., increasing areal disproportions of various land use types in grid cells(Figure 4).
In addition, the Shannon index of diversity (H’) indicates a dependence of species richness on landscape composition. Growing H’ values increase the chance of higher species richness in grid cells (Figure 5), but this relationship is weaker (R2 = 0.19) than for mean deviation of uneven proportions of various land use types (R2 = 0.37).
Maximum proportions of individual land use types (resulting from the situation when one type clearly dominates) always had a negative influence on floristic richness in grid cells (Figure 6).

3.2. Variation in Percentage Contributions of Species Groups Differing in Origin Status and Naturalization in Relation to Land Use

The flora of Gopło Millennium Park is dominated by native species (645 species, i.e., 74.4% of the total number), while alien plants are represented by 222 species. Very similar proportions are observed in numbers of records: native species account for 74.6% of the total number of floristic data. Among native taxa, species avoiding human impact prevail (Nn and Ns). However, they were recorded less frequently than apophytes (Ap), which are able to colonize anthropogenic habitats (Table 10).
Nonsynanthropic and semi-synanthropic native species were the most numerous and most frequent (Table 11) in aquatic/wetland ecosystems and in forests.
Their contributions to the floras of grid cellsare usually markedly higher when the proportion of aquatic/wetland ecosystems is high (R2 = 0.48) (Figure 7(2A)). Increased proportions of forests, marginal habitats, as well as meadows and pastures also positively affect native species richness, although less strongly (Figure 7(3A)). Increased proportions of arable fields (R2 = 0.61) (Figure 7(4A))and, to a lesser extent, of built-up areas, orchards, and gardens (R2 = 0.02) limit the shares of native species within grid cells (Figure 7(5A)). Species richness and the number of records of apophytes only slightly depend on land use structure (Figure 7(1B–6B)).
Alien species were the most numerous and frequent in arable fields as well as in built-up areas, orchards, and gardens (Table 11). Their contribution to the floras of grid cellstends to increase primarily with growing areal contributions of arable fields (R2 = 0.53) (Figure 7(4C)).
Species richness of all groups of plants, irrespective of their origin status, is positively affected by a diversity of land use types in grid cells (Figure 8A–C). This dependence is the most conspicuous among apophytes. Species of this group are generally eurytopic, so they can colonize also areas with a diversity of land use types.

3.3. Floristic Conservation Value of Sites Covered by Various Land Use Types

A comparison of floristic conservation value of forests, waters and wetlands, meadows and pastures, as well as marginal habitats, if based only on species composition, indicates small differences between them (Figure 9A–C). The least valuable floras were observed on ruderal sites (built-up areas) and segetal ones (arable fields). Differences between them are more noticeable when FQI is applied. The exclusion of alien species from its algorithm implies lower FQI values (according to methodological rules) because aliens account for considerable proportions of segetal and ruderal floras.
When, in the evaluation, floristic data are taken into account, differences in floristic conservation value are more noticeable. All three indices unanimously show that aquatic/wetland flora is characterized by the highest conservation value (Figure 10A–C). When numbers of floristic data are considered, the influence of casual species on final results of floristic conservation value assessment is minimized. Similarly, the influence of rare habitat specialists associated with the evaluated ecosystem is also smaller.

4. Discussion

4.1. Species Richness in Relation to Land Use

More and more attention has been paid recently to protection of cultural landscapes and their biodiversity [67,68].To emphasize the great value of mutual relations between culture and biodiversity, the term biocultural diversity was coined in 2005 [69].
Vascular plant species richness in the study area is unevenly distributed between individual land use types. The largest number of species was recorded in marginal habitats, although they cover the smallest proportion of the study area. The smallest number was recorded in arable fields, which are dominant components of the landscapes surrounding Lake Gopło.
Nevertheless, it would be wrong to conclude that marginal habitats intrinsically contribute to a high floristic richness in the analysed grid cells, because a large number of plant species found there originate from the neighbouring ecosystems. Admittedly, in homogeneous cultural landscapes, especially in farmlands, they can become localrefugia and ecological corridors facilitating migration (also of segetal species, typical of arable fields). The latter possibility is confirmed by results of research conducted in Sweden, which concerned the influence of linear marginal habitats on floristic richness of research plots [14]. The presence of marginal habitats can slow down the loss of plant species originating from other ecosystems. This effect is enhanced if the area covered by marginal habitats is larger [14]. Similar results have been reported from southern France, where the role of marginal habitats among vineyards and olive groves was studied [70]. The biodiversity of cultural landscape can be strongly affected by even small remaining patches of semi-natural vegetation, scattered among cultivated patches [71]. However, this role of marginal habitats may be less effective if intensive farming is conducted in their immediate vicinity [72]. The negative impact of highly commercial agriculture on biodiversity has already been reported [73,74].
It is commonly believed that commercial forests play a minor role in shaping biodiversity, as compared with natural forests [75]. However, research conducted in artificial forests or plantations shows that species richness of some groups of organisms, also plants, can be greater there than in natural forests [76,77]. Results of this study indicate that expression of species richness in the grid of grid cells is positively influenced by landscape heterogeneity, expressed here as the high number and evenness of proportions of various land use types. The heterogeneity of landscape components ensures a diversity of suitable niches, affecting biotic processes [25], and increases the chances of occurrence of habitat specialists. In Gopło Millennium Park, two processes are equally harmful to biodiversity: extensive farming methods are gradually abandoned, whereas land use is intensified. This phenomenon, observed earlier in West Europe, is currently common also in countries of Central and Eastern Europe [78]. Some authors suggestthat stopping agricultural activity can be a chance for ecosystem restoration or new landscape functions [79].
Out of the two alternative measures of landscape heterogeneity in grid cells, the mean deviation of uneven proportions of land use types (d) more precisely described the dependence of species richness on the landscape mosaic on the grid of cells. Landscape diversity expressed as the Shannon index less precisely reflects the relationship between species richness and landscape heterogeneity.
The influence of land use structure on species richness within individual grid cellsdepends more on the number of land use types than on which land use types are present. In all grid cells, an increasing dominance of any land use type was linked with a decrease in species richness. Such a dominance lowers landscape heterogeneity and thus reduces the availability of suitable habitats. This applies particularly to the dominance of arable fields [80]. In comparison with them, built-up areas, especially cities and towns, seem to be enclaves of local plant species richness [81]. Similar analyses in Europe and the USA indicate that plant species—in contrast to animals—react more strongly to local environmental conditions at the site of their occurrence than to landscape composition [73].

4.2. Percentage Contributions of Species Groups Differing in Origin Status and Naturalization in Relation to Land Use

Similarly to earlier reports [22,23], this study shows that species richness of native and alien plants increases with increasing landscape heterogeneity. However, the rate of species richness growth in those groups in response to growing diversity of land use types is different. In the cultural landscape of Gopło Millennium Park, the species richness of nonsynanthropic native plants tends to increase mostly in response to growing contributions of surface waters and wetlands to landscape structure. A significant influence of river ecosystems on native species richness is confirmed, for example, by results of research conducted near Dessau (Germany) [22]. A weaker but also positive relationship is noticeable when the proportion of meadows and pastures is growing. In comparison with marginal habitats, the proportion of forests in grid cells does not affect remarkably the species richness of nonsynanthropic native plants. Only scanty forests have been preserved in the study area: they usually form small patches, sometimes surrounded by farmlands and are susceptible to the impact of external factors. Some of the smallest wooded patches, composed of a group of trees and/or shrubs surrounded by fields, were classified as marginal habitats.
As expected, and in accordance with earlier research results [22], species richness of nonsynanthropic native plants was declining markedly with increasing contributions of built-up areas, but mostly of arable fields to land use structure within grid cells.
In contrast, for apophytes, it is difficult to notice any unambiguous relationships between plant species richness and landscape structure. Apophytes can be numerously represented within any land use type, also in grid cells with a simplified landscape structure. However, as shown by values of the Shannon index, the increase in apophyte species richness in relation to growing landscape heterogeneity is greater than for nonsynanthropic native species and anthropophytes. This indicates that apophytes more easily colonize a broad range of ecological niches created by the growing diversity of landscape structure. Nonsynanthropic native species and, somewhat unexpectedly, also anthropophytes considerably less efficiently make use of the mosaic of habitats. Anthropophytes include many species that can be classified as habitat specialists, e.g., some segetal and ruderal species.

4.3. Indices of Floristic Conservation Value

This study provides evidence that plant species richness does not correspond to the conservation value of floras of the selected landscape components. Thus, we should not overestimate the usefulness of plant species richness for assessment of floristic conservation value and determination of priorities of environmental protection. This measure is an important component of plant cover description, but only in combination with its other parameters [82].
All the three applied measures of floristic conservation value (Wfi, C, and FQI) from the marginal habitats, which are refugia of the largest number of plant species, are less valuable floristically than surface waters and wetlands, meadows and pastures, and even forests. Indices of floristic conservation value of ruderal and segetal floras were markedly lower. These differences are more conspicuous when FQI is applied. The exclusion of alien species from its algorithm implies lower FQI values, because aliens account for large proportions of segetal and ruderal floras. The mean coefficient of conservatism (C), even in patches of numerous occurrences of species with high coefficients of conservatism (c), can be masked by large numbers of adventive species or native species with low coefficients of conservatism (c). According to [83], when species richness is high, FQI is a more precise measure of floristic conservation value.
Differences in floristic conservation value are more noticeable when numbers of floristic data are taken into account. Then, the primary role of flora of aquatic/wetland habitats in the ranking of conservation value is the most conspicuous. When analyses are based on sums of floristic data, the influence of casual species on final results of floristic conservation value assessment is minimized. However, it similarly diminishes the influence of habitat specialists associated with the evaluated ecosystem, which are usually very rare.
Research on plant species richness and floristic conservation value in relation to components of cultural landscape can be a useful tool for spatial planning and management taking into account environmental, social, and economic aspects [77,84,85,86,87].

5. Conclusions

In the cultural landscape dominated by farmlands, plant species richness is determined mostly by the number of various land use types and evenness of their contributions. The contribution of alien species to floras of grid cells is positively related to contributions of agricultural areas and built-up areas to the mosaic of landscape. In contrast, nonsynanthropic native species maximize their contribution in the grid cells where surface waters and wetlands prevail.
All the three applied measures of floristic conservation value indicate that the most valuable plant species are found in landscapes dominated by surface waters and wetlands or meadows and pastures.

Funding

This work was supported by the Faculty of Biology of the Adam Mickiewicz University in Poznan under the Research Subvention (Number: 4102000000-604-506000-BN002023).

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

I am grateful to the authorities of Gopło Millennium Park for help with transportation during field research and to Michał Kupczyk for assistance with digitization of the landscape mosaic. I also thank Sylwia Ufnalska for translation of the manuscript into English and Krystian Florkowski for statistical support.

Conflicts of Interest

The author declares no conflict of interest.

Appendix A

Table A1. Alphabetic List of Vascular Plant Species Found in Gopło Millennium Park.
Table A1. Alphabetic List of Vascular Plant Species Found in Gopło Millennium Park.
Name of SpeciesSpecies Information
12345678910
Acer campestre L.NsLCNE-5III192323
Acer negundo L.Kn---0IV435555
Acer platanoides L.Ap---2VI120135135
Acer pseudoplatanus L.Ap---2V698080
Achillea millefolium L. s. str.Ap---1VIII446791794
Achillea pannonica Scheele.Ap-NEW3II101112
Acinos arvensis (Lam.) DandyAp---1III171717
Acorus calamus L.Kn---0V789494
Actaea spicata L.NnVU--10II777
Adoxa moschatellina L.Nn---8III182323
Aegopodium podagraria L.Ns---5V647777
Aesculus hippocastanum L.Kn---0III273030
Aethusa cynapium L.Ar---0IV424445
Agrimonia eupatoria L.Ap---2IV374141
Agrimonia procera Wallr.NsNT--4III222424
Agrostemma githago L.Ar---0VI148183185
Agrostis canina L. s. str.NnVU--10I111
Agrostis capillaries L.Ap---4V79111111
Agrostis gigantea RothAp---2VII218304305
Agrostis stolonifera L.Ap---4VI186245245
Alisma plantago-aquatica L.Ns---4VI126150150
Alliaria petiolata (M. Bieb.) Cavara & GrandeAp---4V617070
Allium angulosum L.NnCR-KW10II71111
Allium oleraceum L.Ap---5III141717
Allium vineale L.Ap---4V91100100
Alnus glutinosa (L.) Gaertn.Ns---4VII225333334
Alnus incana (L.) MoenchKn---0IV476262
Alopecurus aequalis Sobol.Ns---6III181818
Alopecurus geniculatus L.Ns---4III192020
Alopecurus myosuroides Huds.ArLC--0I222
Alopecurus pratensis L.Ap---4V86100100
Alyssum alyssoides (L.) L.Ap---3II566
Amaranthus blitoides S. WatsonD---0I111
Amaranthus chlorostachys Willd.Kn---0II566
Amaranthus lividus L.Kn---0II333
Amaranthus retroflexus L.Kn---0VIII288405408
Amorpha fruticosa L.D---0I111
Anagallis arvensis L.Ar---0VII218284284
Anagallis foemina Mill.ArCRNKW0I111
Anchusa arvensis (L.) M. Bieb.Ar---0VII233307308
Anchusa officinalis L.Ap---1IV414444
Anemone ranunculoides L.NnNT--10II666
Angelica sylvestris L.Nn---6V90111111
Anthemis arvensis L.Ar---0V79141143
Anthericum ramosum L.NnVU--10I222
Anthoxanthum odoratum L. s. str.Ap---3V576464
Anthriscus cerefolium (L.) Hoffm.Kn---0I111
Anthriscus sylvestris (L.) Hoffm.Ap---1VIII296432434
Apera spica-venti (L.) B. Beauv.Ar---0VIII420633637
Aphanes arvensis L.Ar---0II555
Arabidopsis thaliana (L.) Heynch.Ap---1VI147238239
Arabis glabra (L.) Bernh.NsNT--5II91010
Arabis hirsute (L.) Scop.NnVU--8IV293232
Arabis planisiliqua (Pers.) Rchb.NsVUSE-5II333
Arctium lappa L.Ap---1IV415050
Arctium minus (Hill.) Bernh.Ap---1IV545555
Arctium tomentosum Mill.Ap---1VII271395397
Arenaria serpyllifolia L.Ap---1VII209300301
Armeria maritima (Mill.) Willd. subsp. elongata (Hoffm.) BonnierAp---4IV354545
Armoracia rusticana P. Gaertn., B. Mey. &Scherb. Ar---0V849394
Arnoseris minima (L.) Schweigg. & Körte.Ap---3II799
Arrhenatherum elatius (L.) P. Beauv ex J. Presl. & C. PreslAp---2VII237321323
Artemisia absinthium L.Ar---0VI145193194
Artemisia campestris L. subsp. campestrisAp---1VI147207208
Artemisia vulgaris L.Ap---1VIII423711714
Asparagus officinalis L.Kn---0IV384242
Asperugo procumbens L.Ar--W0IV283233
Aster lanceolatus Willd.D---0II444
Astragalus arenarius L.NsEN--4II333
Astragalus cicer L.ApVU--3III161919
Astragalus glycyphyllos L.Ns---3IV435151
Astrantia major L.NnENNK10I111
Athyrium filix-femina (L.) RothNn---10III121212
Atriplex prostrate Boucher ex DC. subsp. prostrataAp---2IV414747
Atriplex nitens SchkuhrAr---0V667070
Atriplex patula L.Ap---1VI146181181
Avena fatua L.Ar---0VII208278278
Avena strigosa Schreb.Ar---0I111
Avenaula pubescens (Huds.) Dumort.Ns---5IV303434
Ballota nigra L. subsp. nigraAr---0VII258342344
Batrachium circinatum (Sibth.) Fr.NnLC--9III192020
Batrachium trichophyllum (Chaix) BossNs---5III191919
Bellis perennis L.Ap---2V86104104
Berberis vulgaris L. NsVU--4II444
Berteroa incana (L.) DC.Ap---1V83105107
Berula erecta (Huds.) CovilleNn---7II101212
Betula pendula RothAp---3VI170222222
Betula pubescens Ehrh. subsp. pubescensNn---8III262828
Bidens cernua L.Ns---4IV444949
Bidens frondosa L.Kn---0V106149149
Bidens tripartita L.Ns---4VI127169169
Blysmus compressus (L.) Panz. ex LinkNnVU--8IV445454
Bolboschoenus maritimus (L.) PallaNn--KW7IV546464
Brachypodium pinnatum (L.) P. BeauvNsLC--5I111
Brachypodium sylvaticum (Huds.) P. BeauvNn---6V81101101
Brassica nigra (L.) W. D. J. KochKn---0III121515
Briza media L.Nn---7IV444949
Bromus carinatus Hook. & Arn.Kn---0V848686
Bromus erectus Huds.ApNT-W4II455
Bromus inermis Leyss.Ap---1VI171213213
Bromus hordeaceus L.Ap---1VII265371372
Bromus secalinus L.ArVU--0I111
Bromus sterilis L.Ar---0V596464
Bromus tectorum L.Ar---0V657575
Bryonia alba L.Kn---0III171819
Butomus umbellatus L.Nn---7V81101101
Calamagrostis arundinacea (L.) RothNn---9II444
Calamagrostis canescens (Weber) RothNn---9IV333636
Calamagrostis epigejos (L.) RothAp---1VI184242243
Calamagrostis stricta (Timm) KoelerNnNTSW10IV526161
Callitriche cophocarpa Sendt.Ns---4I222
Calluna vulgaris (L.) HullNn---7I222
Caltha palustris L. subsp. palustrisNn---7VI146204204
Calystegia sepium (L.) R. Br.Ns---4VII235334334
Camelina microcarpa Andrz.Ar---0VI167209209
Campanula bononiensis L.NnCRNK8I111
Campanula glomerata L.Ap---5IV323737
Campanula patula L.Ap---5II91010
Campanula persicifolia L.NnNT--8II466
Campanula rapunculoides L.Ap---3IV303435
Campanula rotundifolia L.Ns---6III141414
Campanula trachelium L.NnNT--8III202222
Cannabis ruderalis Janisch.Kn---0III141616
Capsella bursa-pastoris (L.) Medik.Ar---0VIII409764770
Caragana arborescens Lam.D---0II333
Cardamine amara L. subsp. amaraNnLC--9I111
Cardamine pratensis L. s. str.Nn---7V596363
Cardaminopsis arenosa (L.) Hayek subsp. arenosaAp---1V90121121
Cardaria draba (L.) Desv.Kn---0I222
Carduus acanthoides L.Ar---0VII193256259
Carduus crispus L.Ap---4IV485858
Carex acutiformis Ehrh.Nn---5VIII279422424
Carex appropinquata Schumach.NnVU--10III141616
Carex caryophyllea Latourr.NnVU--7I222
Carex cespitosa L.NnEN--8I222
Carex diandra SchrankNnEN-W10II455
Carex digitata L.NnLC--9I111
Carex dioica L.NnCR-KW10I111
Carex distans L.NnNT--7V586464
Carex disticha Huds.NnLC--6V89118118
Carex elata All.Nn---9V707979
Carex elongata L.NnVU--10I222
Carex ericetorum PollichNn---6I222
Carex flacca Schreb.NnNT--7IV485858
Carex flava L.NnVU--9II101010
Carex gracilis CurtisNn---6IV404646
Carex hirta L.Ap---1VIII301443446
Carex lasiocarpa Ehrh.NnEN--10I222
Carex lepidocarpa TauschNnVU--10II888
Carex nigra ReichardNn---6IV536464
Carex ovalis Gooden.Ap---4II888
Carex pairae F. W. SchultzAp---2V626668
Carex panicea L.Nn---8V739494
Carex paniculata L. Nn---7IV354545
Carex pilulifera L.Nn---6I222
Carex praecox Schreb.Ap---3III262929
Carex pseudocyperus L.Nn---7V100116116
Carex remota L.NnVU--10II677
Carex riparia CurtisNn---7V688484
Carex rostrata StokesNnNT--8III192323
Carex vesicaria L.NnNT--9I222
Carex viridula Michx.Nn---8III252929
Carex vulpine L.Ns---5IV495353
Carlina vulgaris L.Ap---4I222
Carpinus betulus L.Nn---7III151515
Carum carvi L.Ap---3V8099100
Catabrosa aquatica (L.) P. Beauv.NsVU--6I111
Centaurea cyanus L.Ar---0VIII343637640
Centaurea jacea L.Ns---4VI187264265
Centaurea scabiosa L.Ap---2VI135155157
Centaurea stoebe L.Ap---2IV475454
Centaurium erythraea Rafn. subsp. erythraeaNsVU--6II777
Centaurium pulchellum (Sw.) DruceApVU--3III232525
Cerastium arvense L. s. str.Ap---3VI119142143
Cerastium holosteoides Fr. emend. Hyl.Ap---3VII248344346
Cerastium semidecandrum L.Ap---3VI141185185
Cerasus avium (L.) Moench.Kn---0III191919
Cerasus mahaleb (L.) Mill.D---0II333
Cerasus vulgaris Mill. subsp. vulgarisD---0III111111
Ceratophyllum demersum L. s. str.Nn---6III232323
Chaenorhinum minus (L.) Lange.Ap---1V799292
Chaerophyllum bulbosum L.Ap---3III242526
Chaerophyllum temulum L.Ns---4VI127158158
Chamaenerion angustifolium (L.) Scop.Ap---3IV374242
Chamomilla recutita (L.) RauschertAr---0IV414750
Chamomilla suaveolens (Pursh) Rydb.Kn---0VIII297406409
Chelidonium majus L.Ap---1V92108108
Chenopodium album L.Ap---1VIII450725727
Chenopodium ficifolium Sm.Ar---0IV474747
Chenopodium glaucum L.Ap---1IV373940
Chenopodium hybridum L.Ar---0V677576
Chenopodium polyspermum L.Ap---3I222
Chenopodium rubrum L.Ap---2V707575
Chenopodium strictum RothKn---0II333
Chondrilla juncea L.Ap---1II444
Chrysosplenium alternifolium L.Nn---9II455
Cichorium intybus L. subsp. intybusAr---0VI154191193
Cicuta virosa L.Nn---9II888
Circaea lutetiana L.Nn---8III151818
Cirsium acaule Scop.NnENE-7I111
Cirsium arvense (L.) Scop.Ap---1VIII46710661074
Cirsium oleraceum (L.) Scop.Ns---6V90122122
Cirsium palustre (L.) Scop.Nn---7V88125125
Cirsium vulgare (Savi) Ten.Ap---1VI157192192
Cladium mariscus (L.) PohlNnVUSE-9II333
Clinopodium vulgare L.Ns---5II577
Cnidium dubium (Sckuhr) Thell.NnVU-KW7III182626
Comarum palustre L.NnNT--10III253636
Conium maculatum L.Ar---0III192929
Consolida regalis GrayAr---0VI190221221
Convallaria majalis L.Nn---8III131616
Convolvulus arvensis L.Ap---1VIII390654658
Conyza canadensis (L.) CronqustKn---0VII236324325
Coriandrum sativum L.D---0I111
Cornus alba L.D---0II788
Cornus sanguine L. subsp. sanguineaNs---4V718787
Coronilla varia L.Ap---2V566364
Coronopus squamatus (Forssk.) Asch.ArEN-KW0III131515
Corydalis intermedia (L.) MératNnENE-10I222
Corylus avellana L.Nn---6IV394747
Corynephorus canescens (L.) P. Beauv.Ap---4IV355454
Cosmos bipinnatus Cav.D---0I222
Cotoneaster divaricatus Rehder & E. H. WilsonD---0I111
Crataegus laevigata (Poir.) DC.Ns---7I111
Crataegus monogyna Jacq.Ap---4VII231315315
Crepis biennis L.ApVU--3I111
Crepis paludosa (L.) MoenchNnNT--9II101313
Crepis tectorum L.Ap---1VI118186187
Cucubalus baccife L.NnVU--6II666
Cuscuta epithymum (L.) L. s. str.NsVU--8II444
Cuscuta europaea L. subsp. europaeaNsNT--5III121212
Cuscuta lupuliformis Krock.NnNT--7I111
Cynoglossum officinale L.Ap---3V819393
Cynosurus cristatus L.ApVU--6II333
Cyperus fuscus L.Ns---6IV373939
Dactylis glomerata L. subsp. glomerataAp---1VIII443756760
Dactylis polygama Horv.Nn---9II444
Dactylorhiza incarnata (L.) Soó subps. incarnataNnVU-W9IV303535
Dactylorhiza majalis (Rchb.) P. F. Hunt & Summerh.NnVU--9III161717
Danthonia decumbens DC.Ns---7II91111
Datura stramonium L.Kn---0IV374142
Daucus carota L.Ap---1V688485
Deschampsia caespitosa (L.) P. B. Beauv.Ns---5VII263380381
Descurainia sophia (L.) Webb ex PrantlAr---0VIII364612617
Dianthus arenarius L.NnCRS-9I122
Dianthus barbatus L. s. str.D---0I111
Dianthus carthusianorum L.NsLC--7II777
Dianthus deltoids L.Ap---5II444
Dianthus superbus L. s. str.NnEN--7II777
Digitaria ischaemum (Schreb.) H. L. Mühl.Ar---0V83112113
Digitaria sanguinalis (L.) Scop.Ar---0II555
Draba nemorosa L.NsENNWKW7IV343535
Dryopteris carthusiana (Vill.) H. P FuchsNs---5IV424646
Dryopteris dilatata (Hofmm.) A. GrayNn---9II555
Dryopteris filix-mas (L.) SchottNs---5IV465151
Echinochloa crus-galli (L.) P. Beauv.Ar---0VIII298391393
Echinocystis lobata (F. Michx.) Torr. & A. GrayKn---0II888
Echinops sphaerocephalus L.D---0II555
Echium vulgare L.Ap---1IV495959
Eleocharis acicularis (L.) Roem. &Schult.NnVU--7II101010
Eleocharis palustris (L.) Roem. &Schult. subsp. palustrisNn---6VI146188188
Eleocharis quinqueflora (Hartmann) O. SchwarzNnEN-KW10III141414
Eleocharis uniglumis (Link.) Schult.NnVU--7III242424
Elodea canadensis Michx.Kn---0II777
Elsholtzia ciliata (Thunb.) Hyl.Kn---0I111
Elymus caninus (L.) L.NnNT--8II555
Elymus repens (L.) Gould.Ap---1VIII48311971204
Epilobium adnatum Griseb.Ap---1II999
Epilobium ciliatum Raf.Kn---0III141515
Epilobium hirsutum L.Ap---3VII249309312
Epilobium lamyi F. W. SchultzNs---6I111
Epilobium obscurum Schreb.NnNT--6II555
Epilobium palustre L.Nn---8IV283434
Epilobium parviflorum Schreb.Nn---8V677676
Epilobium roseum Schreb.NnVU--9II888
Epipactis helleborine (L.) Crantz s. str.NsLC--6III121212
Epipactis palustris (L.) CrantzNnVU-K9II677
Equisetum arvense L.Ap---1VIII307544546
Equisetum fluviatile L.NnLC--9V586767
Equisetum hyemale L.Ap---2I111
Equisetum palustre L.Nn---6VI134188189
Eragrostis minor HostKn---0I111
Erigeron acris L.Ap---2III212222
Erigeron annuus (L.) Pers.Kn---0I111
Eriophorum angustifolium Honck.NnVU--10II91010
Eriophorum latifolium HoppeNnCR--10I111
Erodium cicutarium (L.) L’Hér.Ap---1VI189271274
Erophila verna (L.) Chevall.Ap---1VI177292292
Eryngium planum L.Ap-NWW2VI117137137
Erysimum cheiranthoides L.Ap---2IV526262
Euonymus europaea L.Ns---6V86101101
Eupatorium cannabinum L.Nn---5VII212324324
Euphorbia cyparissias L.Ap---3VI136168169
Euphorbia esula L.Ap---1III232323
Euphorbia exigua L.ArEN-KW0III141515
Euphorbia helioscopia L.Ar---0VII209321322
Euphorbia lucida Waldst. & Kit.NnCR--7II71010
Euphorbia peplus L.Ar---0III212121
Euphrasia rostkoviana HayneNnEN-KW8II555
Euphrasia stricta D. Wolf ex J. F. Lehm.NnVU--8III161818
Fagus sylvatica L. subsp. sylvaticaNs-E-7II91010
Falcaria vulgaris Bernh.Ap-NEW2VI187223226
Fallopia convolvulus (L.) Á. LöveAr---0VIII388581583
Fallopia dumetorum (L.) HolubNs---4V99121121
Festuca arundinacea Schreb.Ap---2VII202256258
Festuca trachyphylla (Hack.) KrajinaAp---2V678787
Festuca gigantea (L.) Vill.Ns---6V87102102
Festuca heterophylla Lam.NnNTE-9I222
Festuca ovina L. s. str.Ns---6II999
Festuca pratensis Huds.Ap---2VI185239240
Festuca rubra L. s. str.Ap---1VIII301416419
Ficaria verna Huds.Ns---5IV293131
Filago arvensis L.ApLC--2II333
Filago minima (Sm.) Pers.ApNT--2III141616
Filipendula ulmaria (L.) Maxim.Nn---5IV496363
Filipendula vulgaris MoenchNsNT--7II555
Fragaria moschata DuchesneNnCR--8I111
Fragaria vesca L.Ns---7III253030
Fragaria viridis DuchesneNs-SE-4III111112
Fragaria x ananassa DuchesneD---0I222
Frangula alnus Mill.Nn---7VI118152152
Fraxinus excelsior L.Ap---2VII225292293
Fraxinus pennsylvanica Marshall.Kn---0III171717
Fumaria officinalis L. subsp. officinalisAr---0V576768
Gagea lutea (L.) Ker Gawl.Nn---7II999
Gagea minima (L.) Ker Gawl.ApEN--4II444
Gagea pratensis (Pers.) Dumort.Ap---4VI179209209
Gaillardia aristata PurshD---0I111
Galeopsis bifida Boenn.Ap---2IV384545
Galeopsis ladanum L.ArLC--0III162020
Galeopsis pubescens Besser.Ns---5V95120120
Galeopsis tetrahit L.Ap---2III272929
Galinsoga ciliata (Raf.) S. F. BlakeKn---0II101010
Galinsoga parviflora Cav.Kn---0VIII338502504
Galium aparine L.Ap---1VIII355603606
Galium boreale L.Ns---7II91111
Galium mollugo L. s. str.Ap---2VII261359361
Galium odoratum (L.) Scop.NnNT--9I111
Galium palustre L.Ns---7VI190244245
Galium spurium L. subsp. spuriumAr---0VI170210210
Galium uliginosum L.Nn---8VI166225227
Galium verum L. s. str.Ap---4VII214269271
Genista tinctoria L.ApNT--5I111
Gentiana pneumonanthe L.NnCR--9I111
Gentianella uliginosa (Willd.) BörnerNnCRSEKW9II899
Geranium molle L.Ar---0IV313535
Geranium palustre L.NnLC--9III151717
Geranium pratense L.Ap---4VI110149150
Geranium pusillum Burm. F. ex L.Ar---0VII254362364
Geranium pyrenaicum Burm. F.Kn---0II101010
Geranium robertianum L.Ap---2VI166209209
Geranium sanguineum L.NnNT--8I122
Geum rivale L.Nn---8III121313
Geum urbanum L.Ap---3VII195255256
Glaux maritima L.NsCRSKW6I222
Glechoma hederacea L.Ap---2VII266385387
Gleditschia triacanthos L.D---0I222
Glyceria fluitans (L.) R. Br.Ns---6IV353636
Glyceria maxima (Hartm.) Holmb.Nn---6V99119119
Glyceria notata Chevall.Ns---6IV373940
Gnaphalium sylvaticum L.Ap---4I222
Gnaphalium uliginosum L.Ap---4III192626
Gypsophila fastigiata L.Nn---8I111
Gypsophila muralis L.Ap---2II677
Gypsophila paniculata L.D---0II366
Hedera helix L.D---0I222
Helianthus tuberosus L.Kn---0II777
Helichrysum arenarium (L.) MoenchAp---2V668485
Hemerocallis fulva L.D---0II333
Heracleum sibiricum L.Ap---1VII255368369
Herniaria glabra L.Ap---1II466
Hesperis matronalis L. subsp. matronalisD---0II666
Hieracium lachenalii C. C. Gmel.Nn---7II91010
Hieracium laevigatum Willd.NnNT--7I111
Hieracium murorum L.Nn---7III111314
Hieracium pilosella L.Ap---1V689091
Hieracium piloselloides Vill.ApNTW-2I222
Hieracium sabaudum L.NnLC--7II555
Hieracium umbellatum L.ApNT--6II566
Hippuris vulgaris L.NnVU--8II677
Holcus lanatus L.Ap---4V92123123
Holcus mollis L.Ap---4I222
Holosteum umbellatum L.Ap---1V86124124
Hordeum murinum L.Ar---0III111313
Hottonia palustris L.Nn---7II333
Humulus lupulus L.Ns---5V86101101
Hydrocharis morsus-ranae L.NnLC--9IV424848
Hydrocotyle vulgaris L.NnVU-K9III161818
Hyoscyamus niger L.Ar---0III181919
Hypericum maculatum CrantzNsLC--6I111
Hypericum montanum L.NnVU--9II333
Hypericum perforatum L.Ap---1VI181227227
Hypericum tetrapterum Fr.Nn---9V586262
Hypochoeris glabra L.ApVU--1II333
Hypochoeris maculate L.NnCR--8I111
Hypochoeris radicata L.Ap---2IV465555
Impatiens glandulifera RoyleKn---0I222
Impatiens noli-tangere L.NnLC--8II666
Impatiens parviflora DC.Kn---0III121515
Inula britannica L.Ns---4V108155156
Inula salicina L.NnEN-K7I222
Iris pseudacorus L.Nn---6VII241363363
Iva xanthiifolia Nutt.Kn---0I111
Jasione montana L.Ap---3II999
Juglans regia L.Kn---0II455
Juncus alpino-articulatus ChaixNnEN-KW8II777
Juncus articulates L. emend. K. Richt.Ns---6VI170235236
Juncus bufonius L.Ap---3VI119155155
Juncus compressus Jacq.Ap---1VI115142142
Juncus effusus L.Ap---4IV434545
Juncus inflexus L.Ns---5V91112112
Juncus ranarius J. O. E. Perrier & SongeonAp---3III131313
Knautia arvensis (L.) J. M. Coult.Ap---3V586767
Kochia scoparia (L.) Schrad.D---0II333
Lactuca serriola L.Ar---0VI147181183
Lamium album L.Ar---0II91010
Lamium amplexicaule L.Ar---0VII223312314
Lamium purpureum L.Ar---0VI127189189
Lapsana communis L. s. str.Ns---4V88106106
Lathyrus niger (L.) Bernh.NnVU--9II444
Lathyrus palustris L.NnNT-KW8IV424949
Lathyrus pratensis L.Ap---3V96118118
Lathyrus sylvestris L.Ap---3I222
Lathyrus tuberosus L.Ar---0II677
Lathyrus vernus (L.) Bernh.NnVU--10II444
Lavatera thuringiaca L.ApVUNWKW3III111212
Lemna gibba L.NsNT--5I222
Lemna minor L.Ns---5VI174203203
Lemna trisulca L.Nn---8V656969
Leontodon autumnalis L. subsp. autumnalisAp---2VI191247249
Leontodon hispidus L. subsp. hispidusNs---6IV536061
Leonurus cardiac L.Ar---0IV323435
Lepidium ruderale L.Ar---0V838890
Leucanthemum vulgare Lam. s. str.Ns---6III151616
Levisticum officinale W. D. J. KochD---0II333
Libanotis pyrenaica (L.) Bourg.ApVU--6II777
Ligustrum vulgare L.Kn---0III131313
Lilium martagon L.NnVU--10II333
Linaria vulgaris Mill.Ap---2VI184225227
Linum catharticum L.NnNT--8IV435858
Liparis loeselii (L.) Rich.NnCR--10I111
Listera ovata (L.) R. Br.NnEN--9II555
Lithospermum arvense L.Ar---0VII243341344
Lithospermum officinale L.NnVU-K9IV405353
Lolium multiflorum Lam.Kn---0III232424
Lolium perenne L.Ap---1VIII445769772
Lonicera tatarica L.D---0I222
Lotus corniculatus L.Ap---1VI136160161
Lotus tenuis Waldst. & Kit. ex Willd.NsEN-KW8III202828
Lotus uliginosus SchkuhrNn---8III111313
Lunaria annua L.D---0I111
Lupinus polyphyllus Lindl.Kn---0I222
Luzula campestris (L.) DC.Ns---6IV414444
Luzula multiflora (Retz.) Lej.Nn---7II333
Luzula pilosa (L.) Willd.Nn---8III111414
Lychnis flos-cuculi L.Nn---7V647576
Lycium barbarum L.Kn---0V565960
Lycopus europaeus L.Ns---5VII246378379
Lysimachia nummularia L.Ns---6VI133168168
Lysimachia thyrsiflora L.NnLC--9IV475151
Lysimachia vulgaris L.Ns---6VIII281452453
Lythrum salicaria L.Nn---6VII259385388
Mahonia aquifolium (Pursh) Nutt.D---0I111
Maianthemum bifolium (L.) F. W. SchmidtNn---9III192424
Malus domestica Borkh.Kn---6VI125137138
Malva alcea L.ArNT--0II888
Malva neglecta Wallr.Ar---0VI162192195
Malva pusilla Sm.Ar-W-0VI151168170
Malva sylvestris L.Ar---0III272929
Matricaria naritima L. subsp. inodora (L.) DostálAr---0VIII368651653
Matteucia struthiopteris (L.) Tod.D---0I111
Medicago falcata L.Ap---4VI113125126
Medicago lupulina L.Ap---1VIII274443446
Medicago sativa L. s. str.Kn---0VI126142143
Medicago x varia MartynKn---0IV424444
Melampyrum pratense L.Nn---8II799
Melandrium album (Mill.) GarckeAp---1VIII413692694
Melandrium noctiflorum (L.) Fr.Ar---0VI153197197
Melica nutans L.NnLC--10I222
Melilotus alba Medik.Ap---1V647575
Melilotus dentata (Waldst. & Kit.) Pers.NnVU-KW7III212525
Melilotus officinalis (L.) Pall.Ap---1III111212
Mentha aquatica L.Nn---6VII257401401
Mentha arvensis L.Ap---2V668282
Mentha spicata L. emend L.D---0I222
Mentha x piperita Ehrh. subsp. citrataD---0I111
Mentha x verticillata L.Ap---2IV303636
Menyanthes trifoliata L.NnVU--10III151818
Milium effusum L.Nn---8II91010
Moehringia trinervia (L.) Clairv.Ns---6V768889
Molinia caerulea (L.) Moench s. str.Nn---7V558181
Morus alba L.D---0II333
Muscari botryoides (L.) Mill.D---0I222
Mycelismuralis (L.) Dumort.Ns---6IV354040
Myosotis arvensis (L.) Hill.Ar---0VIII341564569
Myosotis caespitosa SchultzNsVU--4I111
Myosotis palustris (L.) L. emend. Rchb. subsp. palustrisNn---7VI184242243
Myosotis ramosissima RochelNsLC--6II888
Myosotis sylvatica Ehrh. ex Hofmm.D---0I111
Myosotis sparsiflora PohlApVU--4I222
Myosotis stricta Link ex Roem. &Schult.Ap---2VI134196196
Myosoton aquaticum (L.) MoenchAp---4VI155192193
Myosurus minimus L.Ap---3III273131
Myriophyllum spicatum L.Nn---8III121212
Myriophyllum verticillatum L.Nn---8II799
Najas marina L.NnEN--10I111
Narcissus poëticus L.D---0II888
Nasturtium officinale R. Br.NnCRNEKW9II333
Nepeta cataria L.ArVU--0II566
Neslia paniculata (L.) Desv.ArVU--0III171818
Nigella damascene L.D---0I111
Nuphar lutea (L.) Sibth. & Sm.Nn---8V718383
Nymphaea alba L.NnNT--10III121717
Odontites serotina (Lam.) Rchb. s. str.Ns---6V94121121
Odontites verna (Bellardi) Dumort.ArVU--0II101010
Oenanthe aquatica L. Ns---5V576464
Oenothera biennis L. s. str.Ap---1IV284343
Ononis arvensis L.Ns-WKW5V566969
Onopordum acanthium L.Ar---0IV383840
Origanum vulgare L.ApVU--5III121313
Ornithogalum nutans L.D---0I111
Ornithogalum umbellatum L.Kn---0II999
Ostericum palustre BesserNnENW-8I222
Oxalis acetosella L.Nn---9I222
Oxalis fontana BungeKn---0II799
Padus avium Mill.Nn---6V107129129
Padus serotina (Ehrh.) Borkh.Kn---0II555
Paeonia officinalis L.D---0I111
Papaver argemone L.Ar---0VI147185185
Papaver dubium L.Ar---0IV496262
Papaver rhoeas L.Ar---0VIII378600604
Paris quadrifolia L.NnVU--10III181919
Parnassia palustris L.NnEN-KW10IV344242
Parthenocissus quinquefolia (L.) Planch. in A & C. DC.D---0II333
Pastinaca sativa L. s. str.Ap---2VI172236236
Pedicularis palustris L.NnCR--10I111
Petasites hybridus (L.) P. Gaertn., B. Mey. &Scherb.Ap---5I233
Petrorhagia prolifera (L.) P. W. Ball. & HeywoodAp-E-3I111
Peucedanum cervaria (L.) Lapeyr.NnEN--9II333
Peucedanum oreoselinum (L.) MoenchNs---7III212424
Peucedanum palustre (L.) MoenchNnLC--9IV354848
Phacelia tanacetifolia Benth.D---0II333
Phalaris arundinacea L. Ns---5VII233326328
Philadelphus coronarius L.D---0I111
Phleum phleoides (L.) H. Karst.NsVU--7II333
Phleum pratense L.Ap---4VI178223223
Phragmites australis (Cav.) Trin. ex Steud.Ns---4VIII331495495
Physalis alkekengi L.D---0I222
Phyteuma spicatum L.NnEN--10I111
Picea abies (L.) H. Karst.Kn---0II677
Picris hieracioides L. subsp. hieracioidesAp---1II666
Pimpinella major (L.) Huds.NnNT--8II888
Pimpinella nigra Mill.Ap---3VII223278280
Pinus banksiana Lamb.D---0I111
Pinus nigra J. F. ArnoldD---0I111
Pinus sylvestris L.Ap---5V789999
Plantago arenaria Waldst. & Kit.ApNT--3II101111
Plantago inermedia Gilib.Ap---2IV343737
Plantago lanceolata L.Ap---1VII259363365
Plantago major L. s. str.Ap---1VIII413580584
Plantago media L.Ap---5VI124151153
Platanus x acerifolia (Aiton) Willd.D---0I111
Poa annua L.Ap---1VIII352475477
Poa compressa L. subsp. compressaAp---1V637070
Poa nemoralis L. subsp. nemoralisNs---6IV414747
Poa palustris L.Nn---6V849494
Poa pratensis L. s. str.Ap---1VIII471882885
Poa trivialis L.Ns---6VII249345346
Polygala amarelle CrantzNnVU--8II455
Polygala comosa SchkuhrNnNT--7III151616
Polygala vulgaris L. s. str.NnVU--8II477
Polygonatum multiflorum (L.) All.NnNT--9I222
Polygonatum odoratum (Mill.) DruceNnNT--9III151818
Polygonum amphibium L.Ap---4VIII348588590
Polygonum aviculare L.Ap---1VIII445874878
Polygonum bistorta L.NnNT--8III131313
Polygonum hydropiper L.Ap---3III111111
Polygonum lapathifolium L. subsp. lapathifoliumAp---1VII192236236
Polygonum lapathifolium L. subsp. pallidum (With.) Fr.Ap---1VII193238238
Polygonum minus Huds.Ap---3II788
Polygonum mite SchrankAp---3II666
Polygonum persicaria L.Ap---1VI191242243
Polypodium vulgare L.NnVU--9II555
Populus alba L.Ap---3V829798
Populus candicans AitonD---0II101010
Populus ‘Hybrida’ 275D---0II101111
Populus nigra L.NsVU--7III212424
Populus nigra L. ‘Italica’D---0I222
Populus tremula L.Ap---2VI110132132
Populus x canadensis Moench.D---0VI122143143
Portulaca oleracea L. subsp. oleraceaKn---0I111
Potamogeton compressus L.NnVU--9I111
Potamogeton crispus L.NnNT--7II777
Potamogeton gramineus L.NnVU--9I111
Potamogeton lucens L.NnVU--10I111
Potamogeton natans L.NnNT--8II799
Potamogeton nodosus Poir.NnLC--9II444
Potamogeton pectinatus L.Nn---8V556666
Potamogeton perfoliatus L.NnNT--10II101010
Potamogeton pusillus L.NnEN--10I111
Potentilla anserina L.Ap---3VIII295489492
Potentilla arenaria Borkh.Ap---5III244040
Potentilla argentea L. s. str.Ap---1V98118118
Potentilla collina Wibel. s. str.Ap---4II666
Potentilla erecta (L.) Raeusch.NnNT--9III152121
Potentilla heptaphylla L.NsVU--7II333
Potentilla recta L.ApNT--5I111
Potentilla reptans L.Ap---1VII232316318
Potentilla supina L.ApVU--3I222
Primula veris L.Ns---7III182323
Prunella vulgaris L.Ap---3VI126168168
Prunus cerasifera Ehrh.Kn---0IV535757
Prunus domestica L. subsp. domesticaD---0III232323
Prunus spinosa L.Ap---4V101129129
Pteridium aquilinum (L.) Kuhn.Nn---7III131616
Puccinellia distans (Jacq.) Parl.Ap---1IV354040
Pulmonaria obscura Dumort.NnVU--10II333
Pulsatilla pratensis (L.) Mill.NnCR--8I111
Pyrola rotundifolia L.NnEN--10I111
Pyrus pyraster (L.) Burgsd.Ns---5VII220262262
Quercus petraea (Matt.) Liebl.Nn---9IV283333
Quercus robur L.Ns---7VI125160160
Quercus rubra L.Kn---0II999
Ranunculus acris L. s. str.Ns---5VII271404406
Ranunculus auricomus L. s. l.NnNT--8I111
Ranunculus bulbosus L.Ap---5IV395151
Ranunculus flammula L.Ns---7I222
Ranunculus lanuginosus L.NnNT--9I111
Ranunculus lingua L.NnNT--10III171818
Ranunculus polyanthemos L.NsEN--8I222
Ranunculus repens L.Ap---3VIII299451453
Ranunculus sardous CrantzApVU--4II688
Ranunculus sceleratus L.Ap---5V869797
Raphanus raphanistrum L.Ar---0VI160223224
Reseda lutea L.Kn---0I222
Reynoutria japonica Houtt.D---0II444
Rhamnus cathartica L.Ns---4VI175229229
Rheum rhabarbarum L.D---0I111
Rhinanthus serotinus (Schönh.) Oborný subsp. serotinusNs---5V85129129
Rhus typhina L.D---0I111
Ribes aureum PurshD---0II777
Ribes nigrum L.Nn---9IV444949
Ribes spicatum E. RobsonNn---7V667373
Ribes uva-crispa L. subsp. uva-crispaKn---0II999
Robinia pseudacacia L.Kn---0VI164188188
Rorippa amphibia (L.) Besser.Nn---7VI148179179
Rorippa palustris (L.) Besser.Ap---4IV434646
Rorippa sylvestris (L.) Besser.Ap---4IV434444
Rosa canina L.Ap---4VI154182183
Rosa dumalis Bechst. emend. BoulengerAp---4III242525
Rosa inodora Fr.Ap-N-4I222
Rosa rubiginosa L.Ap---5II555
Rosa rugosa Thunb.D---0I222
Rosa sherardii DaviesAp---5IV303030
Rosa villosa L.ApNTSE-5I222
Rubus armeniacus Focke.Kn---0I111
Rubus caesius L.Ns---3VIII333485486
Rubus corylifolius Sm. agg.Ap---5II666
Rubus fabrimontanus (Sprib.) Sprib.ApVUN-5II333
Rubus grabowskii Weihe ex Güenther ex All.Ap-NE-5I222
Rubus gracilis J. Presl. & C. Presl.Ns-N-6III242828
Rubus idaeus L.Ns---5V637171
Rubus nessensis Hall.Nn---6I233
Rubus plicatus Weihe & NeesNn---5I222
Rubus posnaniensis Sprib.NnVUN-6I111
Rubus saxatilis L.Nn---9II444
Rubus sprengelii WeiheNn-NE-6I222
Rudbeckia laciniata L.D---0I111
Rumex acetosa L.Ap---2VIII275383385
Rumex acetosella L.Ap---2VI165310312
Rumex conglomerates Murray.NsNT--7I111
Rumex crispus L.Ap---1VII262360362
Rumex hydrolapathum Huds.Nn---6VI183229230
Rumex maritimus L.Ap---4V768181
Rumex obtusifolius L.Ap---1VI144166167
Rumex palustris Sm.ApVU--4III161616
Rumex thyrsiflorus Fingerh.Ap---2III111111
Sagina nodosa (L.) Fenzl.NnNT--8III171919
Sagina procumbens L.Ap---1II333
Sagittaria sagittifolia L.NnVU--9II666
Salix acutifolia Willd.D---0II666
Salix alba L.Ap---2VI191233233
Salix aurita L.Nn---8II333
Salix caprea L.Ap---3IV424242
Salix cinerea L.Nn---6VIII312452455
Salix cordata Michx.D---0I122
Salix fragilis L.Ap---5VI171214215
Salix pentandra L.Nn---8IV394444
Salix purpurea L.Ns---4VI147191191
Salix repens L. subsp. rosmarinifolia (L.) Hartm.NnVU--9III213131
Salix triandra L.Ns---6III141414
Salix viminalis L.Ap---5V667070
Salix x dasyclados Wimm.Nn---7II555
Salsola kali subsp. ruthenica (Iljin) SoóKn---0I111
Salvia nemorosa L.D---0I111
Salvia pratensis L.Ap---6III141414
Sambucus nigra L.Ap---1VIII365547549
Sambucus racemosa L.Kn---0III111313
Sanguisorba officinalis L.NnNT--8II599
Sanicula europaea L.NnNT--9I222
Saponaria officinalis L.Ap---2V647171
Sarothamnus scoparius (L.) W. D. J. KochKn---0II799
Saxifraga granulata L.NnNT--7I222
Saxifraga tridactylites L.Ap---1V556868
Scabiosa canescens Waldst. & Kit.NnCRE-8I111
Schoenoplectus lacustris (L.) PallaNn---8IV343838
Schoenoplectus tabernaemontani (C. C. Gmel.) PallaNn---9V556565
Scirpus sylvaticus L.Nn---7V93111111
Scleranthus annuus L.Ar---0V109170171
Scleranthus perennis L.Ap---3I144
Scolochloa festucacea (Willd.) LinkNnVUSWKW10III171818
Scorzonera humilis L.NnNT--9II333
Scrophularia nodosa L.Ns---5III172020
Scrophularia umbrosa Dumort.Nn---9V596767
Scutellaria galericulata L.Nn---8V98115115
Sedum acre L.Ap---1IV486464
Sedum maximum (L.) Hoffm.Ns---5IV414849
Sedum reflexum L.NnNTE-7I111
Sedum spurium M. Bieb.D---0I222
Selinum carvifolia (L.) L.NnLC--7III192626
Senecio congestus (R. Br.) DC.NnNT--7III232424
Senecio erucifolius L.NnCR--7I111
Senecio jacobaea L.Ap---1V607272
Senecio sylvaticus L.Ap---4III121212
Senecio vernalis Waldst. & Kit.Kn---0V83112112
Senecio vulgaris L.Ar---0III222323
Serratula tinctoria L.NnVU--8III131616
Setaria pumila (Poir.) Roem. &Schult.Ar---0III262929
Setaria viridis (L.) P. Beauv.Ar---0VII203271273
Silene conica L.Kn---0II344
Silene vulgaris (Moench) GarckeAp---1V78102103
Silene nutans L. subsp. nutansNn---8II666
Silene otites (L.) WibelNsEN--7I111
Sinapis arvensis L.Ar---0VII270363364
Sisymbrium altissimum L.Kn---0III121414
Sisymbrium loeselii L.Kn---0IV424242
Sisymbrium officinale (L.) Scop.Ar---0VI167198200
Sium latifolium L.Nn---6VI185248248
Solanum dulcamara L.Ns---6VI160211211
Solanum nigrum L. emend. Mill.Ar---0VI140173174
Solidago canadensis L.Kn---0II788
Solidago gigantea AitonKn---0I111
Solidago virgaurea L. s. str.Nn---6III162222
Sonchus arvensis L. subsp. arvensisAp---3VII238351352
Sonchus asper (L.) HillAr---0V95117117
Sonchus oleraceus L.Ar---0V748787
Sorbaria sorbifolia (L.) A. BraunD---0I111
Sorbus aria (L.) CrantzD---0I111
Sorbus aucuparia L. emed. Hendl. subsp. aucupariaNs---6V80105105
Sorbus intermedia (Ehrh.) Pers.D---0II444
Sparganium emersum RehmannNs---8II333
Sparganium minimum Wallr.NnEN--9I222
Sparganium erectum L. emend. Rchb. s. str.Nn---7V727878
Spergula arvensis L. subsp. arvensisAr---0VI169253254
Spergula morisonii BoreauAp---2III212424
Spergularia rubra (L) J. Presl & C. PreslAp---2II666
Spirodela polyrhiza (L.) Schleid.Ns---7IV293535
Stachys annua (L.) L.ArVU--0II333
Stachys palustris L.Ns---6VI173252252
Stachys recta L.NnVU--8II333
Stachys sylvatica L.Nn---7III172020
Stellaria graminea L.Ap---4III252627
Stellaria media (L.) Vill.Ap---1VIII432848852
Stellaria palustris Retz.Nn---8V737676
Stellaria uliginosa MurrayNsVU--6I111
Stratiotes aloides L.Nn---9III111212
Succisa pratensis MoenchNnVU--9II91313
Symphoricarpos albus (L.) S. F. BlakeD---0III272828
Symphytum officinale L.Ns---5V88118118
Syringa vulgaris L.D---0IV353636
Tanacetum vulgare L.Ap---2III242627
Taraxacum officinale F. H. Wigg.Ap---1VIII427735739
Taraxacum palustre (Lyons) Symons agg.NnCR-KW8III121212
Tetragonolobus maritimus (L.) Roth.NnEN-KW8III141616
Teucrium scordium L.NnNT-KW8V91110110
Thalictrum flavum L.Nn---7VI138197197
Thalictrum lucidum L.NsVU--8I222
Thalictrum minus L. subsp. minusNsNT--7II777
Thelypteris palustris SchottNn---10V607474
Thladiantha dubia BungeD---0II888
Thlaspi arvense L.Ar---0VII232353356
Thymus pulegioides L.NnVU--6II455
Thymus serpyllum L. emend. Fr.ApNT--3II677
Tilia cordata Mill.Ap---4IV434848
Tilia platyphyllos Scop.D---0III191919
Torilis japonica (Hott.) DC.Ap---3VI163213215
Tragopogon dubius Scop.Ap---1III131414
Tragopogon pratensis L. s. str.Ap---2V98107109
Trifolium alpestre L.Ns---7II666
Trifolium arvense L.Ap---1V678587
Trifolium aureum PollichAp---4I111
Trifolium campestre Schreb.Ap---3III202626
Trifolium dubium Sibth.Ap---3IV363838
Trifolium fragiferum L. subsp. fragiferumNs---5V98127127
Trifolium hybridum L. subsp. hybridumNs---5IV313333
Trifolium medium L.Ap---4III222222
Trifolium montanum L.NnNT--6I222
Trifolium pratense L.Ap---2VII223316317
Trifolium repens L. subsp. repensAp---1VIII325491493
Triglochin maritimum L.NnVUSEKW6III121313
Triglochin palustre L.NnNT--8IV334242
Trisetum flavescens (L.) P. Beauv.ApNT--5I111
Trollius europaeus L. s. str.NnEN--8II455
Tussilago farfara L.Ap---1VI162203204
Typha angustifolia L.Nn---6V104117117
Typha latifolia L.Ns---4VI161198200
Ulmus glabra Huds.Ap---3V849292
Ulmus laevis Pall.Ns---4VI146181181
Ulmus minor Mill.Ap---3V647070
Urtica dioica L. subsp. dioicaAp---2VIII439784787
Urtica urens L.Ar---0VI119131133
Utricularia vulgaris L.NnNT--8III232424
Vaccinium myrtillus L.Nn---8II91010
Vaccinium vitis-idaea L.Nn---8II444
Valeriana dioica L. s. str.NnVU--9III232727
Valeriana officinalis L.Ns---4VI126161161
Valerianella dentata (L.) PollichArNT--0II666
Verbascum nigrum L.ApLC--3III141515
Verbascum phlomoides L.Ap---1V678080
Verbascum phoeniceum L.NnENW-7I111
Verbascum densiflorum Bertol.Ap---1II444
Veronica agrestis L.Ar---0IV323636
Veronica anagallis-aquatica L.Ns---6IV464848
Veronica arvensis L.Ar---0VII215294297
Veronica beccabunga L.Nn---7III131313
Veronica catenata PennellNsNT--7III222626
Veronica chamaedrys L. s. str.Ap---3VI180250251
Veronica dillenii CrantzAp---1III253838
Veronica hederifolia L.Ap---2VIII402559559
Veronica officinalis L.Ns---7III192424
Veronica opaca Fr.ArVU--0II555
Veronica persica Poir.Kn---0VI176261262
Veronica polita Fr.Ar---0VI142189190
Veronica praecox All.ApVU-KW1III111111
Veronica scutellata L.NnNT--8III121212
Veronica serpyllifolia L.Ap---3II444
Veronica spicata L. subsp. spicataNsNT--8II344
Veronica triphyllos L.Ar---0VII273343343
Veronica verna L.Ap---2III131818
Viburnum opulus L.Nn---8V657272
Vicia angustifolia L.Ar---0VI161235237
Vicia cassubica L.Nn---7III151818
Vicia cracca L.Ap---3VII199292294
Vicia dumetorum L.NsEN--8I111
Vicia grandiflora Scop.Kn---0III244141
Vicia hirsuta (L.) GrayAr---0VI131199201
Vicia lathyroides L.NsNTE-5I111
Vicia sativa L.D---0I222
Vicia sepium L.Ns---7III192222
Vicia tenuifolia RothNnVU--7II444
Vicia tetrasperma (L.) Schreb.Ar---0V617778
Vicia villosa RothAr---0VI121179182
Vinca minor L.D---0II344
Viola arvensis MurrayAr---0VIII414745751
Viola canina L. s. str.Ns---7III202222
Viola hirta L.NnNT--8III131717
Viola mirabilis L.NnVU--10I111
Viola odorata L.Ar---0V667373
Viola reichenbachiana Jord. ex BoreauNnNT--10III111111
Viola riviniana Rchb.Nn---8III192424
Viola rupestris F. W. SchmidtNnVU--8II888
Viola stagnina Kit.NnEN-KW9II888
Viscaria vulgaris RöhlNn---7I111
Viscum album L. subsp. albumAp---3II999
Xanthium albinum (Widder) H. ScholzKn---0II444
Xanthium strumarium L.Kn---0II555
Zannichellia palustris L. subsp. palustrisNnVU--8I111
Explanations: Column 1. Alphabetic list of species; Column 2. Floristic group based on origin status: nonsynanthropic native species (Nn), semi-synanthropic native species (Ns), apophytes (Ap), archaeophytes (Ar), kenophytes (Kn), diaphytes (D); Column 3. Frequency class: very rare (I), rare (II), infrequent (III), widely distributed (IV), moderately frequent (V), frequent (VI), common (VII), very common (VIII); Column 4. Significance of local resources: significant on the scale of Kuyavia (K), significant on the scale of Wielkopolska (W), significant for both regions: Kujavia and Wielkopolska (KW); Column 5. Chorological aspect: N, NE, E, SE, S, SW, W, or NW limit of species distribution; Column 6. Threat status of local resources according to IUCN criteria: critically endangered (CR), endangered (EN), vulnerable (VU), near threatened (NT), least concern (LC); Column 7. Coefficient of conservatism (c); Column 8. Number of grid cells; Column 9. Number of floristic lists; Column 10. Number of floristic data.

References

  1. Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
  2. Sala, O.E.; Stuart Chapin, F., III; Armesto, J.E.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global Biodiversity Scenarios for the Year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
  3. Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, Ü. Landscape Metrics and Indices: An Overview of Their Use in Landscape Research. Living Rev. Landsc. Res. 2009, 3, 1–28. [Google Scholar] [CrossRef]
  4. Moser, D.; Zechmeister, H.G.; Plutzar, C.; Sauberer, N.; Wrbka, T.; Grabherr, G. Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes. Landsc. Ecol. 2002, 17, 657–669. [Google Scholar] [CrossRef]
  5. Waldhardt, R.; Simmering, D.; Albrecht, H. Floristic diversity at the habitat scale in agricultural landscapes of Central Europe—Summary, conclusions and perspectives. Agric. Ecosyst. Environ. 2003, 98, 79. [Google Scholar] [CrossRef]
  6. Liira, J.; Schmidt, T.; Aavik, T.; Arens, P.; Augenstein, I.; Bailey, D.; Billeter, R.; Bukáček, R.; Burel, F.; De Blust, G.; et al. Plant functional group composition and large-scale species richness in European agricultural landscapes. J. Veg. Sci. 2008, 19, 3–14. [Google Scholar] [CrossRef]
  7. Grashof-Bokdam, J. Forest plants in an agricultural landscape in the Netherlands: Effects of habitat fragmentation. J. Veg. Sci. 1997, 8, 21–28. [Google Scholar] [CrossRef]
  8. Jaskulski, D.; Jaskulska, I. Plant diversity in agroecosystems and agricultural landscapes. In Biodiversity Conservation and Utilization in a Diverse World; Lameed, G.A., Ed.; InTech Open: London, UK, 2012; pp. 3–22. [Google Scholar] [CrossRef]
  9. Zarzycki, J.; Korzeniak, J.; Perzanowska, J. Impact of Land Use Changes on the Diversity and Conservation Status of the Vegetation of Mountain Grasslands (Polish Carpathians). Land 2022, 11, 252. [Google Scholar] [CrossRef]
  10. Szymura, T.H.; Szymura, M. Spatial structure of grassland patches in Poland: Implications for nature conservation. Acta Soc. Bot. Pol. 2018, 88, 1–13. [Google Scholar] [CrossRef] [Green Version]
  11. Krauss, J.; Klein, A.-M.; Steffan-Dewenter, I.; Tscharntke, T. Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodivers. Conserv. 2004, 13, 1427–1439. [Google Scholar] [CrossRef]
  12. Dauber, J.; Hirsch, M.; Simmering, D.; Waldhardt, R.; Otte, A.; Wolters, V. Landscape structure as an indicator of biodiversity: Matrix effects on species richness. Agric. Ecosyst. Environ. 2003, 98, 321–329. [Google Scholar] [CrossRef]
  13. Wrzesień, M.; Denisow, B. The effect of agricultural landscape type on field margin flora in south eastern Poland. Acta Bot. Croat. 2016, 75, 217–225. [Google Scholar] [CrossRef]
  14. Dániel-Ferreira, J.; Bommarco, R.; Wissman, J.; Öckinger, E. Linear infrastructure habitats increase landscape-scale diversity of plants but not of flower-visiting insects. Sci. Rep. 2020, 10, 21374. [Google Scholar] [CrossRef]
  15. Cousins, S.A.O. Plant species richness in midfield islets and road verges—The effect of landscape fragmentation. Biol. Conserv. 2006, 127, 500–509. [Google Scholar] [CrossRef]
  16. Vinter, T.; Dinnétz, P.; Danzer, U.; Lehtila, K. The relationship between landscape configuration and plant species richness in forests is dependent on habitat preferences of species. Eur. J. For. Res. 2016, 135, 1071–1082. [Google Scholar] [CrossRef]
  17. Gołdyn, H. Changes in plant species diversity of aquatic ecosystems in the agricultural landscape in West Poland in the last 30 years. Biodivers. Conserv. 2010, 19, 61–80. [Google Scholar] [CrossRef]
  18. Reidsma, P.; Tekelenburg, T.; van den Berg, M.; Alkemade, R. Impacts of land-use change on biodiversity: An assessment of agricultural biodiversity in the European Union. Agric. Ecosyst. Environ. 2006, 114, 86. [Google Scholar] [CrossRef]
  19. Gamrat, R.; Gałczyńska, M. Flora diversity of field forest patches in landscapes with varied geomorphological units and land use in Poland. Appl. Ecol. Environ. Res. 2021, 19, 1473–1489. [Google Scholar] [CrossRef]
  20. Barcikowski, A.; Cyzman, W.; Marchwiński, M.; Wojciechowska, A. Changes in floristic richness and diversity of phytocoenoses on riparian habitats affected by diverse land-use forms. Ecol. Quest. 2016, 23, 9–14. [Google Scholar] [CrossRef]
  21. Kiedrzyński, M.; Kiedrzyńska, E.; Witosławski, P.; Urbaniak, M.; Kurowski, J.K. Historical Land Use, Actual Vegetation, and the Hemeroby Levels in Ecological Evaluation of an Urban River Valley in Perspective of Its Rehabilitation Plan. Pol. J. Environ. Stud. 2014, 23, 109–117. Available online: http://www.pjoes.com/pdf-89173-23032?filename=Historical%20Land%20Use_.pdf (accessed on 15 November 2022).
  22. Deutschewitz, K.; Lausch, A.; Kühn, I.; Klotz, S. Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Glob. Ecol. Biogeogr. 2003, 12, 299–311. [Google Scholar] [CrossRef]
  23. Kumar, S.; Stohlgren, T.J.; Chong, G.W. Spatial heterogeneity influences native and nonnative plant species richness. Ecology 2006, 87, 3186–3199. [Google Scholar] [CrossRef] [PubMed]
  24. Collingham, Y.C.; Wadsworth, R.A.; Huntley, B.; Hulme, P.E. Predicting the spatial distribution of non-indigenous riparian weeds: Issues of spatial scale and extent. J. Appl. Ecol. 2000, 37 (Suppl. 1), 13–27. [Google Scholar] [CrossRef]
  25. Honnay, O.; Piessens, K.; Van Landuyt, W.; Hermy, M.; Gulinck, H. Satellite based land use and landscape complexity indices as predictors for regional plant species diversity. Landsc. Urban Plan. 2003, 63, 241–250. [Google Scholar] [CrossRef]
  26. Balvanera, P.; Andrea, B.; Pfisterer, A.B.; Buchmann, N.; He, J.-S.; Nakashizuka, T.; Raffaelli, D.; Schmid, B. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 2006, 9, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
  27. Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.; Raffaelli, D.; Schmid, B.; et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef]
  28. Petchey, O.L.; Gaston, K.J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 2002, 5, 402–411. [Google Scholar] [CrossRef]
  29. Petchey, O.L.; Gaston, K.J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 2006, 9, 741–758. [Google Scholar] [CrossRef]
  30. Petchey, O.L.; Gaston, K.J. Effects on ecosystem resilience of biodiversity, extinctions, and the structure of regional species pools. Theor. Ecol. 2009, 2, 177–187. [Google Scholar] [CrossRef]
  31. Roscher, C.; Schumacher, J.; Gubsch, M.; Lipowsky, A.; Weigelt, A.; Buchmann, N.; Schulze, E.-D. Using Plant Functional Traits to Explain Diversity–Productivity Relationships. PLoS ONE 2012, 7, e36760. [Google Scholar] [CrossRef]
  32. Council of Europe Landscape Convention 1 as Amended by the 2016 Protocol. Available online: https://rm.coe.int/16807b6bc7 (accessed on 18 November 2022).
  33. Europejska Konwencja Krajobrazowa (Dz. U., 2006, Nr 14, poz. 98). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20060140098 (accessed on 18 January 2023).
  34. Myga-Piątek, U.; Nita, J. Polityka krajobrazowa Polski—U progu wdrożeń [Landscape policy of Poland—The initial stage of implementation]. Przegląd Geogr. 2015, 87, 5–25. [Google Scholar] [CrossRef]
  35. Audyt Krajobrazowy Województwa Wielkopolskiego. Projekt. Wielkopolskie Biuro Planowania Przestrzennego. Available online: https://wbpp.poznan.pl/72/audyt-krajobrazowy-wojewodztwa-wielkopolskiego.html (accessed on 18 January 2023).
  36. Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-Geographical Mesoregions of POLAND: Verification and Adjustment of Boundaries on the Basis of Contemporary Spatial Data. Geogr. Pol. 2018, 2, 143–170. [Google Scholar] [CrossRef]
  37. Hładyłowicz, K.J. Zmiany krajobrazu i rozwój osadnictwa w Wielkopolsce od XIV do XIX wieku. Bad. z DziejówSpołecznych I Gospod. 1932, 12, 1–256. [Google Scholar]
  38. Strzemski, M. Znaczenie badań z zakresu historii kultury materialnej dla poznania tła przeobrażeń stosunków przyrodniczych w Wielkopolsce i na Kujawach. Zesz. Probl. Post. Nauk Roln. 1956, 7, 7–11. [Google Scholar]
  39. Puckalanka, U. Zasięg Gopła i jego połączenie w naszej erze. Przegl. Zach. 1952, 12, 575–584. [Google Scholar]
  40. Falkowski, M.; Karłowska, G. Rys historyczny przebiegu gospodarki łąkowo-pastwiskowej w dolinie rzeki Noteci I jej dopływów. Roczn. Nauk Roln. 1957, 72, 431–558. [Google Scholar]
  41. Chmiel, J.; Kupczyk, M. Stan poznania przyrody Nadgoplańskiego Parku Tysiąclecia i jego najcenniejsze walory. Stud. Lednickie 1996, IV, 29–38. Available online: https://bazhum.muzhp.pl/media/files/Studia_Lednickie/Studia_Lednickie-r1996-t4/Studia_Lednickie-r1996-t4-s29-38/Studia_Lednickie-r1996-t4-s29-38.pdf (accessed on 18 January 2023).
  42. Chmiel, J. Refuges of forest species in the agricultural landscape (exemplified by the Gniezno Lake District). In Phytocoenosis Supplementum Cartographiae Geobotanicae 9. Synanthropization of Plant Cover in New Polish Research; Faliński, J.B., Adamowski, W., Jackowiak, B., Eds.; Antiquariat Bookfarm: Löbnitz, Germany, 1998; Volume 9, pp. 229–236. [Google Scholar]
  43. Chmiel, J. Chosen aspects of synanthropization and protection of the Flora of the Nadgoplański Millennium Park. Publ. Dep. Plant Taxon. Adam Mickiewicz Univ. Poznań 2000, 10, 201–216. [Google Scholar]
  44. Zemanek, B. Flora roślin naczyniowych Bieszczadzkiego Parku Narodowego—Waloryzacja i ochrona gatunków rzadkich i zagrożonych. Roczn. Bieszcz. 1995, 4, 51–253. [Google Scholar]
  45. Jackowiak, B. Struktura przestrzenna dużego miasta. Studium metodyczno-problemowe. Pr. ZakładuTaksonomii Roślin UAM w Pozn. 1998, 8, 1–227. [Google Scholar]
  46. Chmiel, J. Zróżnicowanie przestrzenne flory jako podstawa ochrony przyrody w krajobrazie rolniczym. Pr. Zakładu Taksonomii Roślin UAM w Pozn. 2006, 14, 1–250. [Google Scholar]
  47. Swink, F.; Wilhelm, G. Plants of the Chicago Region, 3rd ed.; The Morton Arboretum: Lisle, IL, USA, 1979; Available online: https://conservationresearchinstitute.org/files/history/plants_of_the_chicago_region.pdf (accessed on 10 November 2022).
  48. Ladd, D. The Missouri Floristic Quality Assessment System; The Nature Conservancy: St. Louis, MO, USA, 1993. [Google Scholar]
  49. Ladd, D.; Thomas, J.R. Ecological checklist of the Missouri flora for floristic quality assesment, Phytoneuron2015, 12, 1–274. Available online: https://www.phytoneuron.net/2015Phytoneuron/12PhytoN-MissouriFlora.pdf (accessed on 18 January 2023).
  50. Taft, J.B.; Wilhelm, G.D.; Ladd, D.M.; Masters, L.A. Floristic Quality Assessment for vegetation in Illinois, a method for assessing vegetation integrity. Erigenia 1997, 15, 1–24. Available online: https://wwv.inhs.illinois.edu/files/5413/4021/3268/Wilhelm_Illinois_FQA.pdf (accessed on 10 November 2022).
  51. Matthews, J.W.; Tessene, P.A.; Wiesbrook, S.M.; Zercher, B.W. Effect of area on isolation on species richness and indices of floristic quality in Illinois, USA wetlands. Wetlands 2005, 25, 607–615. [Google Scholar] [CrossRef]
  52. Zinnen, J.; Spyreas, G.; Zaya, D.N.; Matthews, J.W. Niche ecology in Floristic Quality Assessment: Are species with higher conservatism more specialized? Ecol. Indic. 2021, 121, 107078. [Google Scholar] [CrossRef]
  53. Spyreas, G. Scale and sampling effects on Floristic Quality. PLoS ONE. 2016, 11, e0160693. [Google Scholar] [CrossRef] [PubMed]
  54. Spyreas, G. Floristic Quality Assessment: A critique, a defense, and a primer. Ecosphere 2019, 10, e02825. [Google Scholar] [CrossRef]
  55. Bauer, J.T.; Kozioł, L.; Bever, J. Ecology of Floristic Quality Assessment: Testing for correlations between coefficients of conservatism, species traits and mycorrhizal responsiveness. AOB Plants 2018, 10, plx073. [Google Scholar] [CrossRef]
  56. Bried, J.T.; Jog, S.K.; Matthews, J.W. Floristic quality assessment signals human disturbance over natural variability in a wetland system. Ecol. Indic. 2013, 34, 260–267. [Google Scholar] [CrossRef]
  57. Herman, K.D.; Masters, L.A.; Penskar, M.R.; Reznicek, A.A.; Wilhelm, G.S.; Brodovich, W.W.; Gardiner, K.P. Floristic Quality Assessment with Wetland Categories and Examples of Computer Applications for the State of Michigan, 2nd ed.; Michigan Department of Natural Resource, Wildlife Division, Natural Heritage Program: East Lansing, MI, USA, 2001; Available online: https://www2.dnr.state.mi.us/publications/pdfs/HuntingWildlifeHabitat/FQA.pdf (accessed on 10 November 2022).
  58. Chu, S.; Molano-Flores, B. Impacts of agricultural to urban land-use change on Floristic Quality Assessment indicators in Northeastern Illinois wetlands. Urban Ecosyst. 2013, 16, 235–246. [Google Scholar] [CrossRef]
  59. Cohen, M.J.; Carstenn, S.; Lane, C.R. Floristic quality indices for biotic assessment of depressional marsh condition in Florida. Ecol. Appl. 2004, 14, 784–794. [Google Scholar] [CrossRef] [Green Version]
  60. Nichols, S.A. Floristic Quality Assessment of Wisconsin Lake Plant Communities with Example Applications. Lake Reserv. Manag. 1999, 15, 133–141. [Google Scholar] [CrossRef]
  61. Jackowiak, B. Antropogeniczne przemiany flory roślin naczyniowych Poznania. Wyd. Nauk. UAM 1990, 42, 1–232. [Google Scholar]
  62. Thellung, A. Pflanzenwanderungen unter dem Einfluss des Menschen. Engler Bot. Jahrb. 1915, 116, 37–68. [Google Scholar]
  63. IUCN. 2021; The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/search (accessed on 10 November 2022).
  64. Zając, A.; Zając, M. (Eds.) Atlas Rozmieszczenia Roślin Naczyniowych w Polsce; Instittute of Botany University of Jagielloński: Kraków, Poland, 2001; pp. 1–715. [Google Scholar]
  65. Dušek, R.; Popelková, R. Theoretical view of the Shannon Index in the Evaluation of Landscape Diversity. Acta Univ. Carolinae. Geographica. Univerzita Karlova 2012, 47, 5–13. [Google Scholar] [CrossRef]
  66. Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Zając, M. Vascular Plants of Poland: An Annotated Checklist; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2020; pp. 1–526. [Google Scholar]
  67. Phillips, A. The nature of cultural landscapes—A nature conservation perspective. Landsc. Res. 1998, 23, 21–38. [Google Scholar] [CrossRef]
  68. Szwed, W.; Ratyńska, H.; Danielewicz, W.; Mizgajski, A. Przyrodnicze Podstawy Kształtowania Marginesów Ekologicznych w Wielkopolsce; Wydawnictwo Katedry Botaniki Leśnej w Poznaniu: Poznań, Poland, 1999; pp. 1–144. [Google Scholar]
  69. Loh, J.; Harmon, D. A global index of biocultural diversity. Ecol. Indic. 2005, 5, 231–241. [Google Scholar] [CrossRef]
  70. Cohen, M.; Bilodeau, C.; Alexandre, F.; Godron, M.; Andrieu, J.; Grésillon, E.; Garlatti, F.; Morganti, A. What is the plant biodiversity in a cultural landscape? A comparative, multi-scale and interdisciplinary study in olive groves and vineyards (Mediterranean France). Agric. Ecosyst. Environ. 2015, 212, 175–186. [Google Scholar] [CrossRef]
  71. Baiamonte, G.; Domina, G.; Ramondo, F.M.; Bazan, G. Agricultural landscapes and biodiversity conservation: A case study in Sicily (Italy). Biodivers. Conser. 2015, 24, 3201–3216. [Google Scholar] [CrossRef]
  72. Roschewitz, I.; Gabriel, D.; Tscharntke, T.; Thies, C. The effects of landscape complexity on arable weed species diversity in organic and conventional farming. J. Appl. Ecol. 2005, 42, 873–882. [Google Scholar] [CrossRef]
  73. Gonthier, D.J.; Ennis, K.K.; Farinas, S.; Hsieh, H.-Y.; Iverson, A.L.; Batáry, P.; Rudolphi, J.; Tscharntke, T.; Cardinale, B.J.; Perfecto, I. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. B 2014, 281, 20141358. [Google Scholar] [CrossRef]
  74. Tilman, D.; Fargone, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef]
  75. Baum, S.; Weih, M.; Busch, G.; Kroiher, F.; Bolte, A. The impact of Short Rotation Coppice plantations on phytodiversity. Landbauforschung—vTI. Agric. For. Res. 2009, 3, 163–170. Available online: https://scholar.google.com/scholar_lookup?title=The+impact+of+Short+Rotation+Coppice+plantations+on+phytodiversity.+Landbauforsch&author=Baum,+S.&author=Weih,+M.&author=Busch,+G.&author=Kroiher,+F.&author=Bolte,+A.&publication_year=2009&journal=Vti+Agric.+For.+Res.&volume=3&pages=163%E2%80%93170 (accessed on 27 December 2022).
  76. Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Quine, C.P.; Sayer, J. Plantation forests and biodiversity: Oxymoron or opportunity? Biodivers. Conserv. 2008, 17, 925–951. [Google Scholar] [CrossRef]
  77. Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling Food Production and Biodiversity Conservation: Land Sharing and Land Sparing Compared. Science 2011, 333, 1289–1291. [Google Scholar] [CrossRef]
  78. Hanspach, J.; Loos, J.; Dorresteijn, I.; Abson, D.J.; Fischer, J. Characterizing social–ecological units to inform biodiversity conservation in cultural landscapes. Biodivers. Distrib. 2016, 22, 853–864. [Google Scholar] [CrossRef]
  79. Beilin, R.; Lindborg, R.; Stenseke, M.; Pereira, H.M.; Llausàs, A.; Slätmo, E.; Cerqueira, Y.; Navarro, L.; Rodrigues, P.; Reichelt, N.; et al. Analysing how drivers of agricultural land abandonment affect biodiversity andcultural landscapes using case studies from Scandinavia, Iberia and Oceania. Land Use Policy 2014, 36, 60–72. [Google Scholar] [CrossRef]
  80. Wania, A.; Kuhn, I.; Klotz, S. Plant richness patterns in agricultural and urban landscapes in Central Germany—Spatial gradients of species richness. Landsc. Urban Plan. 2006, 75, 97–110. [Google Scholar] [CrossRef]
  81. Pyšek, P. Alien and native species in Central European urban floras. A quantitative comparison. J. Biogeogr. 1998, 25, 155–163. [Google Scholar] [CrossRef]
  82. Fleishman, E.; Noss, R.F.; Noon, B.R. Utility and limitations of species richness metrics for conservation planning. Ecol. Indic. 2006, 6, 543–553. [Google Scholar] [CrossRef]
  83. Reemts, C.M.; Eidson, J.A. Choosing Plant Diversity Metrics: A Tallgrass Prairie Case Study. Ecol. Restor. 2019, 37, 233–245. [Google Scholar] [CrossRef]
  84. Heywood, V.H.; Iriondob, J.M. Plant conservation: Old problems, new perspectives. Biol. Conserv. 2003, 113, 321–335. [Google Scholar] [CrossRef]
  85. Brudvig, L.A.; Damschen, E.I.; Tewksbury, J.J.; Douglas, J.; Levey, D.J. Landscape connectivity promotes plant biodiversity spillover into non-target habitats. Biol. Sc. 2009, 06, 9328–9332. [Google Scholar] [CrossRef]
  86. Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity: Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
  87. Jog, S.; Kindscher, K.; Questad, E.; Foster, B.; Loring, H. Floristic Quality as an Indicator of Native Species Diversity in Managed Grasslands. Nat. Areas J. 2006, 26, 149–167. [Google Scholar] [CrossRef]
Figure 1. Map of Gopło Millennium Park, with grid cells (0.5 km × 0.5 km) and land use types: 1—forests; 2—surface waters and wetlands; 3—meadows and pastures; 4—arable fields; 5—built-up areas, orchards, and private gardens; 6—border of landscape park.
Figure 1. Map of Gopło Millennium Park, with grid cells (0.5 km × 0.5 km) and land use types: 1—forests; 2—surface waters and wetlands; 3—meadows and pastures; 4—arable fields; 5—built-up areas, orchards, and private gardens; 6—border of landscape park.
Diversity 15 00211 g001
Figure 2. Grid cells with a dominant proportion (≥50%) of land use types: 1—forests; 2—surface waters and wetlands; 3—meadows and pastures; 4—arable fields; 5—built-up areas, orchards, and private gardens; 6—no dominant land use type.
Figure 2. Grid cells with a dominant proportion (≥50%) of land use types: 1—forests; 2—surface waters and wetlands; 3—meadows and pastures; 4—arable fields; 5—built-up areas, orchards, and private gardens; 6—no dominant land use type.
Diversity 15 00211 g002
Figure 3. Dependence of plant species richness in grid cellson diversity of land use types.
Figure 3. Dependence of plant species richness in grid cellson diversity of land use types.
Diversity 15 00211 g003
Figure 4. Dependence of plant species richness on mean deviation of uneven proportions of various land use types in grid cells.
Figure 4. Dependence of plant species richness on mean deviation of uneven proportions of various land use types in grid cells.
Diversity 15 00211 g004
Figure 5. Effect of cultural landscape diversity, expressed by the Shannon index of diversity (H’), on plant species richness in grid cells.
Figure 5. Effect of cultural landscape diversity, expressed by the Shannon index of diversity (H’), on plant species richness in grid cells.
Diversity 15 00211 g005
Figure 6. Dependence of plant species richness on proportions of land use types in grid cells: (A)—forests; (B)—surface waters and wetlands; (C)—meadows and pastures; (D)—arable fields; (E)—built-up areas, orchards, and private gardens; (F)—marginal habitats.
Figure 6. Dependence of plant species richness on proportions of land use types in grid cells: (A)—forests; (B)—surface waters and wetlands; (C)—meadows and pastures; (D)—arable fields; (E)—built-up areas, orchards, and private gardens; (F)—marginal habitats.
Diversity 15 00211 g006aDiversity 15 00211 g006b
Figure 7. Contributions of non/semi-synanthropic native species (A), apophytes (B), and alien species (C) to floras of grid cells, depending on the proportion of (1) forests, (2) surface waters and wetlands, (3) meadows and pastures, (4) arable fields, (5) built-up areas, orchards, and private gardens, and (6) marginal habitats.
Figure 7. Contributions of non/semi-synanthropic native species (A), apophytes (B), and alien species (C) to floras of grid cells, depending on the proportion of (1) forests, (2) surface waters and wetlands, (3) meadows and pastures, (4) arable fields, (5) built-up areas, orchards, and private gardens, and (6) marginal habitats.
Diversity 15 00211 g007aDiversity 15 00211 g007b
Figure 8. Effect of cultural landscape heterogeneity, expressed by the Shannon index of diversity (H’), on numbers of non/semi-synanthropic native species (A), apophytes (B), and alien species (C) in grid cells.
Figure 8. Effect of cultural landscape heterogeneity, expressed by the Shannon index of diversity (H’), on numbers of non/semi-synanthropic native species (A), apophytes (B), and alien species (C) in grid cells.
Diversity 15 00211 g008
Figure 9. Floristic conservation value, based on species composition, expressed by qualitative floristic index Wfj (A), mean coefficient of conservatism C (B), and floristic quality index FQI (C): 1—forests, 2—surface waters and wetlands, 3—meadows and pastures, 4—arable fields, 5—built-up areas, orchards, and private gardens, and 6—marginal habitats.
Figure 9. Floristic conservation value, based on species composition, expressed by qualitative floristic index Wfj (A), mean coefficient of conservatism C (B), and floristic quality index FQI (C): 1—forests, 2—surface waters and wetlands, 3—meadows and pastures, 4—arable fields, 5—built-up areas, orchards, and private gardens, and 6—marginal habitats.
Diversity 15 00211 g009
Figure 10. Floristic conservation value based on the structure of floristic data, expressed by quantitative floristic index Wfi (A), mean coefficient of conservatism C (B), and floristic quality index FQI (C): 1—forests, 2—surface waters and wetlands, 3—meadows and pastures, 4—arable fields, 5—built-up areas, orchards, and private gardens, and 6—marginal habitats.
Figure 10. Floristic conservation value based on the structure of floristic data, expressed by quantitative floristic index Wfi (A), mean coefficient of conservatism C (B), and floristic quality index FQI (C): 1—forests, 2—surface waters and wetlands, 3—meadows and pastures, 4—arable fields, 5—built-up areas, orchards, and private gardens, and 6—marginal habitats.
Diversity 15 00211 g010
Table 1. Land use structure (original data).
Table 1. Land use structure (original data).
Land Use TypeCovered Area [ha]Proportion of Total Area [%]
Forests (1)1035.97.4
Surface waters and wetlands (2)2283.216.3
Meadows and pastures (3)1418.110.1
Arable fields (4)8026.357.3
Built-up areas, orchards, and private gardens (5)
Marginal habitats (6)
699.35.0
537.23.8
Total14,000.0100.0
Table 2. Selected parameters of land use within the grid of grid cells.
Table 2. Selected parameters of land use within the grid of grid cells.
Land Use TypeMean Area CoveredMaximum Area CoveredNumber (%) of Grid Cells Where This Land Use Type Covers ≥50% of Cell Area
[ha][%][ha][%]
Forests (1)1.87.224.999.516 (2.9%)
Surface waters and wetlands (2)4.116.424.999.5110 (19.6%)
Meadows and pastures (3)2.510.018.674.512 (2.1%)
Arable fields (4)14.357.225.0100.0351 (62.7%)
Built-up areas, orchards, and private gardens (5)
Marginal habitats (6)
1.24.824.296.87 (1.3%)
1.04.020.582.00 (0.0%)
Table 3. Principles of assessment of species conservation value (w), after Chmiel (2006) [46].
Table 3. Principles of assessment of species conservation value (w), after Chmiel (2006) [46].
Criterion and GroupValue of Valorization Index
Origin status
(defined in Table 4)
Nn10
Ns8
Ap6
Ar4
Kn0
D0
Frequency class
(defined in Table 5)
I8
II7
III6
IV5
V4
VI3
VII2
VIII1
Local threat category
(defined in Table 6)
CR10
EN8
VU6
NT4
LC2
Significance of local resources
(defined in Table 7)
in Wielkopolska and Kujawy region5
Chorological aspect
(defined in Table 8)
isolated localities; absolute or regional limit of distribution within or close to study area5
Table 4. Classification and definitions of groups of species differing in origin status and naturalization, after Chmiel (2006) [46], Jackowiak (1990) [61], and Thellung (1915) [62].
Table 4. Classification and definitions of groups of species differing in origin status and naturalization, after Chmiel (2006) [46], Jackowiak (1990) [61], and Thellung (1915) [62].
Floristic Group Based on Origin StatusShort Description
Native species:
Nonsynanthropic native species (Nn)

native species growing exclusively or nearly exclusively in natural, undisturbed habitats
SSemi-synanthropic native species (Ns)native species growing also in semi-natural and rarely in anthropogenic habitats
Synanthropic native species
(apophytes) (Ap)
native species growing exclusively or nearly exclusively in semi-natural and anthropogenic habitats
Alien species:
Archaeophytes (Ar)species that, thanks to human impact, appeared spontaneously in Central Europe before discovery of America (in 1492)
Kenophytes (Kn)species that, thanks to human impact, appeared spontaneously in Central Europe after discovery of America
Diaphytes (D)alien species appearing spontaneously only in some periods or temporarily escaping from cultivation
Table 5. Frequency classes of species, after Chmiel (2006) [46].
Table 5. Frequency classes of species, after Chmiel (2006) [46].
Frequency ClassClass Description% of Occupied Grid CellsNumber of Occupied Grid Cells
Ivery rare<0.51<3
IIrare0.51–2.003–11
IIIinfrequent2.01–5.0012–28
IVwidely distributed5.01–10.0029–56
Vmoderately frequent10.01–20.0057–112
VIfrequent20.01–35.00113–196
VIIcommon35.01–50.00197–280
VIIIvery common>50.00>280
Table 6. Classification and definition of local threat categories, after IUCN 2021 [63].
Table 6. Classification and definition of local threat categories, after IUCN 2021 [63].
Threat CategoryShort Description
Critically endangered (CR)extremely high risk of extinction (species characterized by a narrow scale of habitats and plant communities; a low number of small, declining populations)
Endangered (EN)not close to extinction, but very likely to become critically endangered in near future
Vulnerable (VU)not classified as CR or EN, although its resources are deteriorating (range fragmentation, isolation of populations, decreasing size and number of populations)
Near threatened (NT)not threatened, but considering changes in its resources and environment in situ, it is likely to be threatened in near future
Least concern (LC)size of its range and its resources in study area relatively stable; may be of interest because of its decline in neighbouring regions
Table 7. Significance of local resources of individual species, after Chmiel (2006) [46]; diagnoses based on the Atlas of Distribution of Vascular Plants in Poland [64] and expert knowledge.
Table 7. Significance of local resources of individual species, after Chmiel (2006) [46]; diagnoses based on the Atlas of Distribution of Vascular Plants in Poland [64] and expert knowledge.
Local ResourcesShort Description
Significant in study areadensity of localities of a given species within study area distinguished from its distribution in Wielkopolska (W) and Cuyavia (K)
Table 8. Chorological aspect, after Chmiel (2006) [46]; diagnoses based on the Atlas of Distribution of Vascular Plants in Poland [64] and expert knowledge.
Table 8. Chorological aspect, after Chmiel (2006) [46]; diagnoses based on the Atlas of Distribution of Vascular Plants in Poland [64] and expert knowledge.
Chorological AspectShort Description
Location in relation to
continuous range of
distribution
localities of species within study area either situated in isolated localities (I) or reaching an absolute/regional limit of distribution within study area (or close to it) (N, NE, E, SE, S, SW, W, or NW)
Table 9. Distribution of floristic lists and floristic data collected within various land use types.
Table 9. Distribution of floristic lists and floristic data collected within various land use types.
Land Use TypeNumber of Relevés%Number of Floristic Data%
Forests (1)2076.565547.8
Surface waters and wetlands (2)42713.312,14414.5
Meadows and pastures (3)37111.613,52316.1
Arable fields (4)129640.522,10326.4
Built-up areas, orchards, and private gardens (5)2056,467618.1
Marginal habitats (6)58318.218,92422.6
Others (7)1123.538664.6
Total3201100.083,875100.0
Table 10. Proportions of groups differing in origin status in the total flora, expressed as numbers of species and floristic data.
Table 10. Proportions of groups differing in origin status in the total flora, expressed as numbers of species and floristic data.
Land Use TypeNumber of Floristic Lists%Number of Floristic Data%
Non/semi-synanthropic native species (Nn, Ns)37443.120.17824.1
Apophytes (Ap)27131.342,99051.3
Archaeophytes (Ar)9310.716.79620.0
Kenophytes (Kn)606.933814.0
Diaphytes (D)698.05300.6
Total867100.083,875100.0
Table 11. Geographical-historical structure of floras of the distinguished land use types, expressed as percentage contributions to the total number of species (A) and to the total number of floristic data (B).
Table 11. Geographical-historical structure of floras of the distinguished land use types, expressed as percentage contributions to the total number of species (A) and to the total number of floristic data (B).
Land Use TypeOrigin Status of Species
Non/Semi-Synanthropic Native SpeciesApophytesAlien Species
A [%]B [%]A [%]B [%]A [%]B [%]
Forests (1)50.758.837.537.011.84.2
Surface waters and wetlands (2)53.271.939.125.57.72.6
Meadows and pastures (3)40.028.343.867.316.24.3
Arable fields (4)14.60,444.834.440.665.2
Built-up areas, orchards, and private gardens (5)15.85.844.952.239.342.0
Marginal habitats (6)36.214.540.673.523.212.0
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Chmiel, J. Cultural Landscape as Both a Threat and an Opportunity to Preserve a High Conservation Value of Vascular Flora: A Case Study. Diversity 2023, 15, 211. https://doi.org/10.3390/d15020211

AMA Style

Chmiel J. Cultural Landscape as Both a Threat and an Opportunity to Preserve a High Conservation Value of Vascular Flora: A Case Study. Diversity. 2023; 15(2):211. https://doi.org/10.3390/d15020211

Chicago/Turabian Style

Chmiel, Julian. 2023. "Cultural Landscape as Both a Threat and an Opportunity to Preserve a High Conservation Value of Vascular Flora: A Case Study" Diversity 15, no. 2: 211. https://doi.org/10.3390/d15020211

APA Style

Chmiel, J. (2023). Cultural Landscape as Both a Threat and an Opportunity to Preserve a High Conservation Value of Vascular Flora: A Case Study. Diversity, 15(2), 211. https://doi.org/10.3390/d15020211

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop