Community Composition and Antibiotic Resistance of Tap Water Bacteria Retained on Filtration Membranes
Abstract
:1. Introduction
2. Materials and Method
2.1. Tap Water Filtration Set
2.2. Heterotrophic Plate Counts and Antibiotic-Resistant Bacteria
2.3. DNA Extraction
2.4. Bacterial Community Analysis
2.5. Statistical Analysis
3. Results
3.1. Heterotrophic Plate Counts and Antibiotic-Resistant Bacteria
3.2. Bacterial Community Analysis
3.3. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Chakhtoura, J.; Saikaly, P.E.; Van Loosdrecht, M.C.M.; Vrouwenvelder, J.S. Impact of distribution and network flushing on the drinking water microbiome. Front. Microbiol. 2018, 9, 2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siedlecka, A.; Wolf-Baca, M.; Piekarska, K. Spatiotemporal Changes of Antibiotic Resistance and Bacterial Communities in Drinking Water Distribution System in Wrocław, Poland. Water 2020, 12, 2601. [Google Scholar] [CrossRef]
- Luo, L.W.; Wu, Y.H.; Yu, T.; Wang, Y.H.; Chen, G.Q.; Tong, X.; Bai, Y.; Xu, C.; Wang, H.B.; Ikuno, N.; et al. Evaluating method and potential risks of chlorine-resistant bacteria (CRB): A review. Water Res. 2021, 188, 116474. [Google Scholar] [CrossRef] [PubMed]
- Siedlecka, A.; Wolf-Baca, M.J.; Piekarska, K. Antibiotic and disinfectant resistance in tap water strains—Insight into the resistance of environmental bacteria. Pol. J. Microbiol. 2021, 70, 57–67. [Google Scholar] [CrossRef]
- Bodzek, M.; Konieczny, K.; Rajca, M. Membranes in water and wastewater disinfection—Review. Arch. Environ. Prot. 2019, 45, 3–18. [Google Scholar] [CrossRef]
- Potgieter, S.; Pinto, A.; Sigudu, M.; du Preez, H.; Ncube, E.; Venter, S. Long-term spatial and temporal microbial community dynamics in a large-scale drinking water distribution system with multiple disinfectant regimes. Water Res. 2018, 139, 406–419. [Google Scholar] [CrossRef] [Green Version]
- Nescerecka, A.; Juhna, T.; Hammes, F. Identifying the underlying causes of biological instability in a full-scale drinking water supply system. Water Res. 2018, 135, 11–21. [Google Scholar] [CrossRef]
- Liu, G.; Verberk, J.Q.J.C.; Van Dijk, J.C. Bacteriology of drinking water distribution systems: An integral and multidimensional review. Appl. Microbiol. Biotechnol. 2013, 97, 9265–9276. [Google Scholar] [CrossRef]
- Wingender, J.; Flemming, H.C. Biofilms in drinking water and their role as reservoir for pathogens. Int. J. Hyg. Environ. Health 2011, 214, 417–423. [Google Scholar] [CrossRef]
- Kimbell, L.K.; Wang, Y.; McNamara, P.J. The impact of metal pipe materials, corrosion products, and corrosion inhibitors on antibiotic resistance in drinking water distribution systems. Appl. Microbiol. Biotechnol. 2020, 104, 7673–7688. [Google Scholar] [CrossRef]
- Jin, M.; Liu, L.; Wang, D.N.; Yang, D.; Liu, W.L.; Yin, J.; Yang, Z.W.; Wang, H.R.; Qiu, Z.G.; Shen, Z.Q.; et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. ISME J. 2020, 14, 1847–1856. [Google Scholar] [CrossRef]
- Wright, G.D. The antibiotic resistome: The nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 2007, 5, 175–186. [Google Scholar] [CrossRef]
- Pruden, A.; Pei, R.; Storteboom, H.; Carlson, K.H. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado. Environ. Sci. Technol. 2006, 40, 7445–7450. [Google Scholar] [CrossRef]
- Sanderson, H.; Fricker, C.; Brown, R.S.; Majury, A. Antibiotic Resistance Genes as an Emerging Environmental Contaminant. Environ. Rev. 2016, 24, 2. [Google Scholar] [CrossRef]
- Montoya-Pachongo, C.; Douterelo, I.; Noakes, C.; Camargo-Valero, M.A.; Sleigh, A.; Escobar-Rivera, J.C.; Torres-Lozada, P. Field assessment of bacterial communities and total trihalomethanes: Implications for drinking water networks. Sci. Total Environ. 2018, 616–617, 345–354. [Google Scholar] [CrossRef]
- Perrin, Y.; Bouchon, D.; Delafont, V.; Moulin, L.; Héchard, Y. Microbiome of drinking water: A full-scale spatio-temporal study to monitor water quality in the Paris distribution system. Water Res. 2019, 149, 375–385. [Google Scholar] [CrossRef]
- Jiang, R.; Li, Z.; Li, Q.; Liu, Y.; Zhu, Y.; Chen, Z.; Liu, P.; Jia, S.; Ren, H.; Zhang, X.-X. Metagenomic insights into the variation of bacterial communities and potential pathogenic bacteria in drinking water treatment and distribution systems. Natl. Sci. Open 2022, 1, 20220015. [Google Scholar] [CrossRef]
- Stüken, A.; Haverkamp, T.H.A.; Dirven, H.A.A.M.; Gilfillan, G.D.; Leithaug, M.; Lund, V. Microbial Community Composition of Tap Water and Biofilms Treated with or without Copper-Silver Ionization. Environ. Sci. Technol. 2018, 52, 3354–3364. [Google Scholar] [CrossRef] [Green Version]
- Proctor, C.R.; Reimann, M.; Vriens, B.; Hammes, F. Biofilms in shower hoses. Water Res. 2018, 131, 274–286. [Google Scholar] [CrossRef]
- Liu, R.; Yu, Z.; Guo, H.; Liu, M.; Zhang, H.; Yang, M. Pyrosequencing analysis of eukaryotic and bacterial communities in faucet biofilms. Sci. Total Environ. 2012, 435–436, 124–131. [Google Scholar] [CrossRef]
- Lin, W.; Yu, Z.; Chen, X.; Liu, R.; Zhang, H. Molecular characterization of natural biofilms from household taps with different materials: PVC, stainless steel, and cast iron in drinking water distribution system. Appl. Microbiol. Biotechnol. 2013, 97, 8393–8401. [Google Scholar] [CrossRef] [PubMed]
- Zupančič, J.; Turk, M.; Črnigoj, M.; Ambrožič Avguštin, J.; Gunde-Cimerman, N. The dishwasher rubber seal acts as a reservoir of bacteria in the home environment. BMC Microbiol. 2019, 19, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Jia, R.B.; Li, L. Bacterial community of iron tubercles from a drinking water distribution system and its occurrence in stagnant tap water. Environ. Sci. Process. Impacts 2013, 15, 1332–1340. [Google Scholar] [CrossRef] [PubMed]
- Waak, M.B.; Hozalski, R.M.; Hallé, C.; Lapara, T.M. Comparison of the microbiomes of two drinking water distribution systems—With and without residual chloramine disinfection. Microbiome 2019, 7, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, A.; Schroeder, J.; Lunn, M.; Sloan, W.; Raskin, L. Spatial-temporal survey and occupancy-abundance modeling to predict bacterial community dynamics in the drinking water microbiome. mBio 2014, 5, e01135-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, C.J.; Proctor, C.R.; Singh, G.; Ra, K.; Noh, Y.; Odimayomi, T.; Salehi, M.; Julien, R.; Mitchell, J.; Nejadhashemi, A.P.; et al. Drinking water microbiology in a water-efficient building: Stagnation, seasonality, and physicochemical effects on opportunistic pathogen and total bacteria proliferation. Environ. Sci. Water Res. Technol. 2020, 6, 2902–2913. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, L.; Huang, T.; Yan, M.; Liu, K.; Miao, Y.; He, H.; Li, S.; Sekar, R. Combined effects of seasonality and stagnation on tap water quality: Changes in chemical parameters, metabolic activity and co-existence in bacterial community. J. Hazard. Mater. 2021, 403, 124018. [Google Scholar] [CrossRef] [PubMed]
- Gomes, I.B.; Simões, M.; Simões, L.C. An overview on the reactors to study drinking water biofilms. Water Res. 2014, 62, 63–87. [Google Scholar] [CrossRef] [Green Version]
- Douterelo, I.; Boxall, J.B.; Deines, P.; Sekar, R.; Fish, K.E.; Biggs, C.A. Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Res. 2014, 65, 134–156. [Google Scholar] [CrossRef] [Green Version]
- Zlatanović, L.; van der Hoek, J.P.; Vreeburg, J.H.G. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system. Water Res. 2017, 123, 761–772. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, D.; Wan, K.; Chen, C.; Yu, X.; Lin, H. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching. Front. Environ. Sci. Eng. 2021, 15, 28. [Google Scholar] [CrossRef]
- Siedlecka, A.; Wolf-Baca, M.; Pierkarska, K. Seasonal variabilitiy of antibiotic resistance and biodiversity of tap water bacteria in Wrocław, Poland. Environ. Prot. Eng. 2020, 46, 93–109. [Google Scholar] [CrossRef]
- Available online: https://aquafilter.com/pl/product/25/88/fp3-hj-k1n (accessed on 30 December 2022).
- Siedlecka, A.; Wolf-Baca, M.; Piekarska, K. Microbial communities of biofilms developed in a chlorinated drinking water distribution system: A field study of antibiotic resistance and biodiversity. Sci. Total Environ. 2021, 774, 145113. [Google Scholar] [CrossRef] [PubMed]
- Polish Ministry of Health. Regulation of the Minister of Health from December 7, 2017 on the Quality of Water Intended for Human Consumption; Polish Ministry of Health: Warsaw, Poland, 2017; p. 2294. (In Polish) [Google Scholar]
- Wolf-Baca, M.; Piekarska, K. Biodiversity of organisms inhabiting the water supply network of Wroclaw. Detection of pathogenic organisms constituting a threat for drinking water recipients. Sci. Total Environ. 2020, 715, 136732. [Google Scholar] [CrossRef]
- Siedlecka, A.; Wolf-Baca, M.; Piekarska, K. Molecular insight into bacterial communities of consumer tap water—A case study. Desalin. Water Treat. 2021, 222, 114–126. [Google Scholar] [CrossRef]
- Bertelli, C.; Courtois, S.; Rosikiewicz, M.; Piriou, P.; Aeby, S.; Robert, S.; Loret, J.F.; Greub, G. Reduced chlorine in drinking water distribution systems impacts bacterial biodiversity in biofilms. Front. Microbiol. 2018, 9, 2520. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Bakker, G.L.; Li, S.; Vreeburg, J.H.G.; Verberk, J.Q.J.C.; Medema, G.J.; Liu, W.T.; Van Dijk, J.C. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: An integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm. Environ. Sci. Technol. 2014, 48, 5467–5476. [Google Scholar] [CrossRef]
- Bian, K.; Wang, C.; Jia, S.; Shi, P.; Zhang, H.; Ye, L.; Zhou, Q.; Li, A. Spatial dynamics of bacterial community in chlorinated drinking water distribution systems supplied with two treatment plants: An integral study of free-living and particle-associated bacteria. Environ. Int. 2021, 154, 106552. [Google Scholar] [CrossRef]
- Wolf-Baca, M.; Siedlecka, A. Detection of pathogenic bacteria in hot tap water using the qPCR method: Preliminary research. SN Appl. Sci. 2019, 1, 840. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Smith, C.K.; Lapara, T.M.; Hozalski, R.M. Sulfate reducing bacteria and mycobacteria dominate the biofilm communities in a chloraminated drinking water distribution system. Environ. Sci. Technol. 2015, 49, 8432–8440. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Huang, T.; Ma, B.; Sun, W.; Zhao, K.; Sekar, R.; Xing, Y. Stagnation trigger changes to tap water quality in winter season: Novel insights into bacterial community activity and composition. Sci. Total Environ. 2022, 844, 157240. [Google Scholar] [CrossRef]
- Jäger, T.; Alexander, J.; Kirchen, S.; Dötsch, A.; Wieland, A.; Hiller, C.; Schwartz, T. Live-dead discrimination analysis, qPCR assessment for opportunistic pathogens, and population analysis at ozone wastewater treatment plants. Environ. Pollut. 2018, 232, 571–579. [Google Scholar] [CrossRef]
- Diviccaro, S.; Giatti, S.; Cioffi, L.; Falvo, E.; Piazza, R.; Caruso, D.; Melcangi, R.C. Paroxetine effects in adult male rat colon: Focus on gut steroidogenesis and microbiota. Psychoneuroendocrinology 2022, 143, 105828. [Google Scholar] [CrossRef]
- Díaz-Regañón, D.; García-Sancho, M.; Villaescusa, A.; Sainz, Á.; Agulla, B.; Reyes-Prieto, M.; Rodríguez-Bertos, A.; Rodríguez-Franco, F. Characterization of the Fecal and Mucosa-Associated Microbiota in Dogs with Chronic Inflammatory Enteropathy. Animals 2023, 13, 326. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Lin, T.; Jiang, F.C.; Zhang, X.; Wang, S.Y.; Zhang, S. Impact of pipe material and chlorination on the biofilm structure and microbial communities. Chemosphere 2022, 289, 133218. [Google Scholar] [CrossRef]
- Lugli, G.A.; Longhi, G.; Mancabelli, L.; Alessandri, G.; Tarracchini, C.; Fontana, F.; Turroni, F.; Milani, C.; van Sinderen, D.; Ventura, M. Tap water as a natural vehicle for microorganisms shaping the human gut microbiome. Environ. Microbiol. 2022, 24, 3912–3923. [Google Scholar] [CrossRef]
- Narciso-da-Rocha, C.; Vaz-Moreira, I.; Manaia, C.M. Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water. Sci. Total Environ. 2014, 466–467, 127–135. [Google Scholar] [CrossRef]
- Vincenti, S.; Quaranta, G.; De Meo, C.; Bruno, S.; Ficarra, M.G.; Carovillano, S.; Ricciardi, W.; Laurenti, P. Non-fermentative gram-negative bacteria in hospital tap water and water used for haemodialysis and bronchoscope flushing: Prevalence and distribution of antibiotic resistant strains. Sci. Total Environ. 2014, 499, 47–54. [Google Scholar] [CrossRef]
- Khan, H.; Miao, X.; Liu, M.; Ahmad, S.; Bai, X. Behavior of last resort antibiotic resistance genes (mcr-1 and blaNDM-1) in a drinking water supply system and their possible acquisition by the mouse gut flora. Environ. Pollut. 2020, 259, 113818. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolf-Baca, M.; Siedlecka, A. Community Composition and Antibiotic Resistance of Tap Water Bacteria Retained on Filtration Membranes. Diversity 2023, 15, 427. https://doi.org/10.3390/d15030427
Wolf-Baca M, Siedlecka A. Community Composition and Antibiotic Resistance of Tap Water Bacteria Retained on Filtration Membranes. Diversity. 2023; 15(3):427. https://doi.org/10.3390/d15030427
Chicago/Turabian StyleWolf-Baca, Mirela, and Agata Siedlecka. 2023. "Community Composition and Antibiotic Resistance of Tap Water Bacteria Retained on Filtration Membranes" Diversity 15, no. 3: 427. https://doi.org/10.3390/d15030427
APA StyleWolf-Baca, M., & Siedlecka, A. (2023). Community Composition and Antibiotic Resistance of Tap Water Bacteria Retained on Filtration Membranes. Diversity, 15(3), 427. https://doi.org/10.3390/d15030427