Genomic Analysis of a Novel Heavy Metal Resistant Isolate from a Black Sea Contaminated Sediment with the Potential to Degrade Alkanes: Plantactinospora alkalitolerans sp. nov.
Abstract
:1. Introduction
2. Material and Methods
2.1. Isolation
2.2. 16S rRNA Gene Phylogeny
2.3. Genome Sequencing, Annotation and Analysis
2.4. In Vitro Tests to Evaluate the Alkane Degradation and Heavy Metal Tolerance
2.5. Phenotypic and Chemotaxonomic Characterizations
3. Results
3.1. Identification of the Strain
3.1.1. Morphology
3.1.2. 16S rRNA Gene Analysis
3.1.3. Genome Sequencing
3.1.4. Phylogenomic Analysis
3.1.5. Phenotypic Characterization
3.2. Genome Mining
3.3. Alkane Degradation
3.4. Heavy Metal Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Cavusoglu, K.; Yapar, K.; Kinalioglu, K.; Turkmen, Z.; Cavusoglu, K.; Yalcin, E. Protective role of Ginkgo biloba on petroleum wastewater-induced toxicity in Vicia faba L. (Fabaceae) root tip cells. J. Environ. Biol. 2010, 31, 319–324. [Google Scholar] [PubMed]
- Kontaş, S.; Bostancı, D. Genotoxic Effects of Environmental Pollutant Heavy Metals on Alburnus chalcoides (Pisces: Cyprinidae) Inhabiting Lower Melet River (Ordu, Turkey). Bull. Environ. Contam. Toxicol. 2020, 104, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, M. Actinobacteria phyl. nov. In Bergey’s Manual of Systematics of Archaea and Bacteria; American Cancer Society: New York, NY, USA, 2015; pp. 1–2. [Google Scholar]
- Tan, G.Y.A.; Robinson, S.; Lacey, E.; Goodfellow, M. Amycolatopsis australiensis sp. nov., an actinomycete isolated from arid soils. Int. J. Syst. Evol. Microbiol. 2006, 56, 2297–2301. [Google Scholar] [CrossRef] [Green Version]
- Shirling, E.B.; Gottlieb, D. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 1966, 16, 313–340. [Google Scholar] [CrossRef] [Green Version]
- Genilloud, O. Micromonosporaceae. In Bergey’s Manual of Systematics of Archaea and Bacteria; American Cancer Society: New York, NY, USA, 2015; pp. 1–7. [Google Scholar]
- Veyisoglu, A.; Carro, L.; Guven, K.; Cetin, D.; Spröer, C.; Schumann, P.; Klenk, H.-P.; Goodfellow, M.; Sahin, N. Micromonospora yasonensis sp. nov., isolated from a Black Sea sediment. Antonie Leeuwenhoek 2016, 109, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Fitch, W.M. Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Syst. Zool. 1971, 20, 406–416. [Google Scholar] [CrossRef]
- Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef]
- Felsenstein, J. Phylogenies and the Comparative Method. Am. Nat. 1985, 125, 1–15. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016, 44, W242–W245. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef] [Green Version]
- Rowbotham, T.J.; Cross, T. Rhodococcus coprophilus sp. nov.: An Aerobic Nocardioform Actinomycete Belonging to the uhuduchrous’ Complex. J. Gen. Microbiol. 1977, 100, 123–138. [Google Scholar] [CrossRef]
- Waksman, S.A. The Actinomycetes. A summary of Current Knowledge; The Ronald Press Company: New York, NY, USA, 1967. [Google Scholar]
- Jones, K. Fresh isolates of actinomycetes in which the presence of sporogeneous aerial mycelia is a fluctuating characteristic. J. Bacteriol. 1949, 57, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waksman, S.A. The Actinomycetes. Vol. 2. Classification, İdentification, and Description of Genera and Species; The Williams & Wilkins Co.: Baltimore, MD, USA, 1961. [Google Scholar]
- Kelly, K.L. Inter-Society Color Council-National Bureau of Standards Color-Name Charts İllustrated with Centroid Colors; US Government Printing Office: Washington, DC, USA, 1964.
- Williams, S.T.; Goodfellow, M.; Alderson, G.; Wellington, E.M.; Sneath, P.H.; Sackin, M.J. Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 1983, 129, 1743–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechevalier, M.P.; Lechevalier, H. Chemical composition as a criterion in the classitication of aerobic actinomycetes. Int. J. Syst. Bacteriol. 1970, 20, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Staneck, J.L.; Roberts, G.D. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 1974, 28, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.D.; Pirouz, T.; Goodfellow, M.; Minnikin, D.E. Distribution of Menaquinones in Actinomycetes and Corynebacteria. Microbiology 1977, 100, 221–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minnikin, D.E.; O’Donnell, A.G.; Goodfellow, M.; Alderson, G.; Athalye, M.; Schaal, A.; Parlett, J.H. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 1984, 2, 233–241. [Google Scholar] [CrossRef]
- Kroppenstedt, R.M.; Goodfellow, M. The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora. In The Prokaryotes. Archaea and Bacteria: Firmicutes, Actinomycetes Vol 3, 3rd, ed.; Dworkin, M., Falkow, S., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 682–724. [Google Scholar]
- Sasser, M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids; MIDI Technical Note 101; Microbial ID, Inc.: Newark, NJ, USA, 2001; pp. 1–6. [Google Scholar]
- Stackebrandt, E.; Ebers, J. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 2006, 6, 152–155. [Google Scholar]
- Carro, L.; Nouioui, I.; Sangal, V.; Meier-Kolthoff, J.P.; Trujillo, M.E.; Montero-Calasanz, M.D.C.; Sahin, N.; Smith, D.L.; Kim, K.E.; Peluso, P.; et al. Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci. Rep. 2018, 8, 525. [Google Scholar] [CrossRef] [Green Version]
- Wayne, L.G.; Brenner, D.J.; Colwell, R.R.; Grimont, P.A.D.; Kandler, O.; Krichevsky, M.I.; Moore, L.H.; Moore, W.E.C.; Murray, R.G.E.; Stackebrandt, E.; et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Evol. Microbiol. 1987, 37, 463–464. [Google Scholar] [CrossRef] [Green Version]
- Moreno, R.; Rojo, F. Enzymes for Aerobic Degradation of Alkanes in Bacteria. In Aerobic Utilization of Hydrocarbons, Oils and Lipids. Handbook of Hydrocarbon and Lipid Microbiology; Rojo, F., Ed.; Springer: Berlin, Germany, 2017. [Google Scholar]
- Konstantinidis, K.T.; Isaacs, N.; Fett, J.; Simpson, S.; Long, D.T.; Marsh, T.L. Microbial Diversity and Resistance to Copper in Metal-Contaminated Lake Sediment. Microb. Ecol. 2003, 45, 191–202. [Google Scholar] [CrossRef]
- Mohite, B.V.; Koli, S.H.; Patil, S.V. Heavy Metal Stress and Its Consequences on Exopolysaccharide (EPS)-Producing Pantoea agglomerans. Appl. Biochem. Biotechnol. 2018, 186, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Beller, H.R.; Goh, E.B.; Keasling, J.D. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl. Environ. Microbiol. 2010, 76, 1212–1223. [Google Scholar] [CrossRef] [Green Version]
- Baker, E.A. Chemistry and morphology of plant epicuticular waxes. In The Plant Cuticle; Cutler, D.F., Alvin, K.L., Price, C.E., Eds.; Academic Press: London, UK, 1982; pp. 139–165. [Google Scholar]
- Contreras-Castro, L.; Maldonado, L.A.; Quintana, E.T.; Raggi, L.; Sánchez-Flores, A. Draft Genome Sequence of Two Marine Plantactinospora spp. from the Gulf of California. Genome Announc. 2018, 6, e00436-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Guan, X.; Liu, C.; Jia, F.; Li, J.; Li, J.; Jin, P.; Li, W.; Wang, X.; Xiang, W. Plantactinospora soyae sp. nov., an endophytic actinomycete isolated from soybean root [Glycine max (L.) Merr]. Int. J. Syst. Evol. Microbiol. 2016, 66, 2578–2584. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Guo, X.; Shi, L.; Zhao, J.; Yan, L.; Zhong, X.; Zhang, C.; Chen, Y.; Wang, X.; Xiang, W. Plantactinospora solaniradicis sp. nov., a novel actinomycete isolated from the root of a tomato plant (Solanum lycopersicum L.). Antonie Leeuwenhoek 2018, 111, 227–235. [Google Scholar] [CrossRef] [PubMed]
S1510T | P. soyae DSM 46832T | |
---|---|---|
Size (bp) | 9,219,583 | 9,715,930 |
G + C content (%) | 70.5 | 70.8 |
No. of contigs | 441 | 1 |
No. of coding sequences | 8174 | 8658 |
No. of RNAs | 112 | 91 |
N50 value | 31,205 | 9,715,930 |
Length (bp) | Function | Subsystems | Code | Number |
---|---|---|---|---|
999–1026 | Alcohol dehydrogenase, zinc-binding domain protein | -none- | - | 2 |
1026 | Alcohol dehydrogenase, zinc-binding domain protein | -none- | - | |
1368 | Apolipoprotein N-acyltransferase (EC 2.3.1.-)/Copper homeostasis protein CutE | Copper homeostasis: copper tolerance, Lipoprotein Biosynthesis, tRNA-methylthiotransferase containing cluster, tRNA-methylthiotransferase containing cluster | cutE | 1 |
792 | ATPase component CbiO of energizing module of cobalt ECF transporter | ECF class transporters, Transport of nickel and cobalt | - | 1 |
933–999 | Bifunctional protein: zinc-containing alcohol dehydrogenase; quinone oxidoreductase (NADPH:quinone reductase) (EC 1.1.1.-); Similar to arginate lyase | -none- | - | 6 |
717 | ChlI component of cobalt chelatase involved in B12 biosynthesis/ChlD component of cobalt chelatase involved in B12 biosynthesis | -none- | chlD | 1 |
1587 | Cobalt-precorrin-2 C20-methyltransferase (EC 2.1.1.130)/Cobalt-precorrin-3b C17-methyltransferase | Cobalamin synthesis, Cobalamin synthesis | - | 1 |
771 | Cobalt-precorrin-4 C11-methyltransferase (EC 2.1.1.133) | Cobalamin synthesis | - | 1 |
753 | Cobalt-precorrin-6 x reductase (EC 1.3.1.54) | Cobalamin synthesis | - | 1 |
1227 | Cobalt-precorrin-6 y C5-methyltransferase (EC 2.1.1.-)/Cobalt-precorrin-6 y C15-methyltransferase [decarboxylating] (EC 2.1.1.-) | -none- | - | 1 |
630 | Cobalt-precorrin-8 x methylmutase (EC 5.4.1.2) | Cobalamin synthesis | - | 1 |
1035–1188 | Cobalt-zinc-cadmium resistance protein | Cobalt-zinc-cadmium resistance | czc | 2 |
852–915 | Cobalt-zinc-cadmium resistance protein CzcD | Cobalt-zinc-cadmium resistance | czcD | 2 |
3657 | CobN component of cobalt chelatase involved in B12 biosynthesis | -none- | cobN | 1 |
606 | COG4300: Predicted permease, cadmium resistance protein | -none- | - | 1 |
750–822 | Conserved membrane protein in copper uptake, YcnI | Copper Transport System | ycnI | 2 |
1770–4425 | Copper binding protein, plastocyanin/azurin family | Bacterial hemoglobins, copper transport and blue copper proteins | - | 3 |
210 | Copper chaperone | Copper homeostasis | - | 1 |
519–543 | Copper resistance protein CopC | Copper Transport System, copper homeostasis | copC | 2 |
954–2139 | Copper resistance protein D | Copper homeostasis | copD | 3 |
744 | Cytoplasmic copper homeostasis protein cutC | -none- | cutC | 1 |
2076–2289 | Lead, cadmium, zinc and mercury transporting ATPase (EC 3.6.3.3) (EC 3.6.3.5); Copper-translocating P-type ATPase (EC 3.6.3.4) | Copper Transport System, copper homeostasis | - | 3 |
1038–1428 | Magnesium and cobalt efflux protein CorC | CBSS-56780.10.peg.1536, copper homeostasis: copper tolerance, Glycyl-tRNA synthetase containing cluster, Magnesium transport, tRNA-methylthiotransferase containing cluster | corC | 4 |
1065–1227 | Magnesium and cobalt transport protein CorA | Magnesium transport | corA | 2 |
1245 | Membrane-associated zinc metalloprotease | -none- | - | 1 |
411–3825 | Multicopper oxidase | Copper homeostasis | - | 5 |
840 | Predicted cobalt transporter CbtA | Transport of nickel and cobalt | cbtA | 1 |
903 | YpfJ protein, zinc metalloprotease superfamily | Broadly distributed proteins not in subsystems | ypfJ | 1 |
762 | Zinc ABC transporter, ATP-binding protein ZnuC | -none- | znuC | 1 |
1023 | Zinc ABC transporter, inner membrane permease protein ZnuB | -none- | znuB | 1 |
975 | Zinc ABC transporter, periplasmic-binding protein ZnuA | -none- | znuA | 1 |
741 | Zinc D-Ala-D-Ala carboxypeptidase (EC 3.4.17.14) | Metallocarboxypeptidases (EC 3.4.17.-) | - | 1 |
1296–1314 | Zinc protease | -none- | - | 2 |
1146 | Zinc transport protein ZntB | -none- | zntB | 1 |
459 | Zinc uptake regulation protein ZUR | Glycyl-tRNA synthetase containing cluster, Oxidative stress | zur | 1 |
405 | Zinc-binding protein of the histidine triad (HIT) family | -none- | - | 1 |
Genes | Description | No. of Genes Identified |
---|---|---|
salA | Salicylate hydroxylase (EC 1.14.13.1) | 1 |
salE | Salicylate esterase | 1 |
quiB | 3-dehydroquinate dehydratase II (EC 4.2.1.10) | 1 |
bphC | Biphenyl-2,3-diol 1,2-dioxygenase (EC 1.13.11.39) | 1 |
pobA | P-hydroxybenzoate hydroxylase (EC 1.14.13.2) | 1 |
HT | 4-hydroxybenzoate transporter | 1 |
HBH | Putative n-hydroxybenzoate hydroxylase | 1 |
GD | Gentisate 1,2-dioxygenase (EC 1.13.11.4) | 2 |
fahF | Fumarylacetoacetate hydrolase family protein | 2 |
faa | Fumarylacetoacetase (EC 3.7.1.2) | 1 |
catB | Muconate cycloisomerase (EC 5.5.1.1) | 1 |
catC | Muconolactone isomerase (EC 5.3.3.4) | 1 |
catD | Beta-ketoadipate enol-lactone hydrolase (EC 3.1.1.24) | 5 |
pcaB | 3-carboxy-cis,cis-muconate cycloisomerase (EC 5.5.1.2) | 2 |
pcaC | 4-carboxymuconolactone decarboxylase (EC 4.1.1.44) | 1 |
pcaD | Beta-ketoadipate enol-lactone hydrolase (EC 3.1.1.24) | 5 |
pcaG | Protocatechuate 3,4-dioxygenase alpha chain (EC 1.13.11.3) | 1 |
pcaH | Protocatechuate 3,4-dioxygenase beta chain (EC 1.13.11.3) | 1 |
pcaI | 3-oxoadipate CoA-transferase subunit A (EC 2.8.3.6) | 1 |
pcaJ | 3-oxoadipate CoA-transferase subunit B (EC 2.8.3.6) | 1 |
pcaQ | Pca regulon regulatory protein PcaR | 1 |
HD | Homogentisate 1,2-dioxygenase (EC 1.13.11.5) | 1 |
HPPD | 4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27) | 5 |
hmgR | Transcriptional regulator, IclR family | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carro, L.; Veyisoglu, A.; Guven, K.; Schumann, P.; Klenk, H.-P.; Sahin, N. Genomic Analysis of a Novel Heavy Metal Resistant Isolate from a Black Sea Contaminated Sediment with the Potential to Degrade Alkanes: Plantactinospora alkalitolerans sp. nov. Diversity 2022, 14, 947. https://doi.org/10.3390/d14110947
Carro L, Veyisoglu A, Guven K, Schumann P, Klenk H-P, Sahin N. Genomic Analysis of a Novel Heavy Metal Resistant Isolate from a Black Sea Contaminated Sediment with the Potential to Degrade Alkanes: Plantactinospora alkalitolerans sp. nov. Diversity. 2022; 14(11):947. https://doi.org/10.3390/d14110947
Chicago/Turabian StyleCarro, Lorena, Aysel Veyisoglu, Kiymet Guven, Peter Schumann, Hans-Peter Klenk, and Nevzat Sahin. 2022. "Genomic Analysis of a Novel Heavy Metal Resistant Isolate from a Black Sea Contaminated Sediment with the Potential to Degrade Alkanes: Plantactinospora alkalitolerans sp. nov." Diversity 14, no. 11: 947. https://doi.org/10.3390/d14110947
APA StyleCarro, L., Veyisoglu, A., Guven, K., Schumann, P., Klenk, H. -P., & Sahin, N. (2022). Genomic Analysis of a Novel Heavy Metal Resistant Isolate from a Black Sea Contaminated Sediment with the Potential to Degrade Alkanes: Plantactinospora alkalitolerans sp. nov. Diversity, 14(11), 947. https://doi.org/10.3390/d14110947