The Contribution of Singletons and Doubletons Captured Using Weak Light Heath Traps for the Analysis of the Macroheteroceran Assemblages in Forest Biotopes
Abstract
:1. Introduction
2. Materials and Methods
Name | Year | Area (ha) | Forest Biotope | Tree spp. Cover | Shrubs spp. Cover | Surrounded by: |
---|---|---|---|---|---|---|
QP1 | 2018 | 3.01 | Querco-Pinetum | 35-year-old P. sylvestris (80%) 35-to 65-year-old Betula spp. 45-year-old Picea abies L. 30-year-old A. glutinosa | Frangula alnus L. Sorbus aucuparia L. Juniperus spp. | RN forests |
QP2 | 2019 | 0.45 | 30-year-old P. sylvestris (70%) 30-year-old Betula spp. 25-year-old A. glutinosa | RN forests and crop fields | ||
QP3 | 2019 | 7.07 | 55- to 80-year-old P. sylvestris (80%) 40-year-old Betula spp. | |||
RN1 | 2018 | 1.09 | Ribeso nigri-Alnetum | 30- to 50-year-old A. glutinosa (70%) 50-year-old Betula spp. Salix spp. | F. alnus | P. sylvestris and Betula spp. forests |
RN2 | 2018 | 0.83 | 25-year-old Betula spp. (60%) 25-year-old A. glutinosa Salix spp. | F. alnus | ||
RN3 | 2018 | 2.04 | 30- to 65-year-old A. glutinosa (90%) 45-year-old Betula spp. Salix spp. | F. alnus Padus avium L. | RN forests and small patches of P. sylvestris | |
RN4 | 2018 | 2.74 | 25- to 55-year-old A. glutinosa (90%) 50-year-old Salix spp. | F. alnus P. avium | ||
SQPa | 2018 | 0.61 | Substitute Community of Querco-Pinetum | 33- to 45-year-old P. sylvestris (80%) 45-year-old Betula spp. Salix spp. | F. alnus S. aucuparia P. avium | RN forests and crop fields |
SQPb | 2019 | |||||
SRN | 2019 | 0.31 | Substitute Community of Ribeso nigri-Alnetum | 33-year-old A. glutinosa (80%) 55- to 70-year-old Betula spp. Salix spp. | P. sylvestris forests and marshlands |
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Family Cossidae | Larval Food Necessities | QP1 | QP2 | QP3 | RN1 | RN2 | RN3 | RN4 | SC1a | Sc1b | Sc2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Phragmataecia castaneae (Hübner, 1790) | m1, He | 1 | 3 | 5 | 4 | 8 | 2 | ||||
Family Drepanidae | |||||||||||
Drepana curvatula (Borkhausen, 1790) | o2, Tr | 8 | 11 | 12 | 8 | 1 | 1 | 11 | 10 | 18 | 21 |
Drepana falcataria (Linnaeus, 1758) | o2, Tr | 9 | 5 | 1 | 12 | 4 | 2 | 6 | 14 | 14 | 8 |
Falcaria lacertinaria (Linnaeus, 1758) | o2, Tr | 1 | 1 | 3 | 2 | ||||||
Habrosyne pyritoides (Hufnagel, 1766) | m2, Sc | 2 | 4 | 2 | 1 | 2 | 4 | ||||
Ochropacha duplaris (Linnaeus, 1761) | o2, Tr | 3 | 1 | 1 | 3 | 7 | 1 | 94 | 3 | 4 | 1 |
Tethea ocularis (Linnaeus, 1767) | O1, Tr | 2 | 1 | ||||||||
Thyatira batis (Linnaeus, 1758) | o1, Sc | 2 | 3 | 1 | 3 | 6 | 4 | ||||
Watsonalla binaria (Hufnagel, 1767) | O1, He, Tr | 1 | 1 | 1 | |||||||
Family Erebidae | |||||||||||
Arctia caja (Linnaeus, 1758) | p, He, Sc, Tr | 1 | 4 | 6 | 36 | 1 | 8 | 25 | 13 | 4 | 7 |
Atolmis rubricollis (Linnaeus, 1758) | p, Ot | 2 | 2 | 7 | 3 | ||||||
Callimorpha dominula (Linnaeus, 1758) | p, He, Sc | 6 | 4 | 9 | 2 | 1 | 16 | 5 | 4 | 4 | |
Calliteara pudibunda (Linnaeus, 1758) | o2, Sc, Tr | 4 | 1 | 1 | 16 | 11 | 10 | 10 | 3 | 1 | |
Catocala electa (Vieweg, 1790) | o2, Sc, Tr | 1 | 1 | 1 | 3 | ||||||
Catocala fraxini (Linnaeus, 1758) | o2, Sc, Tr | 2 | 6 | 4 | |||||||
Catocala nupta (Linnaeus, 1767) | O1, Tr | 1 | |||||||||
Collita griseola (Hübner, 1803) | O1, He | 8 | 9 | 12 | 36 | 11 | 15 | 47 | 16 | 9 | 13 |
Colobochyla salicalis (Denis & Schiffermüller, 1775) | O1, Tr | 1 | 2 | 1 | 6 | 3 | 2 | 4 | |||
Coscinia cribraria (Linnaeus, 1758) | p, He | 1 | 2 | 1 | 1 | ||||||
Cybosia mesomella (Linnaeus, 1758) | p, Ot | 4 | 1 | 2 | 2 | ||||||
Diacrisia sannio (Linnaeus, 1758) | o2, He | 1 | 1 | 1 | 2 | 4 | |||||
Diaphora mendica (Clerck, 1759) | p, He, Sc | 1 | |||||||||
Eublemma minutata (Fabricius, 1794) | m1, He | 13 | 1 | 3 | |||||||
Euproctis similis (Fuessly, 1775) | p, Sc, Tr | 2 | 4 | 5 | 12 | 9 | 1 | 48 | 22 | 8 | 38 |
Herminia grisealis (Denis & Schiffermüller, 1775) | p, He, Ot | 1 | 3 | 1 | 1 | 1 | 3 | 9 | |||
Herminia tarsipennalis (Treitschke, 1835) | p, Ot | 1 | 2 | 4 | 6 | 7 | 33 | ||||
Hypena proboscidalis (Linnaeus, 1758) | p, He, Sc | 7 | 13 | 12 | 14 | 7 | 17 | 58 | 22 | 23 | 90 |
Hypena rostralis (Linnaeus, 1758) | p, Ot | 1 | |||||||||
Katha depressa (Esper, 1787) | p, Ot | 11 | 2 | 15 | 26 | 5 | 41 | 9 | 11 | 10 | |
Laspeyria flexula (Denis & Schiffermüller, 1775) | p, Ot | 4 | 2 | 3 | 2 | 1 | 2 | 5 | 6 | 3 | |
Lithosia quadra (Linnaeus, 1758) | m2, Sc, Tr | 11 | 4 | 1 | 4 | 3 | |||||
Lygephila pastinum (Treitschke, 1826) | O1, He | 2 | |||||||||
Lymantria dispar (Linnaeus, 1758) | o2, Sc, Tr | 3 | 10 | 2 | 6 | 8 | 5 | 11 | 6 | ||
Family Erebidae | Larval food necessities | QP1 | QP2 | QP3 | RN1 | RN2 | RN3 | RN4 | SC1a | Sc1b | Sc2 |
Lymantria monacha (Linnaeus, 1758) | p, Con, Tr | 14 | 4 | 21 | 3 | 6 | 5 | 17 | 6 | 15 | |
Eilema lurideola (Zincken, 1817) | o2, He | 1 | 3 | 5 | 2 | ||||||
Eilema complana (Linnaeus, 1758) | p, He | 6 | 16 | 3 | 5 | 6 | 2 | ||||
Eilema lutarella (Linnaeus, 1758) | p, He | 1 | 1 | 1 | |||||||
Miltochrista miniata (Forster, 1771) | m1, He | 1 | 16 | 6 | 8 | 1 | 4 | 2 | 10 | 32 | 9 |
Orgyia antiquoides (Hübner, 1822) | o2, Sc | 1 | |||||||||
Orgyia antiqua (Linnaeus, 1758) | p, Con, Sc, Tr | 1 | 1 | 1 | |||||||
Pelosia muscerda (Hufnagel, 1766) | m1, He | 13 | 15 | 58 | 60 | 17 | 19 | 39 | 13 | 9 | |
Phragmatobia fuliginosa (Linnaeus, 1758) | p, He, Sc | 5 | 3 | 7 | 15 | 6 | 75 | 10 | 3 | ||
Rivula sericealis (Scopoli, 1763) | o2, He | 17 | 36 | 18 | 6 | 2 | 5 | 70 | 19 | 33 | 75 |
Scoliopteryx libatrix (Linnaeus, 1758) | o1, Sc | 1 | 2 | 1 | 1 | ||||||
Spilarctia lutea (Hufnagel, 1766) | p, He, Sc | 16 | 2 | 3 | 14 | 9 | 25 | 20 | 49 | 8 | 16 |
Spilosoma lubricipeda (Linnaeus, 1758) | o2, He, Sc | 23 | 9 | 1 | 117 | 12 | 81 | 118 | 15 | 8 | 34 |
Spilosoma urticae (Esper, 1789) | p, He | 2 | 1 | 6 | |||||||
Wittia sororcula (Hufnagel, 1766) | p, Ot | 2 | 2 | 4 | |||||||
Family Geometridae | |||||||||||
Abraxas grossulariata (Linnaeus, 1758) | o2, Sc, Tr | 11 | 15 | 3 | 9 | ||||||
Abraxas sylvata (Scopoli, 1763) | p, Sc, Tr | 15 | 1 | 2 | 2 | 5 | 24 | 18 | 114 | 12 | 27 |
Aethalura punctulata (Denis & Schiffermüller, 1775) | O1, Tr | 5 | 7 | 1 | 2 | 2 | 7 | 28 | 25 | ||
Agriopis aurantiaria (Hübner, 1799) | o2, Tr | 1 | |||||||||
Alcis repandata (Linnaeus, 1758) | o2, Sc, Tr | 1 | 5 | 2 | 7 | 1 | |||||
Angerona prunaria (Linnaeus, 1758) | p, Sc, Tr | 10 | 3 | 2 | 2 | 4 | 8 | 19 | |||
Apeira syringaria (Linnaeus, 1758) | o2, Sc, Tr | 1 | |||||||||
Biston betularia (Linnaeus, 1758) | p, He, Sc, Tr | 1 | 3 | 2 | 9 | 3 | 1 | 6 | 2 | 3 | 3 |
Bupalus piniaria (Linnaeus, 1758) | p, Con, Tr | 9 | 180 | 163 | 7 | 143 | |||||
Cabera exanthemata (Scopoli, 1763) | o2, Sc, Tr | 5 | 16 | 24 | 9 | 9 | 12 | 32 | 11 | 12 | 11 |
Cabera pusaria (Linnaeus, 1758) | o2, Sc, Tr | 18 | 22 | 1 | 1 | 37 | 16 | ||||
Campaea margaritaria (Linnaeus, 1761) | o2, Sc, Tr | 9 | 5 | 1 | 4 | 2 | 1 | 14 | 15 | ||
Camptogramma bilineata (Linnaeus, 1758) | o2, He | 6 | 4 | 1 | 1 | 4 | 3 | 6 | 14 | ||
Catarhoe cuculata (Hufnagel, 1767) | m2, He | 1 | |||||||||
Cepphis advenaria (Hübner, 1790) | p, Sc, Tr | 2 | 1 | 1 | 4 | 4 | |||||
Charissa ambiguata (Duponchel, 1830) | p, He, Sc | 1 | |||||||||
Chiasmia clathrata (Linnaeus, 1758) | O1, He | 2 | 1 | 3 | 1 | 4 | 5 | ||||
Chloroclysta siterata (Hufnagel, 1767) | o2, Tr | 2 | 2 | 1 | |||||||
Cleora cinctaria (Denis & Schiffermüller, 1775) | p, He, Sc, Tr | 1 | |||||||||
Colostygia pectinataria (Knoch, 1781) | o2, He | 3 | 10 | 3 | 2 | 10 | 6 | 2 | 14 | 27 | |
Colotois pennaria (Linnaeus, 1761) | o2, Sc, Tr | 7 | 1 | 1 | 3 | 22 | 8 | 7 | 4 | 1 | |
Cosmorhoe ocellata (Linnaeus, 1758) | O1, He | 3 | 1 | 1 | 1 | ||||||
Family Geometridae | Larval food necessities | QP1 | QP2 | QP3 | RN1 | RN2 | RN3 | RN4 | SC1a | Sc1b | Sc2 |
Crocallis elinguaria (Linnaeus, 1758) | o2, Sc, Tr | 1 | |||||||||
Cyclophora linearia (Hübner, 1799) | o2, Sc, Tr | 1 | |||||||||
Cyclophora punctaria (Linnaeus, 1758) | o2, Tr | 2 | 6 | 6 | 1 | 4 | 3 | 7 | 7 | ||
Cyclophora albipunctata (Hufnagel, 1767) | O1, He, Tr | 4 | 6 | 4 | 2 | 12 | 1 | 2 | 5 | 3 | |
Cyclophora annularia (Fabricius, 1775) | o2, Tr | 2 | 1 | 1 | 1 | 2 | 1 | ||||
Cyclophora pendularia (Clerck, 1759) | o2, Sc, Tr | 3 | 9 | 5 | 2 | 1 | 3 | 1 | 5 | 2 | |
Deileptenia ribeata (Clerck, 1759) | p, Con, Sc, Tr | 1 | 3 | 5 | |||||||
Dysstroma truncata (Hufnagel, 1767) | p, He, Sc, Tr | 2 | 2 | 2 | 1 | 3 | 7 | 4 | 16 | 30 | |
Ecliptopera capitata (Herrich-Schäffer, 1839) | m1, He | 3 | 7 | 4 | 8 | 9 | 17 | 8 | 14 | 8 | |
Ecliptopera silaceata (Denis & Schiffermüller, 1775) | o2, He | 4 | 9 | 11 | 9 | 9 | 16 | 3 | 23 | 18 | |
Ectropis crepuscularia (Denis & Schiffermüller, 1775) | p, He, Sc, Tr | 2 | 4 | 5 | 2 | 4 | 10 | 9 | |||
Electrophaes corylata (Thunberg, 1792) | o2, Sc, Tr | 7 | 3 | 1 | 3 | ||||||
Ematurga atomaria (Linnaeus, 1758) | o2, Sc, Tr | 1 | 1 | ||||||||
Ennomos alniaria (Linnaeus, 1758) | o2, Sc, Tr | 1 | |||||||||
Ennomos autumnaria (Werneburg, 1859) | o2, Sc, Tr | 1 | 1 | 1 | 1 | 7 | 2 | ||||
Epione repandaria (Hufnagel, 1767) | p, Sc, Tr | 1 | 1 | 2 | 3 | 7 | 1 | ||||
Epirrhoe alternata (Müller, 1764) | m2, He | 12 | 15 | 11 | 6 | 5 | 3 | 33 | 5 | 18 | 68 |
Epirrhoe rivata (Hübner, 1813) | m2, He | 2 | 7 | 4 | 3 | 15 | 3 | ||||
Epirrhoe tristata (Linnaeus, 1758) | m2, He | 1 | 1 | 1 | 1 | 2 | |||||
Epirrita autumnata (Borkhausen, 1794) | m2, He, Sc, Tr | 31 | 1 | 21 | 6 | 74 | 46 | 36 | 1 | ||
Epirrita dilutata (Denis & Schiffermüller, 1775) | p, Tr | 2 | 1 | 10 | 7 | 2 | |||||
Euchoeca nebulata (Scopoli, 1763) | o2, Tr | 11 | 42 | 55 | 192 | 23 | 20 | 176 | 37 | 98 | 76 |
Eulithis mellinata (Fabricius, 1787) | m2, Sc | 1 | 1 | 1 | 25 | 45 | 1 | 1 | 5 | ||
Eulithis prunata (Linnaeus, 1758) | m2, He | 1 | 2 | 2 | 22 | ||||||
Eulithis testata (Linnaeus, 1761) | o2, He, Sc, Tr | 1 | 2 | 1 | 4 | 1 | 2 | ||||
Euphyia unangulata (Haworth, 1809) | m2, He | 6 | 14 | 8 | 17 | 11 | 14 | 16 | 9 | 15 | 20 |
Eupithecia exiguata (Hübner, 1813) | o2, Sc, Tr | 3 | 2 | 1 | |||||||
Eupithecia virgaureata (Doubleday, 1861) | o2, He | 16 | 5 | 5 | 6 | 1 | 23 | 25 | 1 | 17 | 28 |
Eupithecia vulgata (Haworth, 1809) | p, Ot | 7 | 4 | 3 | 8 | 5 | |||||
Eustroma reticulata (Denis & Schiffermüller, 1775) | m1, He | 4 | 1 | 5 | 1 | 3 | 5 | ||||
Geometra papilionaria (Linnaeus, 1758) | p, Sc, Tr | 2 | 3 | 3 | 4 | 4 | 4 | 6 | |||
Hydrelia flammeolaria (Hufnagel, 1767) | O1, He | 27 | 26 | 6 | 2 | 7 | 17 | 5 | 107 | 6 | |
Hydriomena furcata (Thunberg, 1784) | o2, Sc, Tr | 1 | 3 | ||||||||
Hydriomena impluviata (Denis & Schiffermüller, 1775) | p, Tr | 36 | 14 | 100 | 21 | ||||||
ylaea fasciaria (Linnaeus, 1758) | o1, Con, TR | 2 | |||||||||
Hypomecis punctinalis (Scopoli, 1763) | p, Con, Sc, Tr | 1 | 2 | 3 | 4 | 2 | 11 | 5 | 4 | ||
Hypomecis roboraria (Denis & Schiffermüller, 1775) | p, Tr | 8 | 11 | 3 | 52 | 15 | 86 | 42 | 35 | 22 | 23 |
Idaea aversata (Linnaeus, 1758) | p, He, Sc, Tr | 5 | 1 | 4 | 5 | 4 | 2 | 5 | 7 | 15 | |
Idaea biselata (Hufnagel, 1767) | p, He | 1 | 4 | 1 | |||||||
Family Geometridae | Larval food necessities | QP1 | QP2 | QP3 | RN1 | RN2 | RN3 | RN4 | SC1a | Sc1b | Sc2 |
Idaea straminata (Borkhausen, 1794) | p, He | 1 | 4 | ||||||||
Ligdia adustata (Denis & Schiffermüller, 1775) | m2, He | 1 | 4 | 2 | 3 | 2 | 11 | 3 | |||
Lomaspilis marginata (Linnaeus, 1758) | o2, Sc, Tr | 3 | 5 | 4 | 1 | 3 | 9 | 4 | 6 | 9 | |
Lomographa bimaculata (Fabricius, 1775) | p, Sc, Tr | 1 | 1 | 3 | |||||||
Lomographa temerata (Denis & Schiffermüller, 1775) | p, Sc, Tr | 1 | 1 | 1 | 1 | 2 | 11 | ||||
Lycia hirtaria (Clerck, 1759) | o2, Tr | 6 | 8 | 15 | 10 | ||||||
Macaria alternata (Denis & Schiffermüller, 1775) | o2, Sc, Tr | 2 | 4 | 3 | 7 | 2 | 6 | 4 | 3 | 3 | |
Macaria artesiaria (Denis & Schiffermüller, 1775) | m2, Sc, Tr | 1 | 3 | ||||||||
Macaria brunneata (Thunberg, 1784) | o2, Sc, Tr | 1 | 6 | 2 | 4 | ||||||
Macaria liturata (Clerck, 1759) | o2, Con, Sc, Tr | 19 | 8 | 9 | 5 | 11 | 27 | 21 | 14 | ||
Macaria notata (Linnaeus, 1758) | o2, Tr | 2 | 8 | 12 | 5 | 2 | 1 | 17 | 25 | ||
Macaria wauaria (Linnaeus, 1758) | m2, Sc | 1 | 17 | 12 | 3 | 1 | 17 | ||||
Mesoleuca albicillata (Linnaeus, 1758) | m2, Sc | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 3 | 6 |
Minoa murinata (Scopoli, 1763) | m1, He | 1 | |||||||||
Opisthograptis luteolata (Linnaeus, 1758) | o2, Sc, Tr | 1 | |||||||||
Orthonama vittata (Borkhausen, 1794) | m2, He | 17 | 6 | 4 | 3 | 6 | 40 | 2 | 5 | 13 | |
Paradarisa consonaria (Hübner, 1799) | o2, Sc, Tr | 1 | |||||||||
Pelurga comitata (Linnaeus, 1758) | O1, He | 13 | 1 | 1 | |||||||
Pennithera firmata (Hübner, 1822) | p, Sc | 6 | 23 | 7 | 3 | 1 | 20 | 16 | 2 | ||
Peribatodes rhomboidaria (Denis & Schiffermüller, 1775) | p, He, Sc, Tr | 13 | 8 | 1 | 5 | 2 | 29 | 49 | |||
Perizoma alchemillata (Linnaeus, 1758) | O1, He | 2 | 3 | 3 | 1 | 3 | 1 | 3 | |||
Perizoma bifaciata (Haworth, 1809) | O1, He | 1 | |||||||||
Petrophora chlorosata (Scopoli, 1763) | m1, O | 9 | 4 | 9 | 9 | 5 | 7 | 1 | 17 | ||
Philereme transversata (Hufnagel, 1767) | m2, He | 1 | |||||||||
Philereme vetulata (Denis & Schiffermüller, 1775) | m2, He | 1 | 23 | 11 | 3 | 2 | |||||
Plagodis dolabraria (Linnaeus, 1767) | p, Tr | 1 | |||||||||
Pterapherapteryx sexalata (Retzius, 1783) | p, Sc, Tr | 1 | 3 | ||||||||
Scopula (Ustocidalia) ternata Schrank, 1802 | p, He | 1 | 1 | 1 | |||||||
Scopula marginepunctata (Goeze, 1781) | p, He | 2 | 1 | ||||||||
Scopula ternata (Schrank, 1802) | o1, Sc | 1 | |||||||||
Scopula immorata (Linnaeus, 1758) | p, He | 1 | 1 | ||||||||
Scopula rubiginata (Hufnagel, 1767) | p, He | 1 | |||||||||
Scotopteryx chenopodiata (Linnaeus, 1758) | p, Sc | 3 | 1 | 2 | 1 | 1 | |||||
Selenia dentaria (Fabricius, 1775) | p, Tr | 1 | 1 | 1 | 1 | ||||||
elenia lunularia (Hübner, 1788) | p, Tr | 1 | 1 | 5 | 2 | 2 | 4 | 4 | |||
Selenia tetralunaria (Hufnagel, 1767) | p, Tr | 1 | 1 | 5 | |||||||
Siona lineata (Scopoli, 1763) | o2, He | 1 | 1 | 1 | |||||||
Thera juniperata (Linnaeus, 1758) | m2, Sc | 1 | 2 | ||||||||
Timandra comae (Schmidt, 1931) | o2, He | 32 | 11 | 5 | 13 | 6 | 8 | 51 | 29 | 49 | 17 |
Family Geometridae | Larval food necessities | QP1 | QP2 | QP3 | RN1 | RN2 | RN3 | RN4 | SC1a | Sc1b | Sc2 |
Xanthorhoe biriviata (Borkhausen, 1794) | m1, He | 1 | 3 | 80 | 7 | 3 | 4 | ||||
Xanthorhoe designata (Hufnagel, 1767) | p, He | 2 | 3 | 6 | 6 | 20 | 2 | 6 | |||
Xanthorhoe ferrugata (Clerck, 1759) | p, He | 35 | 13 | 16 | 29 | 108 | 3 | 13 | 27 | ||
Xanthorhoe quadrifasiata (Clerck, 1759) | p, He | 1 | 1 | 2 | |||||||
Xanthorhoe spadicearia (Denis & Schiffermüller, 1775) | p, He | 8 | 2 | 7 | 8 | 5 | 4 | 1 | 3 | ||
Family Hepialidae | |||||||||||
Triodia sylvina (Linnaeus, 1761) | p, He, Ot | 5 | 3 | 7 | 3 | 1 | 8 | 7 | |||
Family Lasiocampidae | |||||||||||
Dendrolimus pini (Linnaeus, 1758) | o1, Con, TR | 38 | 9 | 21 | 2 | 4 | 14 | 16 | |||
Euthrix potatoria (Linnaeus, 1758) | p, He | 6 | 3 | 5 | 43 | 10 | 5 | 46 | 6 | 18 | 7 |
Gastropacha quercifolia (Linnaeus, 1758) | o2, Sc, Tr | 1 | 1 | ||||||||
Macrothylacia rubi (Linnaeus, 1758) | p, He, Sc, Tr | 1 | 1 | 1 | |||||||
Poecilocampa populi (Linnaeus, 1758) | o2, Tr | 1 | 10 | 1 | 1 | ||||||
Family Noctuidae | |||||||||||
Abrostola tripartita (Hufnagel, 1766) | m1, He | 1 | 2 | 1 | |||||||
Abrostola triplasia (Linnaeus, 1758) | m1, He | 1 | 5 | ||||||||
Acontia trabealis (Scopoli, 1763) | m1, He | 1 | |||||||||
Acronicta leporina (Linnaeus, 1758) | p, Sc, Tr | 1 | 1 | 4 | 2 | 1 | 1 | ||||
Acronicta strigosa (Denis & Schiffermüller, 1775) | o1, Sc, Tr | 1 | 1 | 1 | 7 | 4 | 1 | ||||
Acronicta megacephala (Denis & Schiffermüller, 1775) | o1, Sc, Tr | 1 | 2 | 2 | 1 | 1 | 3 | ||||
Acronicta cuspis (Hübner, 1813) | O1, Tr | 1 | 1 | 1 | 1 | 1 | |||||
Acronicta rumicis (Linnaeus, 1758) | p, He | 21 | 2 | 12 | 9 | 5 | 10 | 55 | 4 | 11 | 12 |
Agrochola litura (Linnaeus, 1758) | p, He, Sc, Tr | 1 | |||||||||
Agrochola lota (Clerck, 1759) | p, He, Sc, Tr | 2 | 2 | 7 | 5 | 1 | 1 | ||||
Agrochola circellaris (Hufnagel, 1766) | p, He, Sc, Tr | 2 | 3 | ||||||||
Agrotis cinerea (Denis & Schiffermüller, 1775) | o2, He | 1 | |||||||||
Agrotis exclamationis (Linnaeus, 1758) | p, He | 1 | 3 | 1 | 2 | 1 | 3 | 10 | 9 | ||
Agrotis segetum (Denis & Schiffermüller, 1775) | p, He | 1 | 2 | 1 | |||||||
Agrotis vestigialis (Hufnagel, 1766) | p, He | 5 | |||||||||
Allophyes oxyacanthae (Linnaeus, 1758) | O1, Tr | 3 | 1 | 3 | 5 | 5 | 5 | 10 | 10 | ||
Amphipoea lucens (Freyer, 1845) | p, He | 1 | 1 | 1 | |||||||
Amphipoea oculea (Linnaeus, 1761) | O1, He | 1 | 2 | 5 | 4 | ||||||
Amphipyra berbera (Rungs, 1949) | p, Sc, Tr | 1 | 1 | ||||||||
Amphipyra livida (Denis & Schiffermüller, 1775) | o2, He | 2 | |||||||||
Anaplectoides prasina (Denis & Schiffermüller, 1775) | p, He, Sc | 12 | 10 | 18 | 12 | ||||||
Apamea sordens (Hufnagel, 1766) | O1, He | 1 | |||||||||
Arenostola phragmitidis (Hübner, 1803) | m1, He | 1 | 1 | 1 | 1 | ||||||
Asteroscopus sphinx (Hufnagel, 1766) | p, Tr | 1 | 2 | 4 | |||||||
Axylia putris (Linnaeus, 1761) | o2, He | 2 | 4 | ||||||||
Family Noctuidae | Larval food necessities | QP1 | QP2 | QP3 | RN1 | RN2 | RN3 | RN4 | SC1a | Sc1b | Sc2 |
Cerapteryx graminis (Linnaeus, 1758) | O1, He | 1 | 2 | 2 | 1 | 1 | 3 | ||||
Charanyca ferruginea (Esper, 1785) | p, Sc, Tr | 5 | |||||||||
Conistra rubiginea (Denis & Schiffermüller, 1775) | p, He, Sc, Tr | 1 | 1 | ||||||||
Cosmia trapezina (Linnaeus, 1758) | o2, Sc, Tr | 2 | |||||||||
Craniophora ligustri (Denis & Schiffermüller, 1775) | o1, Sc, Tr | 2 | |||||||||
Cucullia artemisiae (Hufnagel, 1766) | O1, He | 1 | |||||||||
Deltote bankiana (Fabricius, 1775) | p, He | 2 | 2 | ||||||||
Deltote deceptoria (Scopoli, 1763) | p, He | 2 | 1 | 2 | 6 | ||||||
Deltote uncula (Clerck, 1759) | o2, He | 1 | 3 | ||||||||
Denticucullus pygmina (Haworth, 1809) | o2, He | 12 | 1 | 3 | 9 | 8 | 4 | 8 | 3 | 4 | 1 |
Diachrysia chrysitis (Linnaeus, 1758) | p, He | 2 | 2 | 2 | 4 | ||||||
Diarsia brunnea (Denis & Schiffermüller, 1775) | o2, Sc, Tr | 1 | 1 | ||||||||
Diarsia rubi (Vieweg, 1790) | p, He, Sc | 3 | 1 | 5 | 1 | 1 | 2 | 1 | 1 | 1 | |
Diloba caeruleocephala (Linnaeus, 1758) | o1, Sc | 1 | 1 | 7 | 4 | 2 | |||||
Dypterygia scabriuscula (Linnaeus, 1758) | o2, He | 3 | 2 | 1 | 2 | 4 | 1 | 2 | 5 | 5 | 5 |
Egira conspicillaris (Linnaeus, 1758) | p, He, Sc | 1 | |||||||||
Eucarta virgo (Treitschke, 1835) | o2, He | 1 | 1 | 1 | |||||||
Euplexia lucipara (Linnaeus, 1758) | p, He, Sc | 2 | 1 | 2 | 1 | 2 | |||||
Eupsilia transversa (Hufnagel, 1766) | p, He, Sc | 1 | |||||||||
Gortyna flavago (Denis & Schiffermüller, 1775) | o2, He | 1 | 1 | 1 | 6 | ||||||
Hada plebeja (Linnaeus, 1761) | p, He | 1 | 2 | 2 | 12 | 5 | 7 | 3 | |||
Helotropha leucostigma (Hübner, 1808) | O1, He | 4 | 3 | 1 | |||||||
Hoplodrina blanda (Denis & Schiffermüller, 1775) | o2, He | 1 | 1 | 2 | 3 | ||||||
Hydraecia micacea (Esper, 1789) | o2, He | 9 | 6 | 1 | 3 | 4 | 1 | 3 | 25 | ||
Ipimorpha subtusa (Denis & Schiffermüller, 1775) | o1, Sc, Tr | 1 | |||||||||
Lacanobia contigua (Denis & Schiffermüller, 1775) | p, He, Sc | 3 | 1 | 1 | 2 | 2 | 10 | 15 | |||
Lacanobia oleracea (Linnaeus, 1758) | p, He | 2 | 3 | 1 | 7 | ||||||
Lacanobia splendens (Hübner, 1808) | o2, He | 1 | 2 | 1 | 2 | 1 | |||||
Lacanobia w-latinum (Hufnagel, 1766) | p, He, Sc | 4 | 12 | 20 | 21 | ||||||
Leucania obsoleta (Hübner, 1803) | m1, He | 2 | 1 | ||||||||
Lithophane furcifera (Hufnagel, 1766) | o2, Tr | 2 | 5 | 1 | 2 | 2 | 1 | ||||
Lithophane ornitopus (Hufnagel, 1766) | o2, He, Tr | 1 | 1 | ||||||||
Macdunnoughia confusa (Stephens, 1850) | O1, He | 1 | |||||||||
Melanchra persicariae (Linnaeus, 1761) | p, He | 2 | |||||||||
Mniotype satura (Denis & Schiffermüller, 1775) | p, He, Sc, Tr | 5 | 8 | 4 | 1 | 1 | 2 | 25 | 39 | ||
Moma alpium (Osbeck, 1778) | o2, Tr | 1 | 2 | 2 | 1 | ||||||
Mythimna albipuncta (Denis & Schiffermüller, 1775) | p, He | 2 | 1 | 1 | 2 | ||||||
Mythimna impura (Hübner, 1808) | p, He | 2 | 1 | 1 | |||||||
Mythimna pallens (Linnaeus, 1758) | p, He | 1 | 1 | 5 | 7 | ||||||
Mythimna straminea (Treitschke, 1825) | p, Sc, Tr | 1 | 1 | 1 | 3 | ||||||
Family Noctuidae | Larval food necessities | QP1 | QP2 | QP3 | RN1 | RN2 | RN3 | RN4 | SC1a | Sc1b | Sc2 |
Mythimna turca (Linnaeus, 1761) | O1, He | 2 | 1 | 2 | 2 | 1 | 6 | ||||
Noctua fimbriata (Schreber, 1759) | p, He, Sc | 1 | 2 | 4 | |||||||
Noctua janthina (Denis & Schiffermüller, 1775) | p, He, Sc | 1 | 8 | ||||||||
Noctua pronuba (Linnaeus, 1758) | o2, He, Sc | 12 | 6 | 9 | 1 | 2 | 3 | 9 | 17 | ||
Ochropleura plecta (Linnaeus, 1761) | o2, He | 21 | 21 | 27 | 39 | 6 | 21 | 94 | 14 | 21 | 30 |
Oligia latruncula (Denis & Schiffermüller, 1775) | p, He | 1 | 6 | ||||||||
Panolis flammea (Denis & Schiffermüller, 1775) | m1, He | 1 | |||||||||
Panthea coenobita (Esper, 1785) | o1, Con, TR | 1 | |||||||||
Phragmatiphila nexa (Hübner, 1808) | o2, He | 1 | 10 | 1 | 7 | 2 | 32 | 3 | 3 | ||
Plusia festucae (Linnaeus, 1758) | p, He | 1 | 1 | ||||||||
Deltote pygarga (Hufnagel, 1766) | O1, He | 6 | 9 | 4 | 15 | 9 | 5 | 7 | 5 | 21 | 28 |
Pseudeustrotia candidula (Denis & Schiffermüller, 1775) | p, He | 1 | 1 | 7 | |||||||
Rhizedra lutosa (Hübner, 1803) | m1, He | 1 | 1 | ||||||||
dina buettneri (E. Hering, 1858 | p, Tr | 3 | |||||||||
Senta flammea (Curtis, 1828) | m1, He | 1 | 7 | 3 | |||||||
Sideridis rivularis (Fabricius, 1775) | O1, He | 1 | 1 | 1 | 1 | 1 | 8 | ||||
Simyra albovenosa (Goeze, 1781) | p, He, Sc | 1 | 2 | ||||||||
Staurophora celsia (Linnaeus, 1758) | O1, He | 2 | 3 | 3 | |||||||
Thalpophila matura (Hufnagel, 1766) | O1, He | 1 | |||||||||
Tholera cespitis (Denis & Schiffermüller, 1775) | p, He | 6 | 1 | ||||||||
Tholera decimalis (Poda, 1761) | p, He | 3 | 9 | 4 | |||||||
Trachea atriplicis (Linnaeus, 1758) | p, He | 1 | |||||||||
Xanthia icteritia (Hufnagel, 1766) | p, Sc, Tr | 1 | 1 | 1 | 7 | 6 | |||||
Xanthia togata (Esper, 1788) | o2, Sc, Tr | 1 | 1 | 1 | 1 | 1 | 3 | 1 | |||
Xestia c-nigrum (Linnaeus, 1758) | p, He | 4 | 3 | 5 | 6 | 5 | 10 | 8 | 6 | 14 | |
Xestia baja (Denis & Schiffermüller, 1775) | p, He, Sc, Tr | 1 | 1 | 1 | 3 | 5 | |||||
Xestia sexstrigata (Haworth, 1809) | o2, He | 5 | 2 | 2 | 7 | 10 | 1 | 1 | |||
Xestia triangulum (Hufnagel, 1766) | p, He, Sc, Tr | 18 | 2 | 2 | 9 | 10 | 12 | 22 | 2 | 22 | |
Xestia xanthographa (Denis & Schiffermüller, 1775) | o2, He | 1 | |||||||||
Family Nolidae | |||||||||||
Earias vernana (Fabricius, 1787) | m1, Tr | 1 | |||||||||
Pseudoips prasinana (Linnaeus, 1758) | o2, Sc, Tr | 1 | 1 | ||||||||
Earias clorana (Linnaeus, 1761) | m2, Sc, Tr | 1 | 1 | 1 | 1 | ||||||
Family Notodontidae | |||||||||||
Cerura erminea (Esper, 1783) | m2, Tr | 2 | 1 | ||||||||
Clostera anastomosis (Linnaeus, 1758) | o1, Sc, Tr | 1 | 1 | 1 | 1 | 3 | |||||
Clostera curtula (Linnaeus, 1758) | o1, Sc, Tr | 3 | 1 | 1 | 3 | ||||||
Clostera pigra (Hufnagel, 1766) | o1, Sc, Tr | 2 | 3 | 1 | 2 | 1 | 2 | 1 | |||
Family Notodontidae | Larval food necessities | QP1 | QP2 | QP3 | RN1 | RN2 | RN3 | RN4 | SC1a | Sc1b | Sc2 |
Furcula bicuspis (Borkhausen, 1790) | O1, Tr | 1 | 1 | 4 | 2 | 4 | 1 | 1 | |||
Gluphisia crenata (Esper, 1785) | o1, Sc, Tr | 1 | 1 | 1 | |||||||
Leucodonta bicoloria (Denis & Schiffermüller, 1775) | m2, Tr | 1 | 1 | 1 | 3 | 3 | 1 | 1 | 8 | 5 | |
Notodonta dromedarius (Linnaeus, 1767) | o2, Sc, Tr | 2 | 4 | 3 | 8 | 3 | 17 | 1 | 1 | ||
Notodonta torva (Hübner, 1803) | o1, Sc, Tr | 1 | |||||||||
Notodonta ziczac (Linnaeus, 1758) | o2, Sc, Tr | 1 | 3 | 1 | 1 | ||||||
Odontosia carmelita (Esper, 1799) | o1, Sc, Tr | 1 | |||||||||
Phalera bucephala (Linnaeus, 1758) | o2, Sc, Tr | 4 | 5 | 2 | 3 | 4 | 3 | 13 | 6 | 8 | 5 |
Pheosia gnoma (Fabricius, 1776) | m2, Tr | 5 | 1 | 16 | 4 | 34 | 5 | 3 | 7 | ||
Pheosia tremula (Clerck, 1759) | o1, Sc, Tr | 2 | 14 | 2 | 7 | ||||||
Pterostoma palpina (Clerck, 1759) | O1, He, Sc | 3 | 1 | ||||||||
Ptilodon capucina (Linnaeus, 1758) | o2, Sc, Tr | 4 | 4 | 3 | 2 | 2 | 1 | 2 | 8 | 8 | |
Stauropus fagi (Linnaeus, 1758) | o2, Sc, Tr | 3 | 1 | 1 | 3 | 3 | 2 | 1 | |||
Family Sphingidae | |||||||||||
Deilephila elpenor (Linnaeus, 1758) | o2, He | 1 | 1 | 1 | 1 | ||||||
Hyles gallii (Rottemburg, 1775) | o2, He | 1 | 2 | ||||||||
Laothoe populi (Linnaeus, 1758) | o1, Sc, Tr | 1 | 3 | 1 | 4 | 6 | 1 | 1 | 2 | 2 | |
Mimas tiliae (Linnaeus, 1758) | o2, Tr | 1 | 1 | ||||||||
Smerinthus ocellata (Linnaeus, 1758) | o2, Sc, Tr | 1 | 3 | 1 | 7 | 3 | 2 | 14 | 2 | 3 |
References
- Schowalter, T.; Crossley, D.; Hargrove, W. Herbivory in forest ecosystems. Annu. Rev. Entomol. 1986, 31, 177–196. [Google Scholar] [CrossRef]
- Macgregor, G.; Pocock, M.; Fox, R.; Evan, D. Pollination by nocturnal Lepidoptera, and the effects of light pollution: A review. Ecol. Entomol. 2015, 40, 187–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, R.T.; Schultz, J.C.; Nothnagel, P. Bird predation on forest insect: An enclosure experiment. Science 1979, 206, 462–463. [Google Scholar] [CrossRef]
- Dodd, E.; Lacki, J. Prey consumed by Corynorhinus townsendii ingens in the Ozark Moutain region. Acta Chiropterol. 2007, 9, 451–461. [Google Scholar] [CrossRef]
- Schwenk, W.; Stron, M.; Sillett, S. Effects of bird predation on arthropod abundance and tree growth across an elevation gradient. J. Avian Biol. 2010, 41, 367–377. [Google Scholar] [CrossRef]
- Wardle, D.A.; Bardgett, R.D.; Callaway, R.M.; Van der Putten, W.H. Terrestrial Ecosystem Responses to Species Gains and Losses. Science 2011, 332, 1273–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The IUCN Red List of Threatened Species Version 2022-2. Available online: https://www.iucnredlist.org (accessed on 2 January 2023).
- Conrad, K.F.; Warren, M.S.; Fox, R.; Parsons, M.S.; Woiwod, I.P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 2006, 132, 279–291. [Google Scholar] [CrossRef]
- Conrad, K.F.; Woiwod, I.P.; Perry, N.J. Long-term decline in abundance and distribution of the garden tiger moth (Arctia caja) in Great Britain. Biol. Conserv. 2002, 106, 329–337. [Google Scholar] [CrossRef]
- Pimm, S.L.; Jenkins, C.N.; Abell, R.; Brooks, R.M.; Gittleman, J.L.; Joppa, L.N.; Raven, P.H.; Roberts, C.M.; Sexton, J.O. The biodiversity of species and their rates of extinction, distribution, and protection. Science 2014, 344, 1246752. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human–induced species losses: Entering the sixth massextinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef] [Green Version]
- Fox, R.; Oliver, T.H.; Harrower, C.; Parsons, M.S.; Thomas, C.D.; Roy, D.B. Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes. J. App. Eco. 2014, 51, 949–957. [Google Scholar] [CrossRef] [Green Version]
- Wagner, D.L.; Fox, R.; Salcido, D.M.; Dyer, L.A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl. Acad. Sci. USA 2021, 118, e2002549117. [Google Scholar] [CrossRef]
- Macgregor, C.J.; Evans, D.M.; Fox, R.; Pocock, M.J.O. The dark side of street lighting: Impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Chang. Biol. 2017, 23, 697–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Langevelde, F.; Braamburg-Annegarn, M.; Huigens, M.E.; Groendijk, R.; Poitevin, O.; van Deijk, J.R.; Ellis, W.N.; van Grunsven, R.H.A.; de Vos, R.; Vos, R.A.; et al. Declines in moth populations stress the need for conserving dark nights. Glob. Chang. Biol. 2018, 24, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Boyes, D.H.; Evans, D.M.; Fox, R.; Parsons, M.S.; Pocock, M.J.O. Street lighting has detrimental impacts on local insect populations. Sci. Adv. 2021, 7, 8322–8347. [Google Scholar] [CrossRef] [PubMed]
- Hilt, N.; Fiedler, K. Arctiid moth ensembles along a successional gradient in the Ecuadorian montane rain forest zone: How different are subfamilies and tribes? J. Biogeogr. 2006, 33, 108–120. [Google Scholar] [CrossRef]
- Ignatov, I.; Janovec, J.; Centeno, T.M.; Grados, J.; Lamas, G.; Kitching, I. Patterns of richness composition, and distribution of sphingid moths along anelevational gradient in the Andes-Amazon region of southeastern Peru. Ann. Entomo. Soc. Am. 2011, 104, 68–76. [Google Scholar] [CrossRef]
- Palting, J.D. Preliminary assessment of the moth (Lepidoptera: Heterocera) fauna of Rincon de Guadalupe, Sierra de Bacadehuachi, Sonora, Mexico. In Merging Science and Management in a Rapidly Changing World: Biodiversity and Management of the Madrean Archipelago III and 7th Conference on Research and Resource Management in the Southwestern Deserts, Tucson, AZ, USA, 1–5 May 2012; Gottfried, G.J., Ffolliott, P.F., Gebow, B.S., Eskew, L.G., Collins, L.C., Eds.; Proceedings. RMRS-P-67; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2013; pp. 169–171. [Google Scholar]
- Grunsven, R.; Lham, D.; Geffen, K.; Veenedndaal, E. Range of attraction of a 6-W moth light trap. Entomologia. Exp. Appl. 2014, 152, 87–90. [Google Scholar] [CrossRef]
- Uhl, B.; Wölfling, M.; Fiedler, K. Understanding small-scale insect diversity patterns inside two nature reserves: The role of local and landscape factors. Biodivers. Conserv. 2020, 29, 2399–2418. [Google Scholar] [CrossRef]
- Uhl, B.; Wölfling, M.; Fiedler, K. Exploring the power of moth samples to reveal community patterns along shallow ecological gradients. Ecol. Entomol. 2022, 47, 371–381. [Google Scholar] [CrossRef]
- Jones, D.; Eggleton, P. Sampling termite assemblages in tropical forests: Testing a rapid biodiversity assessment protocol. J. App. Ecol. 2000, 37, 191–203. [Google Scholar] [CrossRef]
- Shuey, A.; Metzler, H.; Tungesvick, K. 2012. Moth communities correspond with plant communities on midwestern (Indiana, USA) Sand Prairies and Oak Barrens at their degradation end poitns. Am. Midl. Nat. 2000, 167, 273–284. [Google Scholar] [CrossRef]
- Horváth, B. Diversity comparison of nocturnal macrolepidoptera communities (Lepidoptera: Macroheterocera) in different forest stands. Nat. Som. 2013, 23, 229–238. [Google Scholar]
- Molloy, P.; Evanson, M.; Nellas, A.; Rist, J.; Marcus, J.; Koldewey, H.; Vicente, A. How much sampling does it take to detect trends in coral-reef habitat using photo-quadrat surveys? Aquat. Conserv. Mar. Freshw. Ecosyst. 2013, 23, 820–837. [Google Scholar] [CrossRef]
- Horwáth, D.; Tóth, V.; Lakatos, F. Relation between-layer traits and moth communities in sessile oak-hornbeam forests. North-West. J. Zool. 2016, 12, 213–219. [Google Scholar]
- Thomas, A.W.; Thomas, G.M. Sampling strategies for estimating moth species diversity using a light trap in a northeastern softwood forest. J. Lepid. Soc. 1994, 48, 85–105. [Google Scholar]
- Jonason, D.; Frazén, M.; Ranius, T. Surveying moths using light traps: Effects of weather and time of year. PLoS ONE 2014, 9, e92453. [Google Scholar] [CrossRef] [PubMed]
- Summerville, K.; Metzler, E.; Crist, T. Diversity of Lepidoptera in Ohio forests at local and regional scales: How heterogeneous is the fauna? Ann. Entomol. Soc. Am. 2001, 94, 583–591. [Google Scholar] [CrossRef]
- Briscoe, A.; Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 2001, 46, 471–510. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, S.; Kelber, A.; Warrant, E.; Sweeney, A.M.; Widder, A.E.; Lee, L.R.; Hernadez-Andrés, J. Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor. J. Exp. Biol. 2006, 209, 789–800. [Google Scholar] [CrossRef] [Green Version]
- Fayle, M.T.; Sharp, R.E.; Majerus, E.N.M. The effect of moth trap type on catch size and composition in Bristish Lepidoptera. Br. J. Ent. Nat. Hist. 2007, 20, 221–232. [Google Scholar] [CrossRef]
- Infusino, M.; Scalercio, S. The importance of beech forests as reservoirs of moth diversity in Mediterranean Basin (Lepidoptera). Fragm. Entomol. 2018, 50, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Matos da Costa, J. Changes in the power (Watts) of the actinic light do not affect its better perfomacne vs the ultraviolet light. World Sci. News 2021, 157, 154–168. [Google Scholar]
- Brehm, G.; Niermann, J.; Jaimes Nino, L.; Enseling, D.; Justel, T.; Axmacher, J.C.; Warrant, E.; Fiedler, K. Moths are strongly attracted to ultraviolet and blue radiation. Insect Conserv. Divers. 2021, 14, 188–198. [Google Scholar] [CrossRef]
- Baker, R.; Sadovy, Y. The distance and nature of the light trap response of moths. Nature 1978, 276, 818–821. [Google Scholar] [CrossRef]
- Beck, J.; Lisenmair, K. Feasibility of light-trapping in community research of moths: Attraction radius of light, completeness of samples, night flight times and seasonality of Southeast Asian hawkmoths (Lepidoptera: Sphingidae). J. Res. Lepid. 2000, 39, 18–37. [Google Scholar] [CrossRef]
- Truxa, C.; Fielder, K. Attraction to light—From how far do moths (Lepidoptera) return to weak artificial sources of light? Eur. J. Entomol. 2012, 109, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Merckx, T.; Slade, M.E. Macro-moth families differ in their attraction to light: Implications for light-trap monitoring programmes. Insect. Conserv. Diver. 2014, 7, 453–461. [Google Scholar] [CrossRef]
- Bunge, J.; Fitzpatrick, M. Estimating the number of species: A review. J. Am. Stat. Assoc. 1993, 88, 364–373. [Google Scholar] [CrossRef]
- Barghini, A.; Souza de Medeiros, B.A. UV radiation as an attractor for insects. Leukos 2012, 9, 47–56. [Google Scholar] [CrossRef]
- Leinonen, R.; Söderman, G.; Itämies, J.; Rytkönen, S.; Rutanen, I. Intercalibration of different light-traps and bulbs used in moth monitoring in northern Europe. Entomol. Fenn. 1998, 9, 37–51. [Google Scholar] [CrossRef]
- Matos da Costa, J. Preliminary studies toward an effective Macrolepidopteran monitoring system in the forest of the Narew National Park, North-east Poland—Ultraviolet vs actinic light Heath traps. World Sci. News 2018, 99, 193–214. [Google Scholar]
- Ober, H.K.; Hayes, J.P. Determinants of nocturnal Lepidoptera diversity and community structure in a conifer-dominated forest. Biodivers. Conserv. 2010, 19, 761–774. [Google Scholar] [CrossRef]
- Hilt, N.; Fiedler, K. Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian Andes. Divers. Distrib. 2005, 11, 387–398. [Google Scholar] [CrossRef]
- Hirao, T.; Murakami, M.; Kashizaki, A. Importance of the understory stratum to the entomofaunal diversity in a temperate deciduous forest. Ecol. Res. 2009, 24, 263–272. [Google Scholar] [CrossRef]
- Highland, S.; Miller, J.; Jones, J. Determinants of moth diversity and community in a temperate mountain landscape vegetation, topography and seasonality. Ecosphere 2013, 4, 1–22. [Google Scholar] [CrossRef]
- Marana, P.; An, J.S.; Lee, J.; Lim, J.T.; Choi, S.W. Diversity of moths (Insecta: Lepidoptera) on Bogildo Island, Wando-gun, Jeonnam, Korea. J. Ecol. Field Biol. 2009, 32, 129–135. [Google Scholar] [CrossRef]
- Choi, S.; An, J. What we know about moth diversity from seven-year-monitoring in Mt. Jirisan National Park, South Korea. J. Asia-Pac. Entomol. 2013, 16, 401–409. [Google Scholar] [CrossRef]
- Tikoca, S.; Hodge, S.; Tuiwana, M.; Brodie, G.; Pene, S.; Clayton, J. An appraisal of smapling methods and effort for investigation moth assemblages in a Fijian forest. Austral Entomol. 2016, 55, 455–462. [Google Scholar] [CrossRef]
- Salercio, S. Macroheterocera of a mixed Calabrian black pine-European beech forest of Sila Mountains (Italy) (Insecta: Lepidoptera). SHILAP-Rev. Lepidopt. 2020, 48, 651–659. [Google Scholar] [CrossRef]
- Tikoca, S.; Hodge, S.; Tuiwawa, M.; Pene, S.; Clayton, J.; Brodie, G. A comparison of macro moth assemblages across three types of lowland forest. J. Res. Lepid. 2017, 49, 69–79. [Google Scholar] [CrossRef]
- Dapkus, D. Comparison of Lepidoptera Communities of Čepkeliai Raised Bog and Palios Peatlands. Acta Zool. Litu. 2000, 10, 85–88. [Google Scholar] [CrossRef]
- Brehm, G.; Fiedler, K. Diversity and community structure of geometrid moths of disturbed habitat in a montane area in the Ecuadorian Andes. J. Res. Lepid. 2005, 38, 1–14. [Google Scholar] [CrossRef]
- An, J.; Choi, S. Forest moth assemblages as indicators of biodiversity and environmental quality in a temperate deciduous forest. Eur. J. Entomol. 2013, 110, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Summerville, S.; Saunders, M.; Lane, J. The Lepidoptera as predictable communities of herbivores: A test of niche assembly using the moth communities of Morgan-Monroe state forest. In The Hardwood Ecosystem Experiment: A Framework for Studying Responses to Forest Management; Swihart, R.K., Saunders, M.R., Kalb, R.A., Haulton, G.S., Michler, C.H., Eds.; Gen. Tech. Rep. NRS-P-108; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2013; pp. 237–252. [Google Scholar]
- Truxa, C.; Fiedler, K. Massive structural redundancis in species composition patterns of floodplain forest moths. Ecography 2016, 39, 253–260. [Google Scholar] [CrossRef]
- Novotny, V.; Basset, Y. Rare species in communities of tropical insect herbivores: Pondering the mystery of singletons. Oikos 2000, 89, 564–572. [Google Scholar] [CrossRef] [Green Version]
- Greco, S.; Infusino, M.; Scalercio, S. How different management regimes of chestnut forest affect diversity and abundance of moth communities? Ann. Silvic. Res. 2018, 42, 59–67. [Google Scholar] [CrossRef]
- Correa-Carmona, Y.; Rougeire, R.; Arnal, P.; Ballester5os-Meija, L.; Beck, J.; Dolédec, S.; Ho, C.; Kitching, I.J.; Lavelle, P.; Le Clec’h, S.; et al. Functional and taxonomic responses of tropical moth communities to deforestation. Insect Conserv. Divers. 2021, 15, 236–247. [Google Scholar] [CrossRef]
- Banaszuk, P.; Wołkowycki, D. Narwiański Park Narodowy—Krajobraz, Przyroda i Człowiek; Monografia NPN: Białystok, Kurowo, Poland, 2016; pp. 81–128. [Google Scholar]
- Ciurzycki, W.; Marciszewska, K. Forest plant communitites and their degeneration in the urban forests of Warsaw. Folia Florest. Pol. 2018, 60, 269–280. [Google Scholar] [CrossRef]
- Forest Management Manual. In Part II. Instructions for Distinguishing and Mapping Forest Habitat Types and Plant Communities in the State Forest; The State Forests Information Centre: Warsaw, Poland, 2000. (In Polish)
- Philips Lighting Holding, B.V. TL Mini Blacklight Blue, TL 8W BLB 1FM/10X25CC. 2017. Available online: www.lighting.philips.com (accessed on 14 January 2023).
- Philips Lighting Holding, B.V. Actinic BL TL(-K)/TL-D(-K), Actinic BL TL TL-D 15W/10 1SL/25. 2018. Available online: www.lighting.philips.com (accessed on 14 January 2023).
- Buszko, J. Atlas Motyli Polski Część III. Falice, Wycinki, Miernikowce. IMAGE sp. z o.o.: Warsaw, Poland, 2000; pp. 1–518. [Google Scholar]
- Macek, J.; Dvorak, J.; Traxler, L.; Červenka, V. Motyli a Housenky Stredni Evropy. I., Nočni Motyli; Academia: Praha, Czech Republic, 2007; pp. 1–371. [Google Scholar]
- Macek, J.; Dvorak, J.; Traxler, L.; Červenka, V. Motyli a Housenky Stredni Evropy. II. Nočni Motyli; Academia: Praha, Czech Republic, 2008; pp. 1–490. [Google Scholar]
- Buszko, J.; Masłowski, J. Motyle Nocne Polski. Macrolepidoptera Część I; Koliber: Nowy Sącz, Poland, 2012; pp. 1–301. [Google Scholar]
- Macek, J.; Procházka, J.; Traxler, L. Motyli a housenky stredni Evropy. III. Nočni Motyli; Academia: Praha, Czech Republic, 2012; pp. 1–417. [Google Scholar]
- Nowacki, J.; Buszko, J. Atlas Motyli Polski Część IV. Sówki; IMAGE sp. z o.o.: Warsaw, Poland, 2019; pp. 1–564. [Google Scholar]
- Wołkowycki, D.; Lickiewicz, J.; Popławski, C.; Karczmarewicz, R.; Danik, K. Operat Ecosystemów Lądowych, Bagiennych i Leśnych Narwiańskiego Parku Narodowego. Część V. Opis Taksacyjny Lasów na Gruntach Skarbu Państwa; Narwiański Park Narodowy: Białystok, Poland, 2013; pp. 1–39. [Google Scholar]
- Fisher, R.M.; Peterson, M.A. Macromoth community structure along a 95-year post-harvest chronosequence in managed forests of northwest Washington State (U.S.A.), with comparison to old growth forest communities. Agric. For. Entomol. 2021, 3, 1–12. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Paleontological Statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988; pp. 1–179. [Google Scholar]
- Chao, A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Chao, A.; Chazdon, R.L.; Colwell, R.K.; Shen, T.-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 2005, 8, 148–159. [Google Scholar] [CrossRef]
- Ludwig, J. A survey of Macrolepidopteran moths near Vontay, Hanover County, Virginia. Banisteria 2000, 15, 16–34. [Google Scholar]
- Nowinszky, L.; Puskás, J.; Tar, K.; Hufnagel, L.; Ladányi, M. The dependence of normal and blacklight type trapping results upon the wingspan of moth species. Appl. Ecol. Env. Res. 2013, 11, 593–610. [Google Scholar] [CrossRef]
- Downer, R.A.; Ebert, T.A. Macrolepidoptera biodiversity in Wooster, Ohio from 2001 through 2009. Zookeys 2014, 452, 79–105. [Google Scholar] [CrossRef] [Green Version]
- Koren, T.; Vukotić, K.; Črne, M. Diversity of moth fauna (Lepidoptera: Heterocera) of a wetland forest: A casa of study from Motovum forest, Istria, Croatia. Period. Biologorum. 2015, 117, 399–414. [Google Scholar] [CrossRef] [Green Version]
- Summerville, S.; Crist, T. Determinants of lepidoptera community composition and species diversity in eastern deciduous forest: Roles of season, eco-region and patch size. Oikos 2003, 100, 134–148. [Google Scholar] [CrossRef]
- Somers-Yeates, R.; Hodgson, D.; McGregor, P.K.; Spalding, A.; Ffrench-Constant, R.H. Shedding light on moths: Shorter wavelengths attract noctuids more than geometrids. Biol. Lett. 2013, 9, 20130376. [Google Scholar] [CrossRef]
- Hawes, J.; da Silva Motta, C.; Overal, W.L.; Barlow, J.; Gardner, T.A.; Peres, C.A. Diversity and composition of Amazonian moths in primary, secondary and plantation forests. J. Trop. Ecol. 2009, 25, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Ricketts, T.H.; Daily, G.C.; Ehrlich, P.R.; Fay, J.P. Countryside biogeography of moths in a fragmented landscape:Biodiversity in native and agricultural habitats. Conserv. Biol. 2001, 15, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Choi, S. Diversity and composition of larger moths in three different forest types in Southern Korea. Ecol. Res. 2007, 23, 503–509. [Google Scholar] [CrossRef]
- Usher, M.; Keiller, S. The Macrolepidoptera of farm woodlands: Determinants of diversity and community structure. Biodivers. Conserv. 1998, 7, 725–748. [Google Scholar] [CrossRef]
- Abang, F.; Karim, C. The larger moths (Lepidoptera: Heterocera) of the Crocker Rangenational Park, Sabah: A preliminary checklist. In A Scientific Journey through Borneo: The Crocker Range National Park, Sabah: Natural Ecosystem and Species Components; ASEAN Academic Press: London, UK.
- Palmer, M.W.; White, P.S. Scale dependence and the species–area relationship. Am. Nat. 1994, 144, 717–740. [Google Scholar] [CrossRef]
- Landau, D.; Prowell, D.; Carlton, C. Intensive versus long term sampling to assess the lepidopteran diversity in a Southern mixed mesophytic forest. Ann. Entomol. Soc. Am. 1999, 92, 435–441. [Google Scholar] [CrossRef]
- Krebs, J.C. Ekologia—Eksperymentalna Analiza Rozmieszczenie i Liczebności; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2000. [Google Scholar]
- Schmidt, B.; Roland, J. Moth diversity in a fragmented habitat: Importance of functional groups and landscape scale in the boreal forest. Ann. Entomol. Soc. Am. 2006, 99, 1110–1120. [Google Scholar] [CrossRef]
QP1 | QP2 | QP3 | RN1 | RN2 | RN3 | RN4 | SQPa | SQPb | SRN | |
---|---|---|---|---|---|---|---|---|---|---|
QP1 | - | 0.9857 | 0.9838 | 0.9698 | 0.9533 | 0.9763 | 0.9654 | 0.9862 | 0.9835 | 0.9877 |
QP2 | 10.46 | - | 0.9883 | 0.9741 | 0.9538 | 0.9614 | 0.9612 | 0.9713 | 0.989 | 0.989 |
QP3 | 10.12 | 0.25 | - | 0.9813 | 0.9602 | 0.9569 | 0.961 | 0.9781 | 0.983 | 0.9893 |
RN1 | 4.87 | 5.48 | 5.66 | - | 0.9753 | 0.9418 | 0.9349 | 0.9761 | 0.9618 | 0.9697 |
RN2 | 8.53 | 1.45 | 1.66 | 3.98 | - | 0.9477 | 0.9397 | 0.9806 | 0.9455 | 0.9428 |
RN3 | 11.23 | 17.88 | 18.08 | 12.7 | 16 | - | 0.9757 | 0.9767 | 0.9712 | 0.9659 |
RN4 | 4.32 | 9.83 | 9.66 | 4.31 | 8.2 | 8.51 | - | 0.9657 | 0.9695 | 0.9734 |
SQPa | 10.35 | 0.83 | 5.56 | 5.93 | 2.03 | 18.53 | 10.25 | - | 0.9683 | 0.9721 |
SQPb | 10.35 | 0.83 | 5.56 | 5.93 | 2.03 | 18.53 | 10.25 | 0 | - | 0.9879 |
SRN | 11.48 | 1.56 | 1.38 | 7.05 | 3.03 | 19.38 | 11.23 | 1.15 | 1.5 | - |
QP1 | QP2 | QP3 | RN1 | RN2 | RN3 | RN4 | SQPa | SQPb | SRN | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spp. | Ind. | Spp. | Ind. | Spp. | Ind. | Spp. | Ind. | Spp. | Ind. | Spp. | Ind. | Spp. | Ind. | Spp. | Ind. | Spp. | Ind. | Spp. | Ind. | |
Geometridae | 53 | 300 | 55 | 581 | 63 | 541 | 57 | 458 | 43 | 214 | 49 | 600 | 43 | 863 | 58 | 465 | 72 | 1032 | 73 | 804 |
Noctuidae | 35 | 146 | 40 | 130 | 40 | 140 | 27 | 119 | 23 | 83 | 36 | 117 | 39 | 305 | 35 | 135 | 55 | 274 | 53 | 384 |
Erebidae | 18 | 137 | 24 | 156 | 24 | 205 | 25 | 403 | 24 | 107 | 18 | 207 | 19 | 588 | 26 | 267 | 30 | 243 | 27 | 403 |
Notodontidae | 6 | 17 | 9 | 19 | 11 | 34 | 10 | 23 | 11 | 76 | 8 | 12 | 9 | 43 | 9 | 25 | 12 | 43 | 11 | 36 |
Drepanidae | 5 | 23 | 3 | 17 | 5 | 17 | 5 | 28 | 5 | 16 | 4 | 8 | 5 | 116 | 6 | 31 | 6 | 45 | 6 | 39 |
Lasiocampidae | 3 | 45 | 3 | 13 | 3 | 27 | 3 | 46 | 2 | 14 | 2 | 15 | 2 | 47 | 3 | 21 | 3 | 35 | 2 | 8 |
Sphingidae | 3 | 8 | 4 | 8 | 4 | 7 | 4 | 11 | 3 | 11 | 2 | 8 | 3 | 16 | 3 | 7 | 3 | 6 | 5 | 10 |
Cossidae | 1 | 1 | 1 | 3 | 1 | 5 | 0 | 0 | 0 | 0 | 1 | 4 | 1 | 8 | 0 | 0 | 0 | 0 | 1 | 2 |
Hepialidae | 1 | 5 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 1 | 7 | 1 | 3 | 1 | 1 | 1 | 8 | 1 | 7 |
Nolidae | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 3 | 3 | 1 | 1 |
Total | 125 | 682 | 140 | 928 | 152 | 979 | 131 | 1088 | 112 | 522 | 121 | 978 | 123 | 1990 | 141 | 952 | 185 | 1689 | 180 | 1694 |
QP1 | QP2 | QP3 | RN1 | RN2 | RN3 | RN4 | SQPa | SQPb | SRN | |
---|---|---|---|---|---|---|---|---|---|---|
Geometridae | 29 | 18 | 24 | 30 | 14 | 14 | 4 | 24 | 20 | 22 |
Noctuidae | 22 | 27 | 27 | 19 | 14 | 23 | 22 | 15 | 27 | 17 |
Erebidae | 5 | 9 | 10 | 7 | 14 | 6 | 4 | 4 | 7 | 5 |
Notodontidae | 3 | 6 | 7 | 5 | 4 | 6 | 5 | 5 | 7 | 5 |
Drepanidae | 2 | 1 | 4 | 1 | 2 | 2 | 1 | 3 | 2 | 2 |
Sphingidae | 2 | 2 | 3 | 3 | 0 | 1 | 2 | 2 | 2 | 4 |
Lasiocampidae | 1 | 1 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 1 |
Cossidae | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Nolidae | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 3 | 1 |
Hepialidae | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Total SD | 65 | 65 | 76 | 67 | 49 | 52 | 40 | 55 | 69 | 58 |
% of SD | 52% | 46% | 50% | 51% | 44% | 43% | 33% | 39% | 37% | 32% |
QP1 | QP2 | QP3 | RN1 | RN2 | RN3 | RN4 | SQPa | SQPb | SRN | |
---|---|---|---|---|---|---|---|---|---|---|
H’ all | 4.2 | 4.03 | 4.1 | 3.7 | 4.3 | 3.94 | 4 | 4.2 | 4.38 | 4.53 |
H’ NoSD | 3.8 | 3.67 | 3.7 | 3.4 | 3.9 | 3.66 | 3.8 | 3.9 | 4.17 | 4.36 |
F’s A all | 45 | 45.8 | 50 | 39 | 44 | 36.4 | 29 | 46 | 53 | 50.9 |
F’s A NoSD | 17 | 19.9 | 20 | 15 | 20 | 17.4 | 18 | 24 | 28.7 | 30.6 |
E’ all | 0.9 | 0.82 | 0.8 | 0.8 | 0.9 | 0.82 | 0.8 | 0.9 | 0.84 | 0.87 |
E’ NoSD | 0.9 | 0.85 | 0.9 | 0.8 | 1 | 0.86 | 0.9 | 0.9 | 0.88 | 0.91 |
T. Spp. | 125 | 140 | 152 | 131 | 112 | 121 | 123 | 141 | 185 | 180 |
Chao1 | 170 | 180 | 245 | 198 | 146 | 145 | 136 | 165 | 245 | 252 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos da Costa, J.; Sielezniew, M. The Contribution of Singletons and Doubletons Captured Using Weak Light Heath Traps for the Analysis of the Macroheteroceran Assemblages in Forest Biotopes. Diversity 2023, 15, 508. https://doi.org/10.3390/d15040508
Matos da Costa J, Sielezniew M. The Contribution of Singletons and Doubletons Captured Using Weak Light Heath Traps for the Analysis of the Macroheteroceran Assemblages in Forest Biotopes. Diversity. 2023; 15(4):508. https://doi.org/10.3390/d15040508
Chicago/Turabian StyleMatos da Costa, João, and Marcin Sielezniew. 2023. "The Contribution of Singletons and Doubletons Captured Using Weak Light Heath Traps for the Analysis of the Macroheteroceran Assemblages in Forest Biotopes" Diversity 15, no. 4: 508. https://doi.org/10.3390/d15040508
APA StyleMatos da Costa, J., & Sielezniew, M. (2023). The Contribution of Singletons and Doubletons Captured Using Weak Light Heath Traps for the Analysis of the Macroheteroceran Assemblages in Forest Biotopes. Diversity, 15(4), 508. https://doi.org/10.3390/d15040508