In Search of Proximate Triggers of Anthrax Outbreaks in Wildlife: A Hypothetical Individual-Based Model of Plasmid Transfer within Bacillus Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Model Verification
2.2.1. Growth
2.2.2. Conjugation and Segregative Loss
2.2.3. Transformation and Extra-Cellular Plasmid Degradation
2.3. Model Evaluation
2.3.1. Bacterial Colonization of a Homogeneous Root Surface
2.3.2. Bacterial Colonization of an Elongating Root under Different Nutrient Concentrations
2.4. Model Simulation
2.4.1. Baseline Simulation
2.4.2. Experimental Simulation: Assuming Bacillus Thuringiensis Cannot Conjugate
3. Results
3.1. Model Verification
3.1.1. Growth
3.1.2. Conjugation and Segregative Loss
3.1.3. Transformation and Extra-Cellular Plasmid Degradation
3.2. Model Evaluation
3.2.1. Bacterial Colonization of a Homogeneous Root Surface
3.2.2. Bacterial Colonization of an Elongating Root under Different Nutrient Concentrations
3.3. Model Simulations
3.3.1. Baseline Simulation
3.3.2. Experimental Simulation: Assuming Bacillus thuringiensis Cannot Conjugate
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Purpose
Appendix A.2. State Variables and Scales
State Variables | Category or Value/Unit | |
---|---|---|
Habitat Cells | Identification Number | ID # of habitat cell |
Location | X and Y coordinates indicating position within the grid | |
Plant root in cell | Yes or No | |
Nutrient Level | # of arbitrary units | |
Rate of Nutrient Renewal | # arbitrary units per 5 min | |
Bacteria | Identification Number | ID # of bacteria |
Species | B. anthracis, B. thuringiensis, or B. cereus | |
State | Active or Spore | |
Nutrient Requirement | Number of units of nutrients required per 5 min to grow at maximum rate | |
Nutrients Consumed | Number of units of nutrients accumulated since last cell division | |
Accumulated Nutrients | Number of units of nutrients accumulated since last reproduction (cell division) | |
Starvation Level | Number of consecutive 5-min periods in which no consumption has occurred | |
Identification number of pXO1 and plasmid within the cell | ID # of pXO1 plasmid, if present | |
Identification number of pXO2 plasmid within the cell | ID # of pXO2 plasmid, if present | |
Identification number of hpCONJ plasmid within the cell | ID # of hpCONJ plasmid, if present | |
Plasmids | Identification Number | ID # of plasmid |
Kind | pXO1, pXO2, or hpCONJ | |
In Bacteria | ID # of bacterium in which located or “−1” if not in bacterium | |
State | Active or in Spore | |
Conjugation Events | # of conjugation events to date |
Auxiliary Variable |
---|
Number of active bacterial cells in system |
Number of inactive bacterial cells (spores) in system |
Number of active B. anthracis cells in system |
Number of active B. thuringiensis cells in system |
Number of active B. cereus cells in system |
Number of B. anthracis spore cells in system |
Number of B. thuringiensis spore cells in system |
Number of B. cereus spore cells in system |
Number of pXO1 plasmids in system |
Number of pXO2 plasmids in system |
Number of hpCONJ plasmids in system |
Number of pXO1 plasmids in active bacteria |
Number of pXO2 plasmids in active bacteria |
Number of hpCONJ plasmids in active bacteria |
Number of pXO1 plasmids in spores |
Number of pXO2 plasmids in spores |
Number of hpCONJ plasmids in spores |
Number of pXO1 extra-cellular plasmids |
Number of pXO2 extra-cellular plasmids |
Number of hpCONJ extra-cellular plasmids |
Appendix A.3. Process Overview and Scheduling
Appendix A.4. Design Concepts
Appendix A.4.1. Emergence
Appendix A.4.2. Sensing
Appendix A.4.3. Interaction
Appendix A.4.4. Stochasticity
Appendix A.4.5. Scheduling Details
Appendix A.4.6. Observation
Appendix A.5. Initialization
Appendix A.6. Input
Appendix A.7. Submodels
Appendix A.7.1. Adjust Climatic Conditions and Bacterial Growth Rates
Appendix A.7.2. Nutrient Renewal and Plant Root Growth
Appendix A.7.3. Plasmid Degradation
Appendix A.7.4. Spore Formation
Appendix A.7.5. Nutrient Consumption
Appendix A.7.6. Death
Appendix A.7.7. Reproduction and Segregative Loss
Appendix A.7.8. Conjugation
Appendix A.7.9. Transformation
Appendix A.7.10. Germination
References
- Salkeld, D.J.; Salathé, M.; Stapp, P.; Jones, J.H. Plague outbreaks in prairie dog populations explained by percolation thresholds of alternate host abundance. Proc. Natl. Acad. Sci. USA 2010, 107, 14247–14250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiranantasak, T.; Benn, J.S.; Metrailer, M.C.; Sawyer, S.J.; Burns, M.Q.; Bluhm, A.P.; Blackburn, J.K.; Norris, M.H. Characterization of Bacillus anthracis replication and persistence on environmental substrates associated with wildlife anthrax outbreaks. PLoS ONE 2022, 17, e0274645. [Google Scholar] [CrossRef] [PubMed]
- Kiel, J.; Walker, W.W.; Andrews, C.J.; De Los Santos, A.; Adams, R.N.; Bucholz, M.W.; McBurnett, S.D.; Fuentes, V.; Rizner, K.E.; Blount, K.W. Pathogenic ecology: Where have all the pathogens gone? Anthrax: A classic case. In Proceedings of the Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing X, Orlando, FL, USA, 14–16 April 2009; pp. 13–21. [Google Scholar]
- Goel, A.K. Anthrax: A disease of biowarfare and public health importance. World J. Clin. Cases WJCC 2015, 3, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, J.K.; Matakarimov, S.; Kozhokeeva, S.; Tagaeva, Z.; Bell, L.K.; Kracalik, I.T.; Zhunushov, A. Modeling the ecological niche of Bacillus anthracis to map anthrax risk in Kyrgyzstan. Am. J. Trop. Med. Hyg. 2017, 96, 550–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barro, A.S.; Fegan, M.; Moloney, B.; Porter, K.; Muller, J.; Warner, S.; Blackburn, J.K. Redefining the Australian anthrax belt: Modeling the ecological niche and predicting the geographic distribution of Bacillus anthracis. PLoS Negl. Trop. Dis. 2016, 10, e0004689. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, J.K. Evaluating the Spatial Ecology of Anthrax in North America: Examining Epidemiological Components across Multiple Geographic Scales Using a GIS-Based Approach; Louisiana State University: Baton Rouge, LA, USA, 2006. [Google Scholar]
- Czárán, T.; Hoekstra, R.F. Microbial communication, cooperation and cheating: Quorum sensing drives the evolution of cooperation in bacteria. PLoS ONE 2009, 4, e6655. [Google Scholar] [CrossRef] [Green Version]
- Faust, K.; Sathirapongsasuti, J.F.; Izard, J.; Segata, N.; Gevers, D.; Raes, J.; Huttenhower, C. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 2012, 8, e1002606. [Google Scholar] [CrossRef]
- Saile, E.; Koehler, T.M. Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl. Environ. Microbiol. 2006, 72, 3168–3174. [Google Scholar] [CrossRef] [Green Version]
- Pena-Gonzalez, A.; Rodriguez-R, L.M.; Marston, C.K.; Gee, J.E.; Gulvik, C.A.; Kolton, C.B.; Saile, E.; Frace, M.; Hoffmaster, A.R.; Konstantinidis, K.T. Genomic characterization and copy number variation of Bacillus anthracis plasmids pXO1 and pXO2 in a historical collection of 412 strains. Msystems 2018, 3, e00065-18. [Google Scholar] [CrossRef] [Green Version]
- Helgason, E.; Økstad, O.A.; Caugant, D.A.; Johansen, H.A.; Fouet, A.; Mock, M.; Hegna, I.; Kolstø, A.-B. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—One species on the basis of genetic evidence. Appl. Environ. Microbiol. 2000, 66, 2627–2630. [Google Scholar] [CrossRef] [Green Version]
- Carroll, L.M.; Wiedmann, M.; Kovac, J. Proposal of a taxonomic nomenclature for the Bacillus cereus group which reconciles genomic definitions of bacterial species with clinical and industrial phenotypes. MBio 2020, 11, e00034-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmaster, A.R.; Ravel, J.; Rasko, D.A.; Chapman, G.D.; Chute, M.D.; Marston, C.K.; De, B.K.; Sacchi, C.T.; Fitzgerald, C.; Mayer, L.W. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA 2004, 101, 8449–8454. [Google Scholar] [CrossRef] [Green Version]
- Okinaka, R.; Cloud, K.; Hampton, O.; Hoffmaster, A.; Hill, K.; Keim, P.; Koehler, T.; Lamke, G.; Kumano, S.; Manter, D. Sequence, assembly and analysis of pX01 and pX02. J. Appl. Microbiol. 1999, 87, 261–262. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Joyce, G.; Brooker, T.; Waterfield, N. The impact of a horizontally acquired virulence plasmid on Bacillus cereus G9241, the causative agent of an anthrax-like illness. Access Microbiol. 2019, 1, 840. [Google Scholar] [CrossRef]
- Reddy, A.; Battisti, L.; Thorne, C. Identification of self-transmissible plasmids in four Bacillus thuringiensis subspecies. J. Bacteriol. 1987, 169, 5263–5270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinnekens, P.; Koné, K.M.; Fayad, N.; Leprince, A.; Mahillon, J. pXO16, the large conjugative plasmid from Bacillus thuringiensis serovar israelensis displays an extended host spectrum. Plasmid 2019, 102, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Van der Auwera, G.; Timmery, S.; Zhu, L.; Mahillon, J. Distribution, diversity, and potential mobility of extrachromosomal elements related to the Bacillus anthracis pXO1 and pXO2 virulence plasmids. Appl. Environ. Microbiol. 2009, 75, 3016–3028. [Google Scholar] [CrossRef] [Green Version]
- Keesing, F.; Belden, L.K.; Daszak, P.; Dobson, A.; Harvell, C.D.; Holt, R.D.; Hudson, P.; Jolles, A.; Jones, K.E.; Mitchell, C.E. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 2010, 468, 647–652. [Google Scholar] [CrossRef]
- Wang, H.-H.; Grant, W.E.; Teel, P.D.; Hamer, S.A. Tick-borne infectious agents in nature: Simulated effects of changes in host density on spatial-temporal prevalence of infected ticks. Ecol. Model. 2016, 323, 77–86. [Google Scholar] [CrossRef]
- Wang, H.-H.; Grant, W.E.; Teel, P.D. Simulation of climate–host–parasite–landscape interactions: A spatially explicit model for ticks (Acari: Ixodidae). Ecol. Model. 2012, 243, 42–62. [Google Scholar] [CrossRef]
- Wang, H.-H.; Grant, W.E.; Teel, P.D.; Hamer, S.A. Simulation of climate-tick-host-landscape interactions: Effects of shifts in the seasonality of host population fluctuations on tick densities. J. Vector Ecol. 2015, 40, 247–255. [Google Scholar] [CrossRef] [PubMed]
- LoGiudice, K.; Ostfeld, R.S.; Schmidt, K.A.; Keesing, F. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc. Natl. Acad. Sci. USA 2003, 100, 567–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granter, S.R.; Bernstein, A.; Ostfeld, R.S. Of mice and men: Lyme disease and biodiversity. Perspect. Biol. Med. 2014, 57, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Krone, S.M.; Lu, R.; Fox, R.; Suzuki, H.; Top, E.M. Modelling the spatial dynamics of plasmid transfer and persistence. Microbiology 2007, 153, 2803–2816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolter, R. Biofilms in lab and nature: A molecular geneticist’s voyage to microbial ecology. Int. Microbiol. 2010, 13, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bahl, M.I.; Rosenberg, K. High abundance and diversity of Bacillus anthracis plasmid pXO1-like replicons in municipal wastewater. FEMS Microbiol. Ecol. 2010, 74, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, P.; Khan, S.A. Two independent replicons can support replication of the anthrax toxin-encoding plasmid pXO1 of Bacillus anthracis. Plasmid 2012, 67, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seoane, J.; Yankelevich, T.; Dechesne, A.; Merkey, B.; Sternberg, C.; Smets, B.F. An individual-based approach to explain plasmid invasion in bacterial populations. FEMS Microbiol. Ecol. 2011, 75, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Birge, E.A. Bacterial and Bacteriophage Genetics; Springer: New York, NY, USA, 2013. [Google Scholar]
- Maloy, S.R.; Cronan, J.E.J.; Freifelfer, D.L. Microbial Genetics; Jones & Bartlett: Boston, MA, USA, 1994. [Google Scholar]
- Sharma, S.; Gopu, V.; Sivasankar, C.; Shetty, P.H. Hydrocinnamic acid produced by Enterobacter xiangfangensis impairs AHL-based quorum sensing and biofilm formation in Pseudomonas aeruginosa. RSC Adv. 2019, 9, 28678–28687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, T.K.; Hong, S.H.; Ma, Q. Engineering biofilm formation and dispersal. Trends Biotechnol. 2011, 29, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Schuch, R.; Nelson, D.; Fischetti, V.A. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 2002, 418, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Gregory, R.; Saunders, J.; Saunders, V. Rule-based modelling of conjugative plasmid transfer and incompatibility. Biosystems 2008, 91, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Seoane, J. Individual-based analysis and prediction of the fate of plasmids in spatially structured bacterial populations. Technical University of Denmark Individual-Based Analysis and Prediction of the Fate of Plasmids in Spatially Structured Bacterial Populations. 2010. Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/5245262/ENV2010-287.pdf (accessed on 31 May 2011).
- Brehm-Stecher, B.F.; Johnson, E.A. Single-cell microbiology: Tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 2004, 68, 538–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, V.; Berger, U.; Bastiansen, F.; Eliassen, S.; Ginot, V.; Giske, J.; Goss-Custard, J.; Grand, T.; Heinz, S.K.; Huse, G. A standard protocol for describing individual-based and agent-based models. Ecol. Model. 2006, 198, 115–126. [Google Scholar] [CrossRef]
- Zwietering, M.; De Koos, J.; Hasenack, B.; De Witt, J.; Van’t Riet, K. Modeling of bacterial growth as a function of temperature. Appl. Environ. Microbiol. 1991, 57, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Iturriaga, M.H.; Tamplin, M.L.; Escartin, E.F. Colonization of tomatoes by Salmonella montevideo is affected by relative humidity and storage temperature. J. Food Prot. 2007, 70, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, M.G.; Wackernagel, W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 1994, 58, 563–602. [Google Scholar] [CrossRef]
- Raymond, B.; Wyres, K.L.; Sheppard, S.K.; Ellis, R.J.; Bonsall, M.B. Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoS Pathog. 2010, 6, e1000905. [Google Scholar] [CrossRef] [Green Version]
- Gauvry, E.; Mathot, A.-G.; Couvert, O.; Leguérinel, I.; Jules, M.; Coroller, L. Differentiation of vegetative cells into spores: A kinetic model applied to Bacillus subtilis. Appl. Environ. Microbiol. 2019, 85, e00322-00319. [Google Scholar] [CrossRef] [Green Version]
- Muci, A.L.; Jorquera, M.A.; Ávila, Á.I.; Rengel, Z.; Crowley, D.E.; de la Luz Mora, M. A combination of cellular automata and agent-based models for simulating the root surface colonization by bacteria. Ecol. Model. 2012, 247, 1–10. [Google Scholar] [CrossRef]
- Hartmann, A.; Schmid, M.; Tuinen, D.v.; Berg, G. Plant-driven selection of microbes. Plant Soil 2009, 321, 235–257. [Google Scholar] [CrossRef]
- Buddrus-Schiemann, K.; Schmid, M.; Schreiner, K.; Welzl, G.; Hartmann, A. Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley. Microb. Ecol. 2010, 60, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Meselson, M.; Guillemin, J.; Hugh-Jones, M.; Langmuir, A.; Popova, I.; Shelokov, A.; Yampolskaya, O. The Sverdlovsk anthrax outbreak of 1979. Science 1994, 266, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.; Keir, D. Information on which to base assessments of risk from environments contaminated with anthrax spores. Epidemiol. Infect. 1994, 113, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, B.; Le Page, C.; Bithell, M.; Chattoe-Brown, E.; Grimm, V.; Meyer, R.; Montañola-Sales, C.; Ormerod, P.; Root, H.; Squazzoni, F. Different modelling purposes. J. Artif. Soc. Soc. Simul. 2019, 22, 6. [Google Scholar] [CrossRef] [Green Version]
- Abedon, S.T.; Herschler, T.D.; Stopar, D. Bacteriophage latent-period evolution as a response to resource availability. Appl. Environ. Microbiol. 2001, 67, 4233–4241. [Google Scholar] [CrossRef] [Green Version]
- Evans, T.; Bowers, R.G.; Mortimer, M. Modelling the stability of Stx lysogens. J. Theor. Biol. 2007, 248, 241–250. [Google Scholar] [CrossRef]
- Laschov, D.; Margaliot, M. Mathematical modeling of the lambda switch: A fuzzy logic approach. J. Theor. Biol. 2009, 260, 475–489. [Google Scholar] [CrossRef]
- Payne, R.J.; Jansen, V.A. Understanding bacteriophage therapy as a density-dependent kinetic process. J. Theor. Biol. 2001, 208, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Vlachos, C.; Paton, R.; Saunders, J.; Wu, Q. A rule-based approach to the modelling of bacterial ecosystems. Biosystems 2006, 84, 49–72. [Google Scholar] [CrossRef]
- Grimm, V.; Railsback, S.F. Individual-Based Modeling and Ecology; Princeton University Press: Princeton, NJ, USA, 2005; p. 428. [Google Scholar]
- Iwanaga, T.; Wang, H.-H.; Hamilton, S.H.; Grimm, V.; Koralewski, T.E.; Salado, A.; Elsawah, S.; Razavi, S.; Yang, J.; Glynn, P.; et al. Socio-technical scales in socio-environmental modeling: Managing a system-of-systems modeling approach. Environ. Model. Softw. 2021, 135, 104885. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, T.; Wang, H.-H.; Koralewski, T.; Grant, W.; Jakeman, A.; Little, J. Toward a complete interdisciplinary treatment of scale: Reflexive lessons from socioenvironmental systems modeling. Elem. Sci. Anth. 2021, 9, 00182. [Google Scholar] [CrossRef]
- Iwanaga, T.; Steinmann, P.; Sadoddin, A.; Robinson, D.; Snow, V.; Grimm, V.; Wang, H.-H. Perspectives on confronting issues of scale in systems modeling. Socio-Environ. Syst. Model. 2022, 4, 18156. [Google Scholar] [CrossRef]
- Koralewski, T.E.; Westbrook, J.K.; Grant, W.E.; Wang, H.-H. Coupling general physical environmental process models with specific question-driven ecological simulation models. Ecol. Model. 2019, 405, 102–105. [Google Scholar] [CrossRef]
- Koralewski, T.E.; Wang, H.-H.; Grant, W.E.; Brewer, M.J.; Elliott, N.C.; Westbrook, J.K.; Szczepaniec, A.; Knutson, A.; Giles, K.L.; Michaud, J. Integrating models of atmospheric dispersion and crop-pest dynamics: Linking detection of local aphid infestations to forecasts of region-wide invasion of cereal crops. Ann. Entomol. Soc. Am. 2020, 113, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Koralewski, T.E.; Wang, H.-H.; Grant, W.E.; Brewer, M.J.; Elliott, N.C.; Westbrook, J.K. Modeling the dispersal of wind-borne pests: Sensitivity of infestation forecasts to uncertainty in parameterization of long-distance airborne dispersal. Agric. For. Meteorol. 2021, 301–302, 108357. [Google Scholar] [CrossRef]
- McCallum, H. Models for managing wildlife disease. Parasitology 2016, 143, 805–820. [Google Scholar] [CrossRef]
- Kreft, J.-U.; Booth, G.; Wimpenny, J.W. BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 1998, 144, 3275–3287. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Krone, S.M. Spatial invasion by a mutant pathogen. J. Theor. Biol. 2005, 236, 335–348. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value * | Unit | Reference |
---|---|---|---|
Doubling time (base rate at 30 °C, relative humidity = 100%; same for all bacteria) | 40 | Minutes | Krone et al. [26] |
Plasmid degradation rate (same for all plasmids) | 0.006 | Probability (≈15 h half-life) | Lorenz and Wackernagel [42] |
Spore formation | 0.5 | Probability | Gauvry et al. [44] |
Segregative loss rate (same for all plasmids in all bacteria) | 0.005 | Probability | Krone et al. [26] |
Conjugation rate (base rate same for all donor bacteria) | 0.05 | Probability | Seoane et al. [30] |
First transconjugant conjugation rate (same for all bacteria) | 3 | Multiple of base rate | Seoane et al. [30] |
Second, third, etc. transconjugant conjugation rate (same for all bacteria) | 16 | Multiple of base rate | Seoane et al. [30] |
Transformation rate (same for all bacteria and extra-cellular plasmids) | 0.0004 | Probability | Lorenz and Wackernagel [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-H.; Bishop, A.E.; Koralewski, T.E.; Grant, W.E. In Search of Proximate Triggers of Anthrax Outbreaks in Wildlife: A Hypothetical Individual-Based Model of Plasmid Transfer within Bacillus Communities. Diversity 2023, 15, 347. https://doi.org/10.3390/d15030347
Wang H-H, Bishop AE, Koralewski TE, Grant WE. In Search of Proximate Triggers of Anthrax Outbreaks in Wildlife: A Hypothetical Individual-Based Model of Plasmid Transfer within Bacillus Communities. Diversity. 2023; 15(3):347. https://doi.org/10.3390/d15030347
Chicago/Turabian StyleWang, Hsiao-Hsuan, Alexandra E. Bishop, Tomasz E. Koralewski, and William E. Grant. 2023. "In Search of Proximate Triggers of Anthrax Outbreaks in Wildlife: A Hypothetical Individual-Based Model of Plasmid Transfer within Bacillus Communities" Diversity 15, no. 3: 347. https://doi.org/10.3390/d15030347
APA StyleWang, H. -H., Bishop, A. E., Koralewski, T. E., & Grant, W. E. (2023). In Search of Proximate Triggers of Anthrax Outbreaks in Wildlife: A Hypothetical Individual-Based Model of Plasmid Transfer within Bacillus Communities. Diversity, 15(3), 347. https://doi.org/10.3390/d15030347