Genetic Diversity of Five Galician (Northwestern Spain) Local Primitive Bovine Breeds Using Pedigree Records
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pedigree Quality and Generation Interval (GI)
2.2. Inbreeding Coefficient (F), Average Relatedness (AR), Increase in Inbreeding (ΔF) and Effective Population Size (Ne)
2.3. Probability of Gene Origin
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hedrick, P.W.; Miller, P.S. Conservation Genetics: Techniques and Fundamentals. Ecol. Appl. 1992, 2, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Leroy, G.; Carroll, E.L.; Bruford, M.W.; DeWoody, J.A.; Strand, A.; Waits, L.; Wang, J. Next-generation metrics for monitoring genetic erosion within populations of conservation concern. J. Evol. Appl. 2018, 11, 1066–1083. [Google Scholar] [CrossRef]
- FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Scherf, B.D., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2015; Available online: http://www.fao.org/3/a-i4787e/index.html (accessed on 15 November 2022).
- Ligda, C.; Casabianca, F. Adding value to local breeds: Challenges, strategies and key factors. Anim. Genet. Resour. Ressour. Genet. Anim. Recur. Genet. Anim. 2013, 53, 107–116. [Google Scholar] [CrossRef]
- Vázquez Moreira, J. Breve noticia sobre el estado actual de la agricultura y ganadería en la provincia de Orense. Ed. Rev. Galega Estud. Agrar. 1975, 5, 363. [Google Scholar]
- Rivero, C.J. Aportaciones a la Caracterización de las Razas Bovinas Autóctonas de Galicia en Peligro de Extinción. Ph.D. Thesis, University of Santiago de Compostela, Santiago de Compostela, Spain, 2015. [Google Scholar]
- Fernández, M.; Rivero, G.; Alonso, M.; Rivero, C.J.; Pose, H.; Justo, J.R.; Adán, S.; Díaz, R.; Rois, D.; Carril, J.A. Razas Autóctonas de Galicia en Peligro de Extinción, 1st ed.; Consellería de Agricultura e Desenvolvemento Rural: A Coruña, Spain, 2001. [Google Scholar]
- PIMX: Plan Integral de Mellora Xenética: Ganado Vacún; Consellería de Agricultura, Gandería e Montes: Santiago de Compostela, Spain, 1991; p. 83.
- Gicquel, E.; Boettcher, P.; Besbes, B.; Furre, S.; Fernández, J.; Danchin-Burge, C.; Berger, B.; Baumung, R.; Feijoo, J.R.J.; Leroy, G. Impact of conservation measures on demography and genetic variability of livestock breeds. Animal 2020, 14, 670–680. [Google Scholar] [CrossRef] [PubMed]
- García-Atance, M.A.; Carleos, C.; Dunner, D.; Eusebi, P.G.; Rivero, C.J.; Justo, J.R.; Fernández, M.; Cañón, J.; Cortés, O. Genomic characterization of a set of Iberian Peninsula bovine local breeds at risk of extinction: Morenas Gallegas. Animals 2020, 10, 1956. [Google Scholar] [CrossRef] [PubMed]
- Carolino, N.; Vitorino, A.; Carolino, I.; Pais, J.; Henriques, N.; Silveira, M.; Vicente, A. Genetic Diversity in the Portuguese Mertolenga Cattle Breed Assessed by Pedigree Analysis. Animals 2020, 10, 1990. [Google Scholar] [CrossRef]
- Cortés, O.; Sevane, N.; Baro, J.A.; Cañón, J. Pedigree analysis of a highly fragmented population, the Lidia cattle breed. Livest. Sci. 2014, 167, 1–8. [Google Scholar] [CrossRef]
- González-Cano, R.; González-Martínez, A.; Muñoz-Mejías, M.E.; Valera, P.; Rodero, E. Analyses of Genetic Diversity in the Endangered “Berrenda” Spanish Cattle Breeds Using Pedigree Data. Animals 2022, 12, 249. [Google Scholar] [CrossRef]
- Boichard, D.; Maignel, L.; Verrier, E. The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Sel. Evol. 1997, 29, 5–23. [Google Scholar] [CrossRef]
- Melka, M.G.; Stachowicz, K.; Miglior, F.; Schenkel, F.S. Analyses of genetic diversity in five Canadian dairy breeds using pedigree data. J. Anim. Breed. Genet. 2013, 130, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Menezes, L.M.; Sousa, W.H.; Cavalcanti Filho, E.P.; Cartaxo, F.Q.; Viana, J.A.; Gama, L.T. Genetic variability in a nucleus herd of Boer goats in Brazil assessed by pedigree analysis. Small Rumin. Res. 2015, 131, 85–92. [Google Scholar] [CrossRef]
- Nyman, S.; Johansson, A.M.; Palucci, V.; Schönherz, A.A.; Guldbrandtsen, B.; Hinrichs, D.; de Koning, D.-J. Inbreeding and pedigree analysis of the European red dairy cattle. Genet. Sel. Evol. 2022, 54, 70. [Google Scholar] [CrossRef]
- MacCluer, J.; Boyce, B.; Dyke, L.; Weitzkamp, D.; Pfenning, A.; Parsons, C. Inbreeding and pedigree structure in Standardbred horses. J. Hered. 1983, 74, 394–399. [Google Scholar] [CrossRef]
- Maignel, L.; Boichard, D.; Verrier, E. Genetic variability of French dairy breeds estimated from pedigree information. INTERBULL Bull. 1996, 14, 49–54. [Google Scholar]
- Lacy, R.C. Analysis of founder representation in pedigrees: Founder equivalents and founder genome equivalents. Zoo Biol. 1989, 8, 111–123. [Google Scholar] [CrossRef]
- Ballou, J.D.; Lacy, R.C. Identifying genetically important individuals for management of genetic variation in pedigreed populations. In Population Management for Survival and Recovery: Analytical Methods and Strategies in Small Population Management; Ballou, J.D., Gilpin, M., Foose, T.J., Eds.; Columbia University Press: New York, NY, USA, 1995; pp. 76–111. [Google Scholar]
- Caballero, A.; Toro, M.A. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genet. Res. 2000, 75, 331–343. [Google Scholar] [CrossRef]
- Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef]
- Boichard, D. PEDIG: A fortran package for pedigree analysis suited for large populations. In Proceedings of the 7th World Congress of Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002. [Google Scholar]
- Gutiérrez, J.P.; Goyache, F. A note on ENDOG: A computer program for analysing pedigree information. J. Anim. Breed. Genet. 2005, 122, 172–176. [Google Scholar] [CrossRef]
- Robertson, A. A numerical description of breed structure. J. Agric. Sci. 1953, 43, 334–336. [Google Scholar] [CrossRef]
- Cañas-Álvarez, J.J.; Gónzalez-Rodríguez, A.; Martín-Collado, D.; Avilés, C.; Altarriba, J.; Baro, J.A.; De la Fuente, L.F.; Díaz, C.; Molina, A.; Varona, L.; et al. Monitoring changes in the demographic and genealogical structure of the main Spanish local beef breeds. J. Anim. Sci. 2014, 92, 4364–4374. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.P.; Altarriba, J.; Diaz, C.; Quintanilla, R.; Cañón, J.; Piedrafita, J. Pedigree analysis of eight Spanish beef cattle breeds. Genet. Sel. Evol. 2003, 35, 43–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans: Management of Small Populations at Risk; FAO: Rome, Italy, 1998. [Google Scholar]
- Cortés, O.; Eusebi, P.; Dunner, S.; Sevane, N.; Cañón, J. Comparison of diversity parameters from SNP, microsatellites and pedigree records in the Lidia cattle breed. Livest. Sci. 2019, 219, 80–85. [Google Scholar] [CrossRef]
- Silió, L.; Rodrıguez, M.C.; Fernandez, A.; Barragan, C.; Benıtez, R.; Ovilo, C.; Fernandez, A.I. Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP-derived metrics. J. Anim. Breed. Genet. 2013, 130, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Pedigrees or markers: Which are better in estimating relatedness and inbreeding coefficient? Theor. Popul. Biol. 2016, 107, 4–13. [Google Scholar] [CrossRef]
- Zhang, Q.; Calus, P.L.; Guldbrandtsen, B.; Mogens, S.L.; Goutam, S. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genom. 2015, 16, 88. [Google Scholar] [CrossRef]
- Howard, J.T.; Pryce, J.E.; Baes, C.; Maltecca, C. Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. J. Dairy Sci. 2017, 100, 6009–6024. [Google Scholar] [CrossRef]
- Honda, T.; Fujii, T.; Nomura, T.; Mukai, F. Evaluation of genetic diversity in Japanese Brown cattle population by pedigree analysis. J. Anim. Breed. Genet. 2006, 123, 172–179. [Google Scholar] [CrossRef]
- Stachowicz, K.; Sargolzaei, M.; Miglior, F.; Schenkel, F.S. Rates of inbreeding and genetic diversity in Canadian Holstein and Jersey cattle. J. Dairy Sci. 2011, 94, 5160–5175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cachena | Vianesa | Caldelá | Limiá | Frieiresa | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N animals/N of herds | 5564/168 | 3097/66 | 1517/43 | 1521/39 | 931/23 | ||||||
Population records | Total | Reference | Total | Reference | Total | Reference | Total | Reference | Total | Reference | |
28204 | 7592 | 14159 | 4288 | 9378 | 2383 | 5802 | 2051 | 4441 | 1212 | ||
ECG | 4.2 | 5.3 | 3.7 | 4.7 | 4.1 | 5.1 | 3.7 | 4.5 | 3.8 | 4.8 | |
IC | 1 | 0.98 | 1 | 0.96 | 1 | 0.97 | 1 | 0.97 | 1 | 0.96 | 1 |
2 | 0.93 | 0.98 | 0.88 | 0.97 | 0.92 | 0.99 | 0.90 | 0.98 | 0.90 | 0.99 | |
3 | 0.83 | 0.96 | 0.75 | 0.89 | 0.83 | 0.97 | 0.76 | 0.91 | 0.79 | 0.98 | |
4 | 0.68 | 0.88 | 0.57 | 0.76 | 0.66 | 0.89 | 0.55 | 0.74 | 0.60 | 0.87 | |
5 | 0.45 | 0.72 | 0.34 | 0.58 | 0.43 | 0.70 | 0.32 | 0.52 | 0.34 | 0.62 | |
GI | Father-Son | 6.1 | 5.9 | 7.5 | 5.7 | 7.4 | 8 | 8.6 | 6.8 | 9 | 8 |
Father-Daughter | 5.2 | 6.1 | 5.7 | 6.1 | 5.7 | 6.7 | 6.7 | 5.9 | 6.5 | 6.6 | |
Mother-Son | 6.5 | 8 | 6.9 | 7.8 | 6.1 | 8 | 6.8 | 6.5 | 6.4 | 7.5 | |
Mother-Daughter | 6.3 | 7.6 | 6.4 | 7.6 | 6.2 | 7.2 | 6.3 | 8 | 6.5 | 9 | |
Average | 5.8 | 6.9 | 6.2 | 6.9 | 6.1 | 7.1 | 6.6 | 6.9 | 6.6 | 7.8 |
Cachena | Vianesa | Caldelá | Limiá | Frieiresa | ||
---|---|---|---|---|---|---|
Inbreeding (%) Total Population | 3.1 c | 3.1 c | 4 a | 4.1 a | 3.7 b | |
Inbreeding (%) Reference Population | 4.3 | 4.2 | 5.6 | 5.2 | 5.1 | |
Percentage of Inbreeding Animals | 77.4 | 69.8 | 79.2 | 73.2 | 76.4 | |
Inbredding (%) Inbred Animals | 4 a | 4.5 b | 5.1 c | 5.6 d | 4.8 e | |
Percentage Animals F > 6.25 | 14.4 | 16.0 | 20.5 | 24.1 | 19.5 | |
Inbredding Animals F > 6.25 | 17.5 a | 17.3 a | 15.5 b | 14.7c | 14.1 c | |
Average Reladtedness (%) | 3.5 e | 4 d | 5.6 c | 7.3 a | 6.8 b | |
Matings (%) | Half-sibs | 2.2 | 2.4 | 3.2 | 2.9 | 2.1 |
Parent-offspring | 4.6 | 3.6 | 4.7 | 4.7 | 4.6 | |
Total | 6.8 | 6.0 | 7.9 | 7.6 | 6.7 |
Ne | F50 | |||
---|---|---|---|---|
ΔFy | ΔFECG | ΔFy | ΔFECG | |
Cachena | 52 | 45 | 7.2 | 8.3 |
Vianesa | 58 | 48 | 6.7 | 8 |
Caldelá | 65 | 46 | 6.3 | 8.8 |
Limiá | 42 | 40 | 9.1 | 9.5 |
Frieiresa | 40 | 37 | 9.1 | 9.8 |
Cachena | Vianesa | Caldelá | Limiá | Frieiresa | ||
---|---|---|---|---|---|---|
fe | 45 | 43 | 32 | 26 | 26 | |
fne | 18.9 | 15.7 | 10.9 | 8.4 | 8.7 | |
fa | 41 | 33 | 25 | 22 | 22 | |
fg | 13.3 | 11,2 | 7.9 | 6.3 | 6.4 | |
fa/fe | 0.9 | 0.8 | 0.9 | 0.9 | 0,9 | |
1-GD | 3.8 | 4.5 | 6.3 | 7.9 | 7.8 | |
1-GD* | 1.1 | 1.3 | 1.7 | 2.0 | 2.1 | |
GD-GD* | 2.6 | 3.2 | 4.6 | 5.9 | 5.7 | |
Ancestors contribution | 25% | 6 | 4 | 4 | 3 | 4 |
50% | 14 | 12 | 9 | 8 | 8 | |
75% | 32 | 35 | 18 | 18 | 16 | |
90% | 68 | 76 | 30 | 38 | 26 |
Cachena | Caldelá | Frieiresa | Limiá | Vianesa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | UPB | UOB | SB | NH | PPB | NH | PPB | NH | PPB | NH | PPB | NH | PPB |
Nucleus | No | Yes | Yes | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Multipliers_1 | Yes | Yes | Yes | 171 | 0.45 | 26 | 0.67 | 10 | 0.51 | 11 | 0.70 | 30 | 0.67 |
Multipliers_2 | Yes | No | Yes | 25 | 1 | 15 | 1 | 6 | 1 | 17 | 1 | 24 | 1 |
Commercial_1 | Yes | Yes | No | 40 | 0.61 | 9 | 0.80 | 3 | 0.4 | 2 | 0.74 | 11 | 0.83 |
Commercial_2 | Yes | No | No | 79 | 1 | 43 | 1 | 30 | 1 | 37 | 1 | 50 | 1 |
Isolated | No | Yes | No | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Atance, M.A.; Carleos, C.; Andrino, S.; Justo, J.R.; Rivero, C.J.; Fernández, M.; Cañon, J.; Cortes, O. Genetic Diversity of Five Galician (Northwestern Spain) Local Primitive Bovine Breeds Using Pedigree Records. Diversity 2023, 15, 252. https://doi.org/10.3390/d15020252
García-Atance MA, Carleos C, Andrino S, Justo JR, Rivero CJ, Fernández M, Cañon J, Cortes O. Genetic Diversity of Five Galician (Northwestern Spain) Local Primitive Bovine Breeds Using Pedigree Records. Diversity. 2023; 15(2):252. https://doi.org/10.3390/d15020252
Chicago/Turabian StyleGarcía-Atance, María Asunción, Carlos Carleos, Sandra Andrino, José Ramón Justo, Castor José Rivero, Miguel Fernández, Javier Cañon, and Oscar Cortes. 2023. "Genetic Diversity of Five Galician (Northwestern Spain) Local Primitive Bovine Breeds Using Pedigree Records" Diversity 15, no. 2: 252. https://doi.org/10.3390/d15020252
APA StyleGarcía-Atance, M. A., Carleos, C., Andrino, S., Justo, J. R., Rivero, C. J., Fernández, M., Cañon, J., & Cortes, O. (2023). Genetic Diversity of Five Galician (Northwestern Spain) Local Primitive Bovine Breeds Using Pedigree Records. Diversity, 15(2), 252. https://doi.org/10.3390/d15020252