Distinct Community Assembly Mechanisms of Different Growth Stages in a Warm Temperate Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Phylogenetic Tree Construction
2.4. Statistical Analysis
3. Results
3.1. Results of Phylogenetic Signals
3.2. Variation in Community Phylogenetic Structure along Environmental Gradients
3.3. Explanatory Variables of β-Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mutshinda, C.M.; O’Hara, R.B. Integrating the niche and neutral perspectives on community structure and dynamics. Oecologia 2011, 166, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Diamond, J.M. The island dilemma: Lessons of modern biogeographic studies for the design of natural reserves. Biol. Conserv. 1975, 7, 129–146. [Google Scholar] [CrossRef]
- Boeraeve, M.; Honnay, O.; Jacquemyn, H. Local abiotic conditions are more important than landscape context for structuring arbuscular mycorrhizal fungal communities in the roots of a forest herb. Oecologia 2019, 190, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Dante, S.K.; Schamp, B.S.; Aarssen, L.W. Evidence of deterministic assembly according to flowering time in an old-field plant community. Funct. Ecol. 2013, 27, 555–564. [Google Scholar] [CrossRef]
- Foster, B.L.; Dickson, T.L.; Murphy, C.A.; Karel, I.S.; Smith, V.H. Propagule pools mediate community assembly and diversity ecosystem regulation along a grassland productivity gradient. J. Ecol. 2004, 92, 435–449. [Google Scholar] [CrossRef]
- Westoby, M.; Wright, I.J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 2006, 21, 261–268. [Google Scholar] [CrossRef]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef]
- Chacón-Labella, J.; De la Cruz, M.; Vicuña, R.; Tapia, K.; Escudero, A. Negative density dependence and environmental heterogeneity effects on tree ferns across succession in a tropical montane forest. Perspect. Plant Ecol. Evol. Syst. 2014, 16, 52–63. [Google Scholar] [CrossRef]
- Slabbert, E.L.; Knight, T.M.; Wubet, T.; Kautzner, A.; Baessler, C.; Auge, H.; Roscher, C.; Schweiger, O. Abiotic factors are more important than land management and biotic interactions in shaping vascular plant and soil fungal communities. Glob. Ecol. Conserv. 2022, 33, e01960. [Google Scholar] [CrossRef]
- Sadeghi, J.; Chaganti, S.R.; Shahraki, A.H.; Heath, D.D. Microbial community and abiotic effects on aquatic bacterial communities in north temperate lakes. Sci. Total Environ. 2021, 781, 146771. [Google Scholar] [CrossRef]
- Hu, G.; Jin, Y.; Liu, J.; Yu, M. Functional diversity versus species diversity: Relationships with habitat heterogeneity at multiple scales in a subtropical evergreen broad-leaved forest. Ecol. Res. 2014, 29, 897–903. [Google Scholar] [CrossRef]
- Zambrano, J.; Garzon-Lopez, C.X.; Yeager, L.; Fortunel, C.; Cordeiro, N.J.; Beckman, N.G. The effects of habitat loss and fragmentation on plant functional traits and functional diversity: What do we know so far? Oecologia 2019, 191, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Swenson, N.G. The assembly of tropical tree communities-the advances and shortcomings of phylogenetic and functional trait analyses. Ecography 2013, 36, 264–276. [Google Scholar] [CrossRef]
- Liu, C.; Jin, G.; Liu, Z. Importance of organ age in driving intraspecific trait variation and coordination for three evergreen coniferous species. Ecol. Indic. 2021, 121, 107099. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Lu, X.; Wang, Y.; Bai, Y. Intraspecific trait variation governs grazing-induced shifts in plant community above- and below-ground functional trait composition. Agric. Ecosyst. Environ. 2023, 346, 108357. [Google Scholar] [CrossRef]
- Vamosi, S.M.; Heard, S.B.; Vamosi, J.C.; Webb, C.O. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 2009, 18, 572–592. [Google Scholar] [CrossRef]
- Chun, J.H.; Lee, C.B. Diversity patterns and phylogenetic structure of vascular plants along elevational gradients in a mountain ecosystem, South Korea. J. Mt. Sci. 2018, 15, 280–295. [Google Scholar] [CrossRef]
- Gastauer, M.; Thiele, J.; Porembski, S.; Neri, A.V. How do altitude and soil properties influence the taxonomic and phylogenetic structure and diversity of Brazilian páramo vegetation? J. Mt. Sci. 2020, 17, 1045–1057. [Google Scholar] [CrossRef]
- Pyron, R.A.; Costa, G.C.; Patten, M.A.; Burbrink, F.T. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biol. Rev. 2015, 90, 1248–1262. [Google Scholar] [CrossRef]
- Yang, J.; Ci, X.; Lu, M.; Zhang, G.; Cao, M.; Li, J.; Lin, L. Functional traits of tree species with phylogenetic signal co-vary with environmental niches in two large forest dynamics plots. J. Plant Ecol. 2014, 7, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Losos, J.B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 2008, 11, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Matthews, T.J.; Whittaker, R.J. Neutral theory and the species abundance distribution: Recent developments and prospects for unifying niche and neutral perspectives. Ecol. Evol. 2001, 4, 2263–2277. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Wang, X.; Tang, Z. Local and regional processes control species richness of plant communities: The species pool hypothesis. Biodivers. Sci. 2009, 17, 605–612. [Google Scholar] [CrossRef]
- Zobel, M. The relative of species pools in determining plant species richness: An alternative explanation of species coexistence? Trends Ecol. Evol. 1997, 12, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Seidler, T.G.; Plotkin, J.B. Seed dispersal and spatial pattern in tropical trees. PLoS Biol. 2006, 4, e344. [Google Scholar] [CrossRef]
- Klinger, R.; Rejmanek, M. Experimental seed predator removal reveals shifting importance of predation and dispersal Limitation in early life history stages of tropical forest trees. Folia Geobot. 2013, 48, 415–435. [Google Scholar] [CrossRef]
- Wu, W.; Lu, H.; Sastri, A.; Yeh, Y.C.; Gong, G.C.; Chou, W.C.; Hsieh, C.H. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. ISME J. 2018, 12, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Girdler, E.B.; Connor Barrie, B.T. The scale-dependent importance of habitat factors and dispersal limitation in structuring Great Lakes shoreline plant communities. Plant Ecol. 2008, 198, 211–223. [Google Scholar] [CrossRef]
- Wennekes, P.L.; Rosindell, J.; Etienne, R.S. The neutral-niche debate: A philosophical perspective. Acta Biotheor. 2012, 60, 57–271. [Google Scholar] [CrossRef] [Green Version]
- Chai, Y.; Yue, M. Research advances in plant community assembly mechanisms. Acta Ecol. Sin. 2016, 36, 4557–4572. [Google Scholar] [CrossRef]
- Subedi, S.C.; Bhattarai, K.R.; Chauudhary, R.P. Distribution pattern of vascular plant species of mountains in Nepal and their fate against global warming. J. Mt. Sci. 2015, 12, 1345–1354. [Google Scholar] [CrossRef]
- Zhu, Z.; Nizamani, M.M.; Sahu, S.K.; Kunasingam, A.; Wang, H. Tree abundance, richness, and phylogenetic diversity along an elevation gradient in the tropical forest of Diaoluo Mountain in Hainan, China. Acta Oecol. 2019, 101, 103481. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; He, D.; Cao, M.; Zhu, H. Climatic control of plant species richness along elevation gradients in the Longitudinal Range-Gorge Region. Chin. Sci. Bull. 2007, 52, 50–58. [Google Scholar] [CrossRef]
- Gheyret, G.; Guo, Y.; Fang, J.; Tang, Z.Y. Latitudinal and elevational patterns of phylogenetic structure in forest communities in China’s mountains. Sci. China Life Sci. 2020, 63, 1895–1904. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, D.; Huang, D.; Du, N.; Liu, J.; Guo, W.; Wang, R. Altitudinal patterns illustrate the invasion mechanisms of alien plants in temperate mountain forests of northern China. For. Ecol. Manag. 2015, 351, 1–8. [Google Scholar] [CrossRef]
- Kraft, N.J.; Godoy, O.; Levine, J.M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. USA 2015, 112, 797–802. [Google Scholar] [CrossRef] [Green Version]
- Eisenlohr, P.V.; Alves, L.F.; Bernacci, L.C.; Padgurschi, M.C.G.; Torres, R.B.; Prata, E.M.B.; dos Santos, F.A.M.; Assis, M.A.; Ramos, E.; Rochelle, A.L.C. Disturbances, elevation, topography and spatial proximity drive vegetation patterns along an altitudinal gradient of a top biodiversity hotspot. Biodivers. Conserv. 2013, 22, 2767–2783. [Google Scholar] [CrossRef]
- Fan, S.; Hu, Z. Laoshan Flora, Beijing, China; Science Press: Beijing, China, 2003; pp. 24–26. [Google Scholar]
- Zhang, W.; Huang, D.; Wang, R.; Liu, J.; Du, N. Altitudinal Patterns of Species Diversity and Phylogenetic diversity across temperate mountain forests of northern China. PLoS ONE 2016, 11, e0159995. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Hao, Q.; Li, W.; Sun, Z. Species distribution and diversity characteristics of secondary plant communities in Laoshan Mountain of Qingdao, Shandong Province of eastern China. J. Beijing For. Univ. 2020, 42, 22–33. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.; Comita, L.S.; Hao, Z.; Davies, S.J.; Ye, J.; Lin, F.; Yuan, Z. Localscale drivers of tree survival in a temperate forest. PLoS ONE 2012, 7, e29469. [Google Scholar] [CrossRef] [Green Version]
- Swenson, N.G.; Enquist, B.J.; Thompson, J.; Zimmerman, J.K. The influence of spatial and size scales on phylogenetic relatedness in tropical forest communities. Ecology 2007, 88, 1770–1780. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, M.A.; Roger, A.; Courtois, E.A.; Jabot, F.; Norden, N.; Timothy Paine, C.E.; Baraloto, C.; Thébaud, C.; Chave, J. Shifts in species and phylogenetic diversity between sapling and tree communities indicate negative density dependence in a lowland rain forest. J. Ecol. 2010, 98, 137–146. [Google Scholar] [CrossRef]
- Fang, S.; Munoz, F.; Ye, J.; Lin, F.; Yuan, Z.; Kuang, X.; Hao, Z.; Wang, X. Deterministic processes drive functional and phylogenetic temporal changes of woody species in temperate forests in Northeast China. Ann. For. Sci. 2019, 76, 42. [Google Scholar] [CrossRef] [Green Version]
- Fraaije, R.G.A.; ter Braak, C.J.F.; Verduyn, B.; Breeman, L.B.S.; Verhoeven, J.T.A.; Soons, M.B. Early plant recruitment stages set the template for the development of vegetation patterns along a hydrological gradient. Funct. Ecol. 2015, 29, 971–980. [Google Scholar] [CrossRef]
- Kong, X.; Li, G.; Zheng, F. Study on the main vegetation types and species abundance of Laoshan Mountain in Qingdao. Chin. Agric. Sci. Bsul. 2009, 25, 241–245. [Google Scholar]
- Piao, T.; Comita, L.S.; Jin, G.; Kim, J.H. Density dependence across multiple life stages in a temperate old-growth forest of northeast China. Oecologia 2013, 172, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Prentice, I.C. The global spectrum of plant form and function. Nature 2016, 529, 167–171. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, J.; Sun, Z. Numerical classification, ordination and species diversity along elevation gradients of the forest community in Kunyu Mountain. Sci. Silv. Sin. 2013, 49, 54–61. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F. Diversity and composition of plant functional groups in mountain forests of the Lishan Nature Reserve, North China. Bot. Stud. 2007, 48, 339–348. (In Chinese) [Google Scholar]
- Bao, S.; Jiang, R.; Yang, C.; Han, X.; Xu, G. Soil Agrochemical Analysis; China Agriculture Press: Beijing, China, 2000; pp. 23–24. [Google Scholar]
- Qian, H.; Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 2016, 9, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Zanne, A.E.; Tank, D.C.; Cornwell, W.K.; Eastman, J.M.; Smith, S.A.; FitzJohn, R.G.; McGlinn, D.J.; O’Meara, B.C.; Moles, A.T.; Reich, P.B. Three keys to the radiation of angiosperms into freezing environments. Nature 2014, 506, 89–92. [Google Scholar] [CrossRef]
- Kusumoto, B.; Baba, A.; Fujii, S.J.; Fukasawa, H.; Honda, M.; Miyagi, Y.; Nanki, D.; Osako, T.; Shinohara, H.; Shiono, T. Dispersal process driving subtropical forest reassembly: Evidence from functional and phylogenetic analysis. Ecol. Res. 2016, 31, 645–654. [Google Scholar] [CrossRef]
- Blomberg, S.P.; Garland, T., Jr.; Ives, A.R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 2003, 57, 717–745. [Google Scholar] [CrossRef]
- Keck, F.; Rimet, F.; Bouchez, A.; Franc, A. Phylosignal: An R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 2016, 6, 2774–2780. [Google Scholar] [CrossRef]
- Webb, C.O. Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. Am. Nat. 2000, 156, 145–155. [Google Scholar] [CrossRef]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010, 26, 1463–1464. [Google Scholar] [CrossRef] [Green Version]
- Gałecki, A.; Burzykowski, T. Fitting Linear Mixed-Effects Models: The lme()Function. In Linear Mixed-Effects Models Using R: A Step-By-Step Approach; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Whittaker, R.H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 1960, 30, 407. [Google Scholar] [CrossRef]
- Hu, D.; Jiang, L.; Hou, Z.; Zhang, J.; Wang, H.; Lv, G. Environmental filtration and dispersal limitation explain different aspects of beta diversity in desert plant communities. Glob. Ecol. Conserv. 2022, 33, e01956. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Ferrier, S.; Drielsma, M.; Manion, G.; Watson, G. Extended statistical approaches to modelling spatial pattern in biodiversity in north-east New South Wales. II. Community-level modelling. Biodivers. Conserv. 2002, 11, 2309–2338. [Google Scholar] [CrossRef]
- Karel, M.; Chris, W.; Skipton, N.C.; Ferrier, S.; Fitzpatrick, M.C. A working guide to harnessing generalized dissimilarity modelling for biodiversity analysis and conservation assessment. Glob. Ecol. Biogeogr. 2022, 31, 802–821. [Google Scholar] [CrossRef]
- Xu, G. Study on Functional Diversity and Phylogeny of Jianfengling Tropical Montane Rainforest Canopy on Hainan Island. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2016; pp. 69–75. [Google Scholar]
- Fan, C.; Tan, L.; Zhang, C.; Zhao, X.; Gadow, K. Analysing taxonomic structures and local ecological processes in temperate forests in North Eastern China. BMC Ecol. 2017, 17, 33. [Google Scholar] [CrossRef] [Green Version]
- Xu, J. A Study of Community Assembly Along Gradients in North Slope of Qinling Mountains. Ph.D. Thesis, Northwest University, Xi’an, China, 2018; pp. 113–117. [Google Scholar]
- Huang, J.; Zheng, F.; Mi, X. Influence of environmental factors on phylogenetic structure at multiple spatial scales in an evergreen broad-leaved forest of China. Chin. J. Plant Ecol. 2010, 34, 309–315. [Google Scholar] [CrossRef]
- Zhang, S. Study on the Maintenance Mechanisms of Species Diversity in the Natural Old Growth Tropical Forests on Hainan Island, China. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2017; pp. 104–117. [Google Scholar]
- Bhattarai, K.R.; Vetaas, O.R. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Glob. Ecol. Biogeogr. 2003, 12, 327–340. [Google Scholar] [CrossRef]
- Dong, L.; Liang, C.; Li, F.; Zhao, L.; Ma, W.; Wang, L.; Wen, L.; Zheng, Y.; Li, Z.; Zhao, C.; et al. Community phylogenetic structure of grasslands and its relationship with environmental factors on the Mongolian Plateau. J. Arid Land 2019, 11, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Goberna, M.; Liu, Y.; Cui, M.; Yang, H.; Sun, Q.; Insam, H.; Zhou, J. Competition and habitat filtering jointly explain phylogenetic structure of soil bacterial communities across elevational gradients. Environ. Microbiol. 2018, 20, 2386–2396. [Google Scholar] [CrossRef]
- Chen, Y.; Jia, H.; Niu, S.; Zhang, X.; Wang, H.; Ye, Y.; Chen, Q.; Yuan, Z. Effects of Topographical Heterogeneity and Dispersal Limitation on Species Turnover in a Temperate Mountane Ecosystem: A Case Study in the Henan Province, China. Russ. J. Ecol. 2018, 49, 40–46. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Guo, H.; Fan, W.; Lv, H.; Duan, R. Distinguishing the importance between habitat specialization and dispersal limitation on species turnover. Ecol. Evol. 2013, 3, 3545–3553. [Google Scholar] [CrossRef]
- Myers, J.A.; Chase, J.M.; Jiménez, I.; Jorgensen, P.M.; Araujo-Murakami, A.; Paniagua-Zambrana, N.; Seidel, R. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 2013, 16, 151–157. [Google Scholar] [CrossRef]
Transect | Location | Sample Plot Number | Elevation Range (m) |
---|---|---|---|
1 | Shangqing | 1–11 | 0–500 |
2 | Taiqing | 12–18 | 0–300 |
3 | Jufeng | 19–32 | 300–800 |
4 | Yangkou | 33–41 | 0–500 |
5 | Beijiushui | 42–55 | 300–700 |
6 | Huayan | 56–69 | 50–600 |
Functional Traits | Blomberg’s K-Value | p-Value |
---|---|---|
SLA | 1.8072 | 0.0020 |
LDMC | 0.3839 | 0.2168 |
WD | 0.1967 | 0.7755 |
LPC | 1.5306 | 0.0195 |
LNC | 1.7398 | 0.0155 |
LCC | 1.4637 | 0.0156 |
βsor of Adults | βsor of Saplings | ||
---|---|---|---|
Percent Deviance Explained (%) | 12.91 | 24.88 | |
Predictor importance | Predictor | Importance | |
Geographic distance | 5.05 ** | 44.18 ** | |
ELE | 4.57 | 18.18 ** | |
SLO | 4.05 | 3.12 | |
ASP | 0.86 | 2.81 | |
pH | 1.19 | 0.36 | |
SOM | 1.32 | 1.40 | |
CON | 1.11 | 1.00 | |
AP | 2.52 | 0.38 | |
NN | 6.53 | 2.15 | |
AN | 64.28 ** | 3.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Guo, X.; Lu, H.; Yang, J.; Li, W.; Hao, Q. Distinct Community Assembly Mechanisms of Different Growth Stages in a Warm Temperate Forest. Diversity 2023, 15, 507. https://doi.org/10.3390/d15040507
Jiang X, Guo X, Lu H, Yang J, Li W, Hao Q. Distinct Community Assembly Mechanisms of Different Growth Stages in a Warm Temperate Forest. Diversity. 2023; 15(4):507. https://doi.org/10.3390/d15040507
Chicago/Turabian StyleJiang, Xiaolei, Xiao Guo, Huicui Lu, Jinming Yang, Wei Li, and Qing Hao. 2023. "Distinct Community Assembly Mechanisms of Different Growth Stages in a Warm Temperate Forest" Diversity 15, no. 4: 507. https://doi.org/10.3390/d15040507
APA StyleJiang, X., Guo, X., Lu, H., Yang, J., Li, W., & Hao, Q. (2023). Distinct Community Assembly Mechanisms of Different Growth Stages in a Warm Temperate Forest. Diversity, 15(4), 507. https://doi.org/10.3390/d15040507